Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
GROWTH IN THE FIELD AND CO₂ EXCHANGE CHARACTERISTICS IN RELATION TO TEMPERATURE OF YOUNG ASPARAGUS

(Asparagus Officinalis L.)

A thesis presented in partial fulfilment of the requirements for the degree of
DOCTOR OF PHILOSOPHY in
Horticultural Science
at Massey University
New Zealand

Sigit Sudjatmiko
September 1993
ABSTRACT

Studies on asparagus plants were conducted in the field and in growth rooms during 1990 to 1992. The field experiment was carried out to study the growth and development of young asparagus using successional plantings, from September to March, with two commonly grown cultivars, namely VC157 and Jersey Giant. The growth room study was divided into three separate experiments with the following four cultivars: UC157, Brocks, Tainan 1 and Larac. The first experiment studied the effects of high temperatures (30/20, 35/25 and 40/30°C) on the ontogenetic changes of photosynthesis, the second the effects of temperatures (20/20, 25/25, 30/20, 35/15 and 40/20°C) on plant respiration and ACj curve. The final experiment examined the effects of high temperatures (20/20, 25/25, 30/20, 35/15 and 40/20°C) on the light response curve.

In the field experiment, a logistic model based on a heat unit time scale was used to describe changes in total, crown and shoot dry weight. The curves showed that the earlier plantings resulted in larger plants at the end of the season. VC157 performed best from the September planting, while Jersey Giant suffered from low temperatures resulting in the differences between the September and October plantings being marginal. In addition, plant dry weight at the final harvest (autumn) decreased as the planting date was delayed. Planting later than October resulted in inferior plant quality based on carbohydrate storage and shoot, bud and root numbers criteria. In general the effect of treatment was carried over into the spring. A sharp decrease in total plant RGR late in the season was due, in particular, to the fall in shoot RGR. The fall in the shoot RGR was greater than the fall in crown RGR.

The shoot to root dry weight ratio in the first season increased up until February and then decreased regardless of planting date and cultivar. The allometric relationship between shoot and crown dry weight showed a similar trend. It was suggested that the change in the ratio and in the allometric relationship was due to a seasonal factor, probably temperature. In early spring of the second season the ratio increased for a short period of time and then decreased or stabilised.
Shoot, bud and root production increased exponentially for earlier plantings, particularly for UC157. UC157 had a higher number of these three plant parts than Jersey Giant. However, Jersey Giant had larger shoots, buds and roots as the total dry weights of these organs were not different to UC157.

The bud to shoot number ratio increased as the season progressed suggesting that shoot growth predominated over bud production during early growth. Meanwhile the cumulative shoot plus bud to root number ratio was high and similar for all plantings during early growth suggesting that young plants gave priority to shoot and bud development. The ratio then decreased sharply before stabilising late in the season. At the final harvest the cumulative shoot plus bud was supported by about two roots for the early plantings.

The CO$_2$ exchange studies of asparagus seedlings found that maximum photosynthesis was achieved on fern of an intermediate age regardless of cultivars. Photosynthesis of young and mature ferns was similar. Photosynthesis decreased as temperature increased from 20 to 40°C. Brocks had a lower photosynthesis at 20/20°C compared to Tainan 1 and Larac, while at high temperatures both Brocks and UC157 had a higher photosynthetic rate than Tainan 1 and Larac.

Shoot and crown dark respiration all increased with temperature but the Q_{10} was low. The low Q_{10} of crown respiration was possibly due to low oxygen availability and the capacity of storage roots to conserve storage carbohydrate.

The fern photorespiration and dark respiration also increased with temperature, but at 40/20°C the photorespiration rate decreased. The decrease suggests that photorespiratory enzymes are labile to temperature compared to dark respiratory enzymes. There was a trend for Brocks to have a higher photorespiration rate compared to Tainan 1 and Larac at 20/20°C, while at 35/15°C the photorespiration rate of Brocks was lower compared to the other cultivars.
The CO$_2$ compensation point (Γ) increased as the temperature increased. The increase was mainly due to photorespiration but at 40°C dark respiration made a more significant contribution.

The carboxylation efficiency (CE) was the major limitation at low temperature but as temperature increased stomatal limitation (lg) became an important factor. The increase in lg was possibly due to the effect of a high VPD.

