Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY OF SPRING GRAZING MANAGEMENT EFFECT ON SUMMER-AUTUMN PASTURE AND MILK PRODUCTION OF PERENNIAL RYEGRASS x WHITE CLOVER DAIRY SWARDS

A thesis presented
in partial fulfilment of the requirements
for the degree of Doctor of Philosophy (Ph.D.) in
Pasture Agronomy
at Massey University.

Sila Carneiro da Silva
1994
Evid ence generated at Massey University demonstrated the importance of the manipulation of ryegrass reproductive growth during spring to pasture production. It showed that lax grazing of pastures during spring followed by hard grazing at the time of anthesis could result in an enhancement of summer-autumn herbage production, associated with an enhanced tillering activity of ryegrass plants. Such grazing management was called "late control", and it was thought to be an option for enhancing pasture production, particularly in dairy farms, where conditions for manipulating reproductive swards would be most favourable. Thus, the objectives of this study were (i) to evaluate the effects of this late control spring grazing management on summer-autumn herbage production and botanical composition of ryegrass-white clover dairy pastures, and (ii) to investigate the consequences of such a grazing management strategy on pasture quality, herbage intake and milk production by dairy cows.

Three field experiments are reported. The first two were sward-based experiments whose results were used to plan and set up the third experiment, which involved evaluation of both sward and animal effects.

The results from Experiment 1 (October 1990 to April 1991) and 2 (October 1991 to April 1992) confirmed the expectations of enhanced spring and summer-autumn herbage accumulation from a late control grazing management over the spring time. An average increase in production of the order of 750 Kg DM/ha (25%) was obtained from October to November, and of 1.0 t DM/ha (20%) was obtained from January to April in both years, with ryegrass accumulation being enhanced in Experiment 1 and white clover accumulation enhanced in Experiment 2. Evidence gathered about tillering activity was inconclusive, although it showed that tillers produced under the
late control spring grazing management were bigger than those produced under the conventional hard grazing management. White clover response was variable from year to year. It was concluded that the timing as well as the intensity of execution of the late control were very important. Late control should be executed at the time of anthesis of the reproductive development of ryegrass plants (late November-early December), and the removal of seedheads and reproductive stems should be gradual, over two or three successive grazing cycles.

Simulation of the implementation of this late control grazing management on a farm basis was then performed, based on the results from Experiments 1 and 2, in order to gain an overview about possible practical implications for farm practice. The models showed that the preparation of pastures to achieve the reproductive stage prior to late control was feasible and would not imply any decrease in the feeding level of dairy cows. However, more information was necessary on how to execute late control and whether or not the increased summer-autumn herbage accumulation could be converted to milk production.

Further evaluation of late control grazing in Experiment 3 (October 1992 to April 1993) revealed that increase in spring herbage accumulation by 1000 Kg DM/ha (25%) was a consequence of the reproductive growth of perennial ryegrass plants, which caused a decrease in the digestibility of the herbage consumed from 78% to 75% due to the increased contents of senescent and grass stem material in the sward. On the other hand, increased summer-autumn herbage accumulation (1000 Kg DM/ha, 25%) after late control was due to enhanced accumulation of both ryegrass and white clover. The digestibility of the herbage was restored soon after late control. Despite the lower digestibility of reproductive swards during the control period, no significant reduction in the herbage intake of dairy cows was detected in comparison with animals grazing leafy and vegetative swards. However, the use of forage conservation to augment grazing pressure during the late control
phase proved to be more effective than a grazing only strategy, since a large proportion of senescent material was allowed to form under those circumstances. The increase in summer-autumn herbage accumulation was associated with an increase in milk solids yield per cow of the order of 10%, with around 25 Kg milk-fat being obtained from the extra tonne of dry matter accumulated per hectare in late control pastures.

It is concluded that the late control spring grazing management of perennial ryegrass-white clover pastures can be used as an option to enhance pasture production in dairy farms, particularly during the summer-autumn period, and that this increased herbage accumulation can be effectively converted to milk solids yield. The implementation of this grazing strategy into a farm context and its implications for farm practice are briefly discussed.
ACKNOWLEDGEMENTS

Thanks are due to my chief supervisor, Professor John Hodgson, and my co-supervisors, Mr Parry N.P. Matthews, Dr Cory Matthew and Associate Professor Colin W. Holmes, for their patience, encouragement, interest, support and assistance throughout this project. Special thanks are due to Professor John Hodgson who went far beyond the call of duty as a supervisor to ensure my wife and I were appropriately settled and assisted.

The project was developed at one of the University Farms, the No 4 Dairy Farm, and because of that thanks are due to the Farm’s Administration staff, particularly Mr Gerard Lynch (former dairy farms supervisor), Mr David Grant, Mr Alastair MacDonald and Mrs Fiona Cayzer; and to the farm staff members, Mr Mark Power, Mr Peter Crosbie, Mr Ben Finlay, and Mrs Joanne Stent.

The help and support from field and laboratory technicians is also acknowledged. These helpers included Mr Terry Lynch, Mr Mark Osborne, Mr Gary Evans, Mrs Jackie Harrigan, Ms Louise Saunders, Mr Paul Sharp, Mrs Frith Brown, Mrs Cally Mckenzie, Ms Rosemary A. Watson and Mirian Hendriks.

The New Zealand Ministry of Foreign Affairs and Trade, the Dairying Research Corporation Limited, and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil) and E.S.A. "Luiz de Queiroz" (Brazil) are thanked for provision of post-graduate stipend and financial assistance towards the costs of this study.

Thanks are finally due to my wife, Ana Estela, for her patience, encouragement and support throughout our stay in New Zealand.
TABLE OF CONTENTS

ABSTRACT ... ii
ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS ... vi
LIST OF TABLES .. xvi
LIST OF FIGURES .. xxi

Chapter 1: Introduction and Objectives 1

Chapter 2: Literature Review .. 4
 2.1. Introduction and overview 4
 2.2. Grassland farming systems and seasonality of pasture production .. 5
 2.3. Characteristics of perennial ryegrass and white clover plants .. 7
 2.3.1. Perennial ryegrass (*Lolium perenne* L.) 7
 2.3.1.1. Plant biology .. 7
 2.3.1.2. Plant responses to grazing management 10
 2.3.2. White clover (*Trifolium repens* L.) 13
 2.3.2.1. Plant biology .. 14
 2.3.2.2. Plant responses to grazing management 16
 2.3.3. Perennial ryegrass and white clover plants grown in mixtures .. 19
 2.4. Spring grazing management of perennial ryegrass/white clover pastures .. 21
 2.4.1. Tiller populations and sward productivity 23
 2.5. Sward conditions and herbage utilisation by the grazing animal ... 28
 2.5.1. Herbage intake under grazing 29
2.5.2. Animal behaviour under grazing 31
2.6. Pasture production and the productivity of dairy systems 33
 2.6.1. Pasture control and feeding level of dairy cows 34
 2.6.2. Grazing management systems and dairy grasslands productivity 36
2.7. Implications of the agronomic data for dairy production systems 41
2.8. Conclusion .. 44

Chapter 3: Theoretical Hypothesis and Experimental Programme 45

Chapter 4: Influence of Spring Grazing Management on Summer-Autumn Production of Perennial Ryegrass/White Clover Dairy Pastures ... 47
 4.1. Introduction .. 47
 4.2. Experimental .. 49
 4.2.1. Objectives ... 49
 4.2.2. Site .. 49
 4.2.3. Experimental design 51
 4.2.4. Experimental treatments 52
 4.2.5. Measurements ... 54
 4.2.5.1. Herbage accumulation and components 54
 4.2.5.2. Ryegrass tiller demography and dynamics 54
 4.2.5.3. Species population densities 57
 4.2.5.4. Soil fertility 57
 4.2.6. Statistical analysis 58
 4.3. Results .. 59
 4.3.1. Ryegrass tiller demography and dynamics 59
 4.3.2. Grass tiller and clover stolon/node population 66
 4.3.3. Dry matter production and herbage accumulation rates 73
4.3.4. Relationship between the measured variables according to Canonical Discriminant Analysis 84
4.4. Discussion 89
 4.4.1. Research techniques 89
 4.4.2. Ryegrass tiller demography, dynamics and population 90
 4.4.3. White clover stolon/node population 92
 4.4.4. Herbage dry matter accumulation 94
 4.4.5. Herbage components accumulation 95
 4.4.6. Ryegrass:clover balance 97
4.5. Summary 101

Chapter 5: Feasibility of the Late Control Spring Grazing Management for Seasonal Dairy Systems 102
 5.1. Introduction 102
 5.2. Simulations of late control grazing in a farm condition 103
 5.2.1. Manawatu downland areas 105
 5.2.2. Experimental site 107
 5.3. Discussion 109

Chapter 6: Spring Grazing Management Effect on Summer-Autumn Pasture and Milk Production of Mixed Dairy Swards 111
 6.1. Introduction 111
 6.2. Experimental 113
 6.2.1. Site 113
 6.2.2. Experimental design 115
 6.2.2.1. Pasture evaluations 115
 6.2.2.2. Animal evaluations 115
 6.2.3. Experimental treatments 116
 6.2.4. Measurements 119
 6.2.4.1. Pasture responses 119
6.2.4.1.1. Herbage accumulation and components ... 119
6.2.4.1.2. Average pasture cover .. 120
6.2.4.1.3. Tiller dynamics ... 121
6.2.4.1.4. Species population densities ... 122
6.2.4.2. Animal responses ... 123
 6.2.4.2.1. Milk yield and composition .. 123
 6.2.4.2.2. Liveweight and body condition score of cows 124
 6.2.4.2.3. Herbage intake and sward quality 124
6.2.4.2.4. Grazing behaviour .. 126
6.2.5. Statistical analysis ... 126
6.3. Results ... 127
 6.3.1. Tiller dynamics .. 127
 6.3.2. Grass tiller and clover stolon/node population 133
6.3.3. Herbage accumulation and average pasture cover 137
6.3.4. Sward quality and herbage intake .. 147
6.3.5. Patterns of grazing behaviour .. 151
6.3.6. Milk yield and composition .. 153
6.3.7. Changes in liveweight and body condition score 154
6.3.8. Relationship between pasture and animal responses according to Principal Components Analysis ... 160
6.4. Discussion ... 162
 6.4.1. Techniques .. 162
 6.4.2. Tiller dynamics and population .. 164
6.4.3. Clover stolon/node population .. 167
6.4.4. Herbage dry matter accumulation ... 168
 6.4.4.1. Herbage dry matter composition 170
6.4.5. Ryegrass:clover balance ... 172
LIST OF TABLES

Chapter 4:
Table 4.1. Grazing dates of the experimental plots for Experiments 1 and 2 ... 56
Table 4.2. Levels of pH, labile phosphorus (ppm) and exchangeable potassium (meq/100 g soil) of experimental plots in Experiment 2 ... 58
Table 4.3. Number of new tillers formed per flowering tiller and tiller survival rate (TSR)/% of the original population of tagged tillers at each of the two tiller harvest dates of Experiment 1 60
Table 4.4. Individual tiller weight (mg) of new formed tillers at each of the two tiller harvest dates of Experiment 1 61
Table 4.5. Total weight (mg) of new formed tillers per flowering tiller at each of the two tiller harvest dates of Experiment 1 62
Table 4.6. Average number of new tillers formed per parent tiller at the final harvest of Experiment 2 (14 to 23 April, 1992) 63
Table 4.7. Individual tiller weight (mg) of new formed tillers at the final harvest of Experiment 2 (14 to 23 April, 1992) 64
Table 4.8. Total weight (mg) of new formed tillers per parent tiller at the final harvest of Experiment 2 (14 April, 1992) 65
Table 4.9. Average number of tagged tillers per parent tiller throughout Experiment 2 ... 68
Table 4.10. Rates of ryegrass tiller appearance, death and survival for the different experimental phases in Experiment 2 69
Table 4.11. Grass tiller population density (tillers/m²) at the end of Experiment 1 (April/91) and throughout Experiment 2 70
Table 4.12. White clover stolon population at the end of each experiment and clover nodes density throughout Experiment 2 .. 71
Table 4.1. Weed population densities (plants/m²) throughout Experiment 2 ... 72

Table 4.14. Monthly herbage accumulation rates for Experiments 1 and 2 (Kg DM/ha/day) ... 74

Table 4.15. Total herbage dry matter accumulation in Experiments 1 and 2 (Kg DM/ha) .. 75

Table 4.16. Herbage components accumulation (Kg DM/ha) in Experiments 1 and 2 .. 76

Table 4.17. Green dry matter accumulation components during Experiment 1 (Kg DM/ha) ... 78

Table 4.18. Species dry matter accumulation during Experiment 2 (Kg DM/ha) ... 79

Table 4.19. Species components accumulation (Kg DM/ha) in Experiment 2 ... 80

Table 4.20. Pre-grazing live:senescent material ratio for the three experimental phases of Experiment 2 .. 81

Table 4.21. Pre-grazing leaf:stem ratio of the grass component of the sward for the three experimental phases of Experiment 2 81

Table 4.22. First canonical factor for analysis of (1) paddock and (2) treatment effects in CDA of five variables. 86

Chapter 6:

Table 6.1. Rates of ryegrass tiller appearance (TAR), death (TDR) and survival (TSR) throughout the experimental period 128

Table 6.2. Average number of tagged tillers per parent tiller throughout the season ... 129

Table 6.3. Average number per parent tiller of tillers formed during the observation period and still alive at the final harvest of the season (18 to 30 April, 1993) 131

Table 6.4. Individual tiller weight (mg) of new formed tillers at the final harvest of the season (18 to 30 April, 1993) 132
Table 6.5. Total weight (mg) of new formed tillers per parent tiller at the final harvest of the season (18 to 30 April, 1993) .. 132
Table 6.6. Grass tiller population densities (tiller/m²) throughout the season .. 134
Table 6.7. Clover stolon/node population densities throughout the season ... 135
Table 6.8. Weed population densities (plants/m²) throughout the season ... 136
Table 6.9. Monthly herbage accumulation rates (Kg DM/ha/day) throughout the season ... 138
Table 6.10. Average pasture cover over the experimental farmlets during the four weeks of the control phase (Kg DM/ha) ... 138
Table 6.11. Average pasture cover over the experimental farmlets during the post-control phase and at drying-off date (28 April, 1993) (Kg DM/ha) 139
Table 6.12. Herbage dry matter accumulation (Kg DM/ha) during the three experimental phases .. 141
Table 6.13. Pre-grazing live:senescent material ratio for the three experimental phases ... 142
Table 6.14. Species dry matter accumulation (Kg DM/ha) during the three experimental phases .. 143
Table 6.15. Species components accumulation (Kg DM/ha) during the three experimental phases .. 144
Table 6.16. Pre-grazing leaf:stem ratio of the grass component of the sward for the three experimental phases ... 146
Table 6.17. Main botanical features of herbage sampled by hand plucking simulating grazing in areas protected from grazing by exclosure cages from 14 to 23 December ... 147
Table 6.18. Nutritive value of the herbage sampled by hand plucking of areas protected from grazing by exclosure cages from 14 to 23 December 148
Table 6.19. Values of estimated in vivo digestibilities (%) for the dry matter and organic matter of extrusa samples collected by oesophageal fistulated cattle at either the beginning and end of grazing .. 149

Table 6.20. Estimates of herbage intake (Kg/cow/day) by the experimental groups of cows at both periods of measurement as determined using the chromium oxide technique 150

Table 6.21. Time spent in specific activities by dairy cows grazing the experimental swards (hours) and their rates of biting (bites/minute) ... 152

Table 6.22. Daily milk yield during the farmlet study period (litres/cow/day) and the cumulative total yields for the control and post-control phases (litres/cow) .. 155

Table 6.23. Milk composition for the three experimental treatments during the control and post-control phases (%) .. 156

Table 6.24. Daily milk-fat yield during the farmlet study period (Kg/cow/day) and the cumulative total yields for the control and post-control phases (Kg/cow) .. 157

Table 6.25. Daily milk-protein yield during the farmlet study period (Kg/cow/day) and the cumulative total yields for the control and post-control phases (Kg/cow) .. 157

Table 6.26. Daily milk-lactose yield during the farmlet study period (Kg/cow/day) and the cumulative total yields for the control and post-control phases (Kg/cow) .. 158

Table 6.27. Daily milk-solids yield during the farmlet study period (Kg/cow/day) and the cumulative total yields for the control and post-control phases (Kg/cow) .. 158

Table 6.28. Average liveweight (Kg) throughout the farmlet study period (control and post-control experimental phases) 159

Table 6.29. Average body condition score throughout the farmlet study period (control and post-control experimental phases) .. 159
Table 6.30. Correlations between raw data and PC scores, and the proportion of total variance explained by PCA of the combined data set of animal and pasture responses

Chapter 7:
Table 7.1. Summary of herbage accumulation results from Experiments 1, 2 and 3.

Table 7.2. Results from the combined experiment analysis for Experiments 1, 2, 3.

Appendix:
Table A1.1. Predicted values for feed supply and demand (Kg DM/ha/day) and average pasture cover (Kg DM/ha) for downland areas under a conventional spring grazing management situation.

Table A1.2. Predicted values for feed supply and demand (Kg DM/ha/day) and average pasture cover (Kg DM/ha) for downland areas under a late control spring grazing management situation.

Table A1.3. Predicted values for feed supply and demand (Kg DM/ha/day) and average pasture cover (Kg DM/ha) for the experimental site under a conventional spring grazing management situation.

Table A1.4. Predicted values for feed supply and demand (Kg DM/ha/day) and average pasture cover (Kg DM/ha) for the experimental site under a late control spring grazing management situation.
LIST OF FIGURES

Chapter 4:
Figure 4.1. Mean air and soil (10cm) temperatures for the 1990/91 and 1991/92 seasons ... 50
Figure 4.2. Total monthly rainfall and pan evaporation for the 1990/91 and 1991/92 seasons ... 51
Figure 4.3. Experimental plots layout for the 1991/92 season 52
Figure 4.4. Ryegrass tillering pattern throughout the 1991/92 season for (a) EC; (b) LHC; and (c) LLC 67
Figure 4.5. Botanical composition of EC (top), LHC (middle), and LLC (bottom) swards at pre-grazing throughout the 1991/92 season 82
Figure 4.6. Ratio between perennial ryegrass (%) and clover (%) at pre-grazing masses in Experiment 2 83
Figure 4.7. Relationship between summer-autumn tillering and soil fertility as represented by (a) Olsen-P and (b) Exch-K levels ... 87
Figure 4.8. Relationship between summer-autumn herbage accumulation rates and (a) spring and (b) summer-autumn tillering .. 88

Chapter 5:
Figure 5.1. Predicted curves of (a) feed demand and supply, and (b) average pasture cover for downland areas under the conventional and the late control spring grazing managements . 106
Figure 5.2. Predicted curves of (a) feed demand and supply, and (b) average pasture cover for the experimental site under the conventional and the late control spring grazing managements. ... 108
Chapter 6:

Figure 6.1. Mean air and soil (10cm) temperatures for the 1992/93 season .. 114

Figure 6.2. Total monthly rainfall and pan evaporation for the 1992/93 season .. 114

Figure 6.3. Layout of the experimental treatments during the 1992/93 season .. 119

Figure 6.4. Ryegrass tillering pattern for (a) EC; (b) VFR; (c) HSR .. 130

Figure 6.5. Average pasture cover for the three experimental treatments throughout the farmlet study period .. 139

Figure 6.6. Botanical composition of EC (top), VFR (middle), and HSR (bottom) swards at pre-grazing throughout the 1992/93 season .. 145

Figure 6.7. Relationship between the average herbage accumulation rate (Kg DM/ha/day) and average milk solids yield (Kg/ha/day) for the February to April period .. 161