Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
GENETIC AND BIOCHEMICAL STUDIES ON THE UREASE ENZYME SYSTEM OF
SCHIZOSACCHAROMYCES POMBE

A thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics at Massey University

MARK WILLIAM LUBBERS
1993
12 residues of the N-terminal sequence, extending the N-terminal sequence to 18 residues. The 18 N-terminal amino acids had 55.6% identity and 83.3% similarity (exact plus conservative replacements) with the jack bean urease N-terminal sequence. The seven amino acids of T21 had 42.9% identity and 100% similarity with the urease from *Klebsiella aerogenes*. Peptide T40 (25 amino acids) had only very poor identity with other sequenced ureases.
ACKNOWLEDGEMENTS

I thank my supervisors, Dr Roy J. Thornton, Dr. Neville K. Honey, and Dr Susan B. Rodriguez for their guidance and continual encouragement.

The Department of Microbiology and Genetics for providing the space and equipment for this work.

The University Grants Council and Massey University for awarding scholarships to support this work.

I also thank:

Dr Takashi Toda (Kyoto University) for the kind gift of the S. pombe gene bank.

Dr Neil Haggarty (Separation Science Unit, Biochemistry Department) for help and advice on affinity resin manufacture.

Dr John W. Tweedie (Biochemistry Department) for initial advice on protein purification and many helpful discussions.

Dr Christopher Moore (Biochemistry Department) for advice on making tryptic peptides.

Mr Dick J. Poll (Biochemistry Department) for help and advice on FPLC purification of proteins and HPLC purification of peptides.

Dr Graham Midwinter and Mr Julian Reid (Biochemistry Department) for help with protein sequencing.

The many people in the Departments of Microbiology & Genetics and Biochemistry who have given me helpful advice.

To Rob van Duivenboden for making the lab a more pleasant place to be and for proofreading my references, many thanks.

Thanks also to Peter Lockhart for proof-reading my introduction.

A very special thank-you to my wife, Vanessa, and our children, Frania, Chantal, Isaac, Portia, and Ruby, who have been very understanding, patient and supportive.
Two indicator media were developed to detect urease activity in *Schizosaccharomyces pombe* colonies. These media were more sensitive than previously published media, permitted the rapid identification of urease mutants, were suitable for identifying urease positive transformants and were not affected by amino acid and nucleotide supplements.

Four genes, designated *ure1*, *ure2*, *ure3*, and *ure4*, are required for urease activity in *S. pombe*. Each of the genes was mapped to an approximate genetic location by induced haploidization and meiotic recombination: *ure1* on the left arm of chromosome III, 32 cM from *fur1* and 50 cM from *ade6*; *ure2* on the right arm of chromosome I, 69 cM from *ura2* and 100 cM from *ade4*; *ure3* on the right arm of chromosome I, 31 cM from *ade4* and 91 cM from *ura2*; *ure4* on the left arm of chromosome I, 100 cM from *lys1*.

The lithium chloride method for *S. pombe* transformation was modified to improve the transformation frequency up to 100-fold by using carrier DNA and resuspending the cells in 0.9% NaCl after transformation. Urease mutants for each of the four *ure* genes were transformed with a *S. pombe* gene bank. Three different plasmid clones, each of which specifically complemented one of the *ure1*, *ure3*, or *ure4* mutants, were isolated by complementation of the *ure*- phenotype. A gene bank clone complementing the *ure2* mutant was not found.

S. pombe urease was purified and characterized. The enzyme was intracellular and only one urease enzyme was detected by non-denaturing PAGE. The urease was purified 3,939-fold, with a 34% yield, by acetone precipitation, ammonium sulfate precipitation and DEAE-Sepharose ion exchange column chromatography. The native enzyme had $M_r = 212,000$ (Sepharose CL6B-200 gel filtration). One subunit was detected, with $M_r = 102,000$ (SDS-PAGE), indicating the undissociated enzyme contains two identical subunits. The specific activity was 709 μmol urea per min/mg protein. The enzyme was stable between pH 5.0 and pH 9.0. The optimum pH range for enzyme activity was pH 7.5 - pH 8.5. The K_m for urea was 1.03 mM. The sequences of the amino-terminus and three tryptic peptides of the enzyme were determined: N-terminus - Met Gln Pro Arg Glu Leu His Lys Leu Thr Leu His Gln Leu Gly Ser, peptide T21 - Phe Ile Glu Thr Asn Glu Lys, peptide T40 - Leu Tyr Ala Pro Glu Asn Ser Pro Gly Phe Val Glu Val Leu Glu Gly Glu Ile Glu Leu Leu Pro Asn Leu Pro, peptide T43 - Glu Leu His Lys Leu Thr Leu His Gln Leu Gly Ser Leu Ala. The sequence of T43 overlaps the last
TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES ... xi

LIST OF TABLES ... xiv

INTRODUCTION .. 1

1 THE ETHYL CARBAMATE PROBLEM ... 1
 1.1 Introduction .. 1
 1.2 Toxicology of Ethyl Carbamate .. 1
 1.3 Ethyl Carbamate in Wine ... 2
 1.4 Ethyl Carbamate Formation .. 3
 1.5 Urea Formation in Wine .. 4
 1.6 The Solution .. 6

2 SCHIZOSACCHAROMYCES POMBE .. 8

3 UREA AND UREASE .. 10
 3.1 Introduction .. 10
 3.2 Urease Structural Properties ... 14
 3.3 Urease Kinetic Characteristics ... 18
 3.4 Urease Genes .. 19
 3.5 Urea breakdown in Saccharomyces cerevisiae .. 20
 3.6 Schizosaccharomyces pombe urease .. 23

4 AIM OF THE PRESENT STUDY ... 24

MATERIALS AND METHODS ... 25

1 MICROBIOLOGICAL METHODS ... 25
 1.1 Microbial strains ... 25
 1.2 Media .. 25
 1.2.1 Auxotroph supplements .. 25
 1.3 Strain maintenance ... 25
 1.3.1 Schizosaccharomyces pombe strain storage ... 25
 1.3.2 Escherichia coli strain storage .. 25
 1.4 Growing S. pombe cells .. 32
 1.5 Growing E. coli cells ... 32
 1.6 Aseptic technique ... 32
 1.7 Filter sterilization ... 32
 1.8 Testing the phenotype of S. pombe strains .. 32
 1.8.1 Haploid/Diploid .. 32
1.8.2 Mating Type.. 32
1.8.3 Auxotrophy and fluorouracil resistance................... 32

2 UREASE ACTIVITY TESTS FOR S. POMBE CULTURES........ 33
 2.1 RUH test... 33
 2.2 Indicator plates... 33
 2.3 MINH plates.. 33

3 S. POMBE GENETIC MAPPING.................................. 33
 3.1 Genetic crosses.. 33
 3.2 Tetrads Dissection... 34
 3.3 Spore suspensions.. 34
 3.4 Analysis of tetrad data...................................... 34
 3.4.1 Genetic linkage.. 34
 3.4.2 Linkage to a centromere.............................. 34
 3.4.3 Chromosome assignment by induced
 haploidization... 35

4 PURIFICATION AND CHARACTERIZATION OF S. POMBE UREASE... 36
 4.1 Buffers for urease purification................................ 36
 4.1.1 PEB.. 36
 4.1.2 PEBS.. 36
 4.1.3 0.2 M PEBS... 37
 4.1.4 0.35 M PEBS.. 37
 4.2 Urease assay.. 37
 4.3 Protein assay.. 37
 4.4 Preparation of S. pombe crude cell extracts for urease
 purification.. 37
 4.5 Preparation of jack bean urease crude extracts........... 38
 4.6 Preparation of affinity adsorbents......................... 38
 4.6.1 Oxirane Hydroxyurea Agarose (OHA).................. 38
 4.6.2 Aminocaproic acid hydroxyurea agarose (AHA)........ 38
 4.6.3 Ethylenediamine-ethylenediamine hydroxyurea
 agarose (EHA)... 39
 4.6.4 Substitution of the affinity resins with
 hydroxyurea.. 40
 4.7 Purification of S. pombe urease............................ 40
 4.7.1 Acetone precipitation................................... 40
 4.7.2 Ammonium sulfate precipitation........................ 41
 4.7.3 Diethylaminoethyl (DEAE) Sepharose ion
 exchange.. 41
4.7.4 FPLC purification of urease .. 41
4.8 Ultrafiltration of protein solutions 42
4.9 Preparation of dialysis tubing 42
4.10 Polyacrylamide gel electrophoresis (PAGE) 42
4.11 Staining polyacrylamide gels for protein 43
 4.11.1 Coomassie Blue R-250 stain 43
 4.11.2 Silver stain .. 43
4.12 Urease activity stain for native-PAGE gels 43
4.13 Determination of protein molecular weight by gel
 filtration ... 44
4.14 Purification of peptides by High Performance Liquid
 Chromatography (HPLC) .. 45
4.15 Protein sequencing .. 45
5 POLYMERASE CHAIN REACTION (PCR) AMPLIFICATION OF DNA .. 45
 5.1 Oligonucleotide primer manufacture 45
 5.2 PCR amplification of DNA ... 45
 5.3 Construction of T-vectors .. 46
6 GENERAL DNA MANIPULATION TECHNIQUES 46
 6.1 Preparation of plasmid DNA ... 46
 6.1.1 Small-scale plasmid isolation 46
 6.1.2 Large-scale plasmid isolation 46
 6.2 Purification of DNA .. 46
 6.2.1 Cesium chloride density gradient equilibrium
 centrifugation ... 46
 6.2.2 Phenol/chloroform extraction of DNA 47
 6.3 Ethanol precipitation of DNA 47
 6.4 Agarose gel electrophoresis .. 47
 6.5 Restriction enzyme digestion of DNA 47
 6.6 Gel purification of DNA fragments 48
 6.7 DNA quantitation ... 48
 6.7.1 Absorbance at 260 nm .. 48
 6.7.2 Ethidium bromide dot quantitation 48
 6.7.3 Fluorescence in agarose gels 49
 6.8 Ligation of DNA fragments ... 49
 6.9 Preparation of single-stranded DNA from phagemids
 (pUC118/119) for sequencing 49
 6.10 DNA sequencing ... 50
 6.11 Southern transfer of DNA .. 50
6.12 Hybridization of DNA probes to Southern blots.......................... 50
6.13 Hybridization of oligonucleotide probes to Southern
blots.. 51
6.14 Nick-translation labeling of DNA probes................................. 51
6.15 End-labeling of oligonucleotide probes................................. 52
6.16 Preparation of S. pombe chromosomal DNA....................... 52
6.17 Plasmid vectors.. 52
7 TRANSFORMATION WITH PLASMID DNA................................. 52
 7.1 Schizosaccharomyces pombe transformation............................ 52
 7.2 Stability test for S. pombe transformants.............................. 54
 7.3 Recovering plasmids from Schizosaccharomyces pombe........ 55
 7.4 Electro-transformation of E. coli.. 55
 7.4.1 Preparation of competent E. coli cells for
 electro-transformation... 55
 7.4.2 Electro-transformation procedure.............................. 56
8 ADDITIONAL BUFFERS, STOCK SOLUTIONS AND NOTES................. 56
 8.1 Tris stock solutions... 56
 8.2 Ethylenediaminetetraacetic acid (EDTA, pH 8.0).................. 56
 8.3 TE (Tris EDTA).. 57
RESULTS .. 58
1 UREASE ACTIVITY SELECTION METHODS FOR S. POMBE STRAINS........ 58
 1.1 Nitrogen Source Plates.. 58
 1.2 Indicator Media.. 60
 1.2.1 Standard methods.. 60
 1.2.2 Indicator plates... 61
2 CHARACTERIZATION OF THE UREASE GENES............................. 68
 2.1 Characterization of ure mutants.. 68
 2.1.1 Urease mutant complementation groups........................ 68
 2.1.2 The urease activity of cell-free extracts...................... 68
 2.1.3 Effect of nickel and manganese on urease
 activity... 68
 2.2 Chromosome assignment and linkage relationships of ure1,
 ure2, ure3, and ure4... 70
 2.2.1 Linkage to lys1, the mat locus, or a centromere............ 70
 2.2.2 Assignment to linkage groups by induced
 haploidization.. 70
 2.2.3 Mapping by meiotic recombination............................ 73
3 S. POMBE UREASE PURIFICATION AND CHARACTERIZATION...............81

3.1 Factors affecting the urease activity assay...81
 3.1.1 Urea concentration of the substrate buffer.................................81
 3.1.2 Urease assay incubation time...81
 3.1.3 Effect of 2-mercaptoethanol, EDTA, and sodium
 azide on urease activity..83

3.2 Preparation of the crude extract..83
 3.2.1 Location of Urease Activity..83
 3.2.2 S. pombe urease isozymes...85
 3.2.3 Effect of urea, nickel sulfate, and manganese
 sulfate on the yield of urease activity...85
 3.2.4 Growth phase of the culture..85
 3.2.5 Method of cell disruption...88
 3.2.6 Phenylmethylsulfonyl fluoride (PMSF) protease
 inhibitor..88

3.3 Affinity column purification of S. pombe urease...................................88
 3.3.1 Oxirane Hydroxyurea Agarose (OHA)..89
 3.3.2 Aminocaproic acid hydroxyurea agarose (AHA)...............................91
 3.3.3 Ethylenediamine-ethylenediamine Hydroxyurea
 Agarose (EHA)...91

3.4 Precipitation and ion-exchange purification of S. pombe
 urease..98
 3.4.1 Acetone Precipitation..98
 3.4.2 Ammonium Sulfate Precipitation..98
 3.4.3 Acetone precipitation followed by ammonium
 sulfate precipitation..98
 3.4.4 Ion-exchange purification of S. pombe urease.................................101
 3.4.4.1 DEAE-Sepharose purification..101
 3.4.4.2 FPLC-Mono-Q purification...101

3.5 Urease Enzyme Characterization..106
 3.5.1 Native Molecular Weight...106
 3.5.2 Subunit Size..112
 3.5.3 pH Stability..112
 3.5.4 pH optimum..116
 3.5.5 K_m for urea...116
 3.5.6 Partial sequence of S. pombe urease..116

4 PCR AMPLIFICATION USING PRIMERS TO THE UREASE PROTEIN
 SEQUENCE...122
<table>
<thead>
<tr>
<th>Number</th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>PCR primer design</td>
<td>122</td>
</tr>
<tr>
<td>4.2</td>
<td>Optimization of PCR</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Cloning of the PCR product</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>ISOLATION OF URE GENES BY COMPLEMENTATION</td>
<td>135</td>
</tr>
<tr>
<td>5.1</td>
<td>Construction of ure- strains for transformation</td>
<td>135</td>
</tr>
<tr>
<td>5.2</td>
<td>Improvement of the lithium chloride transformation method</td>
<td>136</td>
</tr>
<tr>
<td>5.3</td>
<td>Transformation of ure- strains with a S. pombe gene bank</td>
<td>141</td>
</tr>
<tr>
<td>5.3.1</td>
<td>S. pombe gene bank amplification, insert size and frequency, and DNA preparation.</td>
<td>142</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Transformation of ure- strains</td>
<td>143</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GROWTH AND DIFFERENTIATION OF S. POMBE URE+ AND URE- STRAINS ON HYPOXANTHINE, UREA, AND INDICATOR MEDIA</td>
<td>151</td>
</tr>
<tr>
<td>2</td>
<td>CHARACTERIZATION OF URE MUTANTS</td>
<td>153</td>
</tr>
<tr>
<td>2.1</td>
<td>Urea transport</td>
<td>154</td>
</tr>
<tr>
<td>2.2</td>
<td>Urease Inducibility</td>
<td>155</td>
</tr>
<tr>
<td>2.3</td>
<td>Nickel transport/cofactor</td>
<td>156</td>
</tr>
<tr>
<td>2.4</td>
<td>Urease subunits</td>
<td>157</td>
</tr>
<tr>
<td>3</td>
<td>GENETIC MAP OF THE S. POMBE URE GENES</td>
<td>158</td>
</tr>
<tr>
<td>4</td>
<td>PURIFICATION AND CHARACTERIZATION OF S. POMBE UREASE</td>
<td>162</td>
</tr>
<tr>
<td>4.1</td>
<td>Urease assay method and inhibitors</td>
<td>162</td>
</tr>
<tr>
<td>4.2</td>
<td>Cellular localization of urease</td>
<td>163</td>
</tr>
<tr>
<td>4.3</td>
<td>Urease isozymes</td>
<td>163</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of nickel and manganese on urease activity</td>
<td>163</td>
</tr>
<tr>
<td>4.5</td>
<td>Urease stability</td>
<td>164</td>
</tr>
<tr>
<td>4.6</td>
<td>Affinity chromatography</td>
<td>164</td>
</tr>
<tr>
<td>4.7</td>
<td>Purification of urease by precipitation and ion exchange chromatography</td>
<td>166</td>
</tr>
<tr>
<td>4.8</td>
<td>Urease structural properties</td>
<td>166</td>
</tr>
<tr>
<td>4.9</td>
<td>pH stability and pH optimum</td>
<td>168</td>
</tr>
<tr>
<td>4.10</td>
<td>Urease sequence analysis</td>
<td>169</td>
</tr>
<tr>
<td>5.</td>
<td>AMPLIFICATION OF S. POMBE DNA USING PRIMERS TO THE UREASE Amino Acid Sequence</td>
<td>171</td>
</tr>
<tr>
<td>6</td>
<td>TRANSFORMATION OF S. POMBE</td>
<td>175</td>
</tr>
</tbody>
</table>
6.1 Improvement of the lithium chloride procedure for transformation of \textit{S. pombe} .. 175

6.2 Strain dependence of transformation .. 176

7 ISOLATION OF GENES COMPLEMENTING THE \textit{URE} MUTATIONS ... 177

7.1 Complementation of \textit{ure}⁻ strains with a \textit{S. pombe} gene bank .. 177

7.2 Hybridization of the PCR primers to the \textit{ure}⁻ complementing clones.. 179

SUMMARY AND CONCLUSIONS .. 180

FUTURE WORK .. 181

REFERENCES .. 183
LIST OF FIGURES

1 Pathway of purine catabolism in *Schizosaccharomyces pombe* .. 22
2 Growth of *S. pombe* wild type and *ure* strains on MINH medium .. 59
3 Effect of urea and phenol red on *S. pombe* growth ... 63
4A Differentiation of *S. pombe* urease+ and urease- strains on IHG indicator medium by spread-plating .. 65
4B Differentiation of *S. pombe* urease+ and urease- strains on ILG indicator medium by patching and replica plating .. 66
5 Effect of nickel and manganese on the growth of *S. pombe* ure- strains on MINH medium 71
6 Urea saturation curve of *S. pombe* urease ... 82
7 The activity of *S. pombe* urease over a two minute time course ... 84
8 Native-PAGE of *S. pombe* crude urease extract stained for urease activity 87
9 Structure of adsorbents made for affinity chromatography purification of urease 90
10 Purification of jack bean urease by EHA affinity chromatography with 0.2 M PB elution 92
11 Purification of jack bean urease by EHA affinity chromatography using urea gradient elution 94
12 SDS-PAGE of jack bean urease purified by EHA affinity chromatography using urea gradient elution ... 95
13 Purification of jack bean urease by DEAE-Sepharose ion-exchange chromatography 96
14 Purification of partially purified jack bean urease by EHA chromatography 97
15 Purification of *S. pombe* urease by DEAE-Sepharose ion-exchange chromatography 103
16 Native-PAGE of *S. pombe* urease purified by acetone precipitation, ammonium sulfate precipitation and DEAE-Sepharose ion-exchange chromatography ... 105
17 Purification of *S. pombe* urease by using FPLC Mono-Q ion-exchange as the final purification step .. 107
18 Native-PAGE of *S. pombe* urease purified by using Mono-Q FPLC as the last purification step 109
19 Elution volume (V_e) of *S. pombe* urease determined by gel filtration through a calibrated Sepharose CL6B 200 column ... 110
20 Calibration curve of Sepharose CL6B 200 column ... 111
21 SDS-PAGE of *S. pombe* urease (7.5% acrylamide) .. 113
22 SDS-PAGE of *S. pombe* urease (15% acrylamide) ... 114
23 pH stability of *S. pombe* urease ... 115
24 Activity of *S. pombe* urease at various pH ... 117
25 Eadie-Hofstee plot of *S. pombe* urease activity .. 118
26 Purification of *S. pombe* urease tryptic peptides by High Performance
 Liquid Chromatography (HPLC) .. 120
27 Amino acid sequences of *S. pombe* urease N-terminus and tryptic
 peptides .. 121
28 PCR primer sequences and codon usage frequency tables 123
29 Agarose gel electrophoresis of PCR amplified *S. pombe* DNA using primers
 ML1 and ML2 .. 127
30 Autoradiograph of *S. pombe* genomic DNA probed with pML12.4 131
31 Autoradiograph of *S. pombe* genomic DNA probed with PCR primers ML1
 and ML2 ... 133
32 Ethidium bromide stained agarose gel Southern blotted for pML12.4
 hybridization experiments ... 134
33 Agarose gel electrophoresis of *S. pombe* gene bank plasmids which
 complement *ure* mutants ... 145
34 Agarose gel electrophoresis of *ure*'-complementing gene bank clones
 digested with *Hind*III .. 146
35 Agarose electrophoresis of *ure*'-complementing gene bank clones,
 digested with *Hind*III and *Sal*I .. 149
36 Autoradiograph of *ure*'-complementing gene bank plasmid clones probed
 with PCR primers ML1 and ML2 ... 150
37 Genetic map of *S. pombe* chromosome I and II, showing the positions of the
 ure genes .. 160
38 Comparison of *S. pombe* urease amino acid sequence with other ureases 170
LIST OF TABLES

1. Strains of *Schizosaccharomyces pombe*, *Escherichia coli* and bacteriophage M13 used in this study .. 26
2. *S. pombe* media ... 29
3. *E. coli* media .. 31
4. Antibiotics ... 31
5. *E. coli* and *S. pombe* plasmid vectors used in this study 53
6. Urease Indicator Plates ... 64
7. Complementation of *ure*⁻ strains .. 69
8. Analysis of linkage of *ure* genes to *lys1*, the *mat* locus, or a centromere 72
9. Observed numbers of the genotypes among the haploid segregants from induced haploidization ... 74
10. Evaluation of haploidization dataa .. 75
11. Fractional viability of spore tetrads used for the linkage studies 79
12. Linkage Relationships .. 80
13. Urease activity in a fractionated *S. pombe* cell extract 86
14. Purification of *S. pombe* urease by acetone precipitation 99
15. Purification of *S. pombe* urease by ammonium sulfate precipitation 100
16. Ammonium sulfate precipitation of acetone precipitation purified *S. pombe* urease .. 102
17. DEAE-Sepharose ion-exchange purification of *S. pombe* urease 104
18. The activity of *S. pombe* urease fractions obtained from the FPLC-Mono-Q purification step .. 108
19. PCR thermal-cycling conditions .. 126
20. The effect on the transformation frequency of resuspending transformed cells in various isotonic and hypotonic solutions 139
21. Transformation frequency of *S. pombe* strains 140
22. Complementation of *ure*⁻ mutants by transformation with gene bank plasmid clones .. 147