Mature fern photosynthesis responded biphasically to increasing light intensities. The only difference in the light response curve between cultivars was at 35/15$^\circ$C, where Brocks had a higher rate of photosynthesis than other cultivars at light intensities ranging from 300 to 750 μmol m$^{-2}$ s$^{-1}$. Furthermore, the quantum yield (α) and maximum photosynthesis at light saturation (Pmax) decreased and the light compensation point (LCP) increased as the temperature was raised. Tainan 1 had a higher LCP and lower α than other cultivars, while UC157 had a higher Pmax.

Thus overall decrease in carbon accumulation with temperature was mainly due to an increase in stomatal limitation, a decrease in quantum yield, an increase in photorespiration (low carboxylation efficiency), and an increase in dark respiration.
ACKNOWLEDGEMENTS

In the name of Allah the most gracious and most merciful. This study will not have been possible without the help of Allah s.w.t.

I am also genuinely indebted to these following people who have helped with various aspects of this thesis work:

My supervisors Dr. K. J. Fisher, Dr. M. A. Nichols and Dr. D. J. Woolley for their guidance, encouragement and criticism;

The management and staff of Crown Research Institute (CRI) Palmerston North and the Plant Science Department of Massey University for the provision of facilities and technical advice;

The staff of Plant Growth Unit especially Mr. C. Forbes who built an excellent closed system design for CO₂ exchange measurement; Mr. B. R. McKay who helped the statistical analysis, and also Mrs. Nikki Wanoa who helped planting the seedling transplants and kept the weeds out of the experimental area;

The Chairman of The Doctoral Research Committee, Professor K. S. Milne, all Indonesian and Iranian and others students for their help and great moral support;

My parents and family for their encouragement and moral support;

My sincere thank to Indonesian and New Zealand governments for the financial assistance that made this study possible;

And last, but not least, my wife Rosita Arniati and my young wonderful sons Abdul Rahman Halim and Muhammad Husni for their patient, persistent encouragement and give me a meaningful life.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>GLOSSARY OF ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
</tbody>
</table>

CHAPTER ONE: LITERATURE REVIEW

1.1 GENERAL OVERVIEW OF ASPARAGUS

1.1.1 Introduction

1.1.2 Botany and morphology

1.1.3 Physiology

 - 1.1.3.1 Shoot growth
 - 1.1.3.2 Crown growth

1.2 GROWING ASPARAGUS IN THE FIELD

1.2.1 Plant establishment

 - 1.2.1.1 Introduction
 - 1.2.1.2 Establishment methods and crop yield
 - 1.2.1.3 What is a good seedling transplant
 - 1.2.1.4 Production of seedling transplants

 - 1.2.1.4.1 Introduction
 - 1.2.1.4.2 Seed treatments and seed quality
 - 1.2.1.4.3 Cell size, volume, depth and seedling density
 - 1.2.1.4.4 Media and fertilizer
 - 1.2.1.4.5 Effect of environmental factors and growth regulator on seedling
 - 1.2.1.4.6 Transplant age
 - 1.2.1.4.7 Time of transplanting
1.2.2 Growth and development of young asparagus plant 18
 1.2.2.1 Introduction ... 18
 1.2.2.2 Dry matter accumulation and partitioning 18
 1.2.2.3 Shoot, root and bud production 20

1.3 SHOOT-ROOT RELATIONSHIP 21
 1.3.1 Shoot-root ratio ... 21
 1.3.2 Shoot-root allometry relationship 21

1.4 PLANT GROWTH ANALYSIS 22
 1.4.1 Logistic model ... 22

1.5 ENVIRONMENTAL TIME SCALE 23
 1.5.1 General concept ... 23
 1.5.2 Heat unit concept .. 24
 1.5.2.1 Heat unit system assumptions 24
 1.5.2.2 Selection of appropriate base temperature 25
 1.5.2.3 Heat unit calculation 26

1.6 PHOTOSYNTHESIS AND RESPIRATION 26
 1.6.1 Photosynthesis in C_3 plants 26
 1.6.1.1 Introduction .. 26
 1.6.1.2 The C_3 Pathway 27
 1.6.2 Bases for the expression of photosynthetic rate 28
 1.6.3 Factors affecting photosynthesis 30
 1.6.3.1 Water .. 31
 1.6.3.2 Light intensity 32
 1.6.3.3 CO_2 and O_2 interaction 34
 1.6.3.4 Temperature .. 37
 1.6.3.5 Effect of day and night temperatures on
 photosynthesis ... 39
 1.6.3.6 Stomatal response to temperature and its effect on
 photosynthesis ... 39
 1.6.3.7 Leaf age .. 41
 1.6.3.8 Sink demand ... 41
1.6.3.9 General conclusion on the factors affecting photosynthesis ... 42
1.6.4 Correlations of photosynthesis with growth and yield .. 44
1.6.5 Photorespiration ... 44
 1.6.5.1 Introduction ... 44
 1.6.5.2 Biochemistry of photorespiration .. 45
 1.6.5.3 Methods of measurement of photorespiration .. 45
 1.6.5.3.1 Introduction ... 45
 1.6.5.3.2 Post illumination CO₂ burst (PIB) ... 46
 1.6.5.3.3 Inhibition of net assimilation by oxygen ... 47
 1.6.5.3.4 CO₂ efflux into CO₂-free air ... 47
 1.6.5.3.5 Short-term uptake of^{14}CO₂ and ^{12}CO₂ ... 48
 1.6.5.4 Environmental effect on photorespiration .. 48
 1.6.5.5 Role of photorespiration ... 49
 1.6.5.6 The control of photorespiration ... 50
1.6.6 Dark respiration ... 50
 1.6.6.1 Introduction ... 50
 1.6.6.2 Respiratory pathways ... 51
 1.6.6.3 Respiration of green cells in the light and the dark ... 51
 1.6.6.4 Factors affecting dark respiration ... 52
 1.6.6.4.1 Temperature ... 52
 1.6.6.4.2 Substrate availability ... 53
 1.6.6.4.3 Photosynthesis ... 53
1.6.7 Summary ... 54

CHAPTER 2: A STUDY OF THE GROWTH AND DEVELOPMENT OF YOUNG ASPARAGUS PLANTS IN THE FIELD USING SUCCESSIONAL PLANTINGS ... 55

2.1 INTRODUCTION ... 55
2.2 MATERIALS AND METHODS ... 56
 2.2.1 Introduction ... 56
 2.2.2 Plant raising ... 56
2.2.3 Planting and irrigation .. 56
2.2.4 Disease and pest control 57
2.2.5 Treatments .. 57
2.2.6 Successional Harvests 57
2.2.7 Experimental design ... 59
2.2.8 Collection of data .. 59
2.2.9 Data analysis .. 60
 2.2.9.1 Logistic model .. 60
 2.2.9.2 Relative Growth Rate 60
 2.2.9.3 Shoot crown ratio 61
 2.2.9.4 Estimation of K-values of the allometric relationship
 between shoot and crown dry weight during the first
 season ... 61
2.3 RESULTS ... 62
 2.3.1 Total dry weight of seedling transplants at the time of
 transplanting .. 62
 2.3.2 Dry weight accumulation during the first and second season .. 62
 2.3.2.1 Dry weight accumulation during the first season as
 described by the logistic model 62
 2.3.2.2 Dry weight of at the final harvest at the end of the
 first season (Autumn) 64
 2.3.3 Shoot to crown dry weight ratios during the first and second
 seasons .. 93
 2.3.3.1 Shoot to crown dry weight ratio during the first
 season .. 93
 2.3.3.2 Dry weight at the final harvest at the end of
 the second season 84
 2.3.3.3 Total, shoot and crown dry weight accumulation
 during the second season 83
 2.3.3.4 Dry weight accumulation during the spring
 growing period .. 83
 2.3.3.5 Shoot to crown dry weight ratios during the first and second
 seasons .. 93
2.3.3.2 Shoot to crown dry weight ratio during the second season 93
2.3.3.3 Allometric relationship between shoot and crown dry weight during the first season 93

2.3.4 The development of shoots, buds, and roots during the first and second seasons 100
2.3.4.1 Accumulation of shoots, buds, and roots during the first season 100
2.3.4.2 Shoot, bud and root number at the final harvest in the first season 100
2.3.4.3 Accumulation of shoots, buds and roots during the second season 101
2.3.4.4 Shoot, bud and root number at the final harvest in the second season 105

2.3.5 The ratio of bud to actual shoot number and of cumulative shoot plus bud to root number during the first and second seasons 119
2.3.5.1 Ratios during the first season 119
2.3.5.1.1 Bud to shoot number ratio 119
2.3.5.1.2 Cumulative shoot and bud to root number ratio 119
2.3.5.2 Ratios during the second season 124
2.3.5.2.1 Bud to shoot number ratio 124
2.3.5.2.2 Cumulative of shoot and bud to root number ratio 124

2.3.6 The relationship between number of buds and crown dry weight in the first and second season 124

2.4 DISCUSSION 128
2.4.1 Total dry weight of seedling transplants at the time of transplanting 128
2.4.2 Dry weight accumulation during the first and second season 129
2.4.2.1 Dry weight accumulation during the first season as described by the logistic model .. 129
2.4.2.2 Dry weight at the final harvest at the end of the first season ... 132

2.4.2.3 Total, shoot and crown dry weight accumulation during the second season .. 133
 2.4.2.3.1 Dry weight accumulation during the spring growing period ... 133
 2.4.2.3.2 Dry weight at the final harvest at the end of the second season .. 133

2.4.3 Shoot to crown dry weight ratios during the first and second seasons .. 134
 2.4.3.1 Shoot to crown dry weight ratio and allometric relationship between shoot and crown dry weight during the first season ... 134
 2.4.3.2 Shoot to crown dry weight ratio in the second season ... 135

2.4.4 The development of actual, current and cumulative shoots, buds and roots in the first and second seasons 135
 2.4.4.1 Accumulation of shoots, buds and roots during the first season ... 135
 2.4.4.2 Accumulation of shoots, buds and roots during the second season .. 138

2.4.5 The ratio of bud to actual shoot number and cumulative shoot plus bud to root number during the first and second seasons ... 139
 2.4.5.1 Ratios during the first season .. 139
 2.4.5.2 Ratios during the second season .. 140

2.5 SUMMARY .. 141
CHAPTER THREE: THE EFFECT OF HIGH TEMPERATURE ON THE
PHOTOSYNTHESIS OF YOUNG ASPARAGUS
PLANT IN RELATION TO FERN AGE 144
3.1 INTRODUCTION .. 144
 3.1.1 Background to studies on CO₂ exchange of young asparagus plants 144
 3.1.2 Ontogenetic changes of photosynthesis 145
3.2 MATERIALS AND METHODS 146
 3.2.1 Treatments .. 146
 3.2.1.1 Temperature 146
 3.2.1.2 Cultivars 147
 3.2.2 Propagation and growing conditions 147
 3.2.3 Experimental design 148
 3.2.4 Photosynthetic measurement 149
 3.2.4.1 Measurement procedures 149
 3.2.5 Data collection 150
 3.2.6 Data analyses 151
3.3 RESULTS ... 152
 3.3.1 Ontogenetic changes of photosynthesis at 30/20°C 152
 3.3.1.1 Between cultivars 152
 3.3.1.2 Within cultivars 152
 3.3.2 Ontogenetic changes in photosynthesis at 35/25°C 152
 3.3.2.1 Between cultivars 152
 3.3.2.2 Within cultivars 153
 3.3.3 Mature fern photosynthesis at 40/30°C 154
 3.3.4 The response of asparagus fern photosynthesis to high temperature treatment 155
 3.3.4.1 Young and intermediate fern photosynthesis at 30/20°C and 35/25°C 155
 3.3.4.2 Mature fern photosynthesis at 30/20°C to 40/30°C .. 156
3.4 DISCUSSION ... 157
 3.4.1 Ontogenetic changes in fern photosynthesis 157
3.4.2 Young, intermediate and mature fern photosynthesis of young asparagus plant at high temperatures .. 165

3.5 SUMMARY .. 167

CHAPTER FOUR : THE EFFECT OF TEMPERATURE ON SHOOT AND CROWN DARK RESPIRATION AND ON PHOTORESPIRATION, DARK RESPIRATION, PHOTOSYNTHESIS AND THE AC_i CURVE OF MATURE FERN .. 168

4.1 INTRODUCTION .. 168

4.2 MATERIALS AND METHODS .. 169

4.2.1 Treatment .. 169

4.2.1.1 Temperatures ... 169

4.2.1.2 Cultivars .. 170

4.2.2 Propagation and growing conditions .. 170

4.2.3 CER measurement .. 170

4.2.3.1 Introduction .. 170

4.2.3.2 Shoot and crown dark respiration of asparagus plant 172

4.2.3.2.1 Design ... 172

4.2.3.2.2 Calculation and technique of measurement 173

4.2.3.3 Photorespiration, dark respiration and photosynthesis of mature fern .. 174

4.2.3.3.1 Photorespiration and dark respiration 174

4.2.3.3.2 Photosynthesis ... 175

4.2.3.4 AC_i curves ... 175

4.2.3.4.1 Technique of measurement .. 175

4.2.3.4.2 Model consideration and data collection 176

4.2.4 Experimental design and data analysis ... 177

4.3 RESULT .. 178

4.3.1 Shoot and crown dark respiration ... 178

4.3.1.1 Shoot dark respiration .. 178

4.3.1.2 Crown dark respiration .. 178
4.3.2 Photorespiration and dark respiration of mature asparagus fern .. 180

4.3.2.1 Photorespiration .. 180

4.3.2.2 Dark respiration .. 181

4.3.3 Fern photosynthesis .. 182

4.3.4 AC_i curves .. 189

4.3.4.1 AC_i curves of mature fern with increasing temperature .. 189

4.3.4.2 CO_2 compensation point (\Gamma) .. 189

4.3.4.3 Carboxylation efficiency close to the compensation point (CE) .. 191

4.3.4.4 Stomatal limitation (lg) .. 192

4.5 DISCUSSION .. 200

4.5.1 Shoot and crown respiration .. 200

4.5.1.1 Introduction .. 200

4.5.1.2 Shoot dark respiration .. 200

4.5.1.3 Crown respiration .. 202

4.5.1.4 Photorespiration and dark respiration of mature fern .. 206

4.5.1.4.1 Photorespiration as measured by PIB method .. 206

4.5.1.4.2 Dark respiration .. 207

4.5.1.5 Fern Photosynthesis .. 208

4.5.1.6 AC_i curve .. 211

4.5.1.6.1 AC_i curves of mature fern with increasing temperatures .. 211

4.5.1.6.2 CO_2 compensation point (\Gamma) .. 211

4.5.1.6.3 Carboxylation efficiency close to the compensation point (CE) .. 212

4.5.1.6.4 Stomatal limitation (lg) .. 214

4.6 SUMMARY .. 214
CHAPTER FIVE: THE EFFECT OF TEMPERATURE GROWING CONDITION ON THE LIGHT RESPONSE CURVE OF MATURE FERN

5.1 INTRODUCTION ... 216

5.2 MATERIALS AND METHODS 217
 5.2.1 Treatment ... 217
 5.2.1.1 Temperature 217
 5.2.1.2 Cultivars 217
 5.2.2 Propagation and growing conditions 217
 5.2.3 Experimental design 218
 5.2.4 Measurement of photosynthesis 219
 5.2.4.1 Technique of measurement 219
 5.2.4.2 Model consideration 220
 5.2.5 Data analyses 221

5.3 RESULTS .. 222
 5.3.1 Light response curve 222
 5.3.2 Effect of growth temperature on the light compensation point (LCP) .. 223
 5.3.3 Effect of growth temperature on the estimated photosynthesis at saturating light intensity (Pmax) and the ratio of photosynthesis at standard growth room light intensity to Pmax (called Pn700) .. 223
 5.3.4 Effect of growth temperature on the initial slope of light response curve (α) .. 225

5.4 DISCUSSION ... 238
 5.4.1 Light response curve 238
 5.4.2 Effect of growth temperatures on light compensation point (LCP) .. 239
 5.4.3 Effect of growth temperatures on estimated Pmax and Pn700 .. 241
 5.4.3.1 Estimated Pmax 241
 5.4.3.2 Pn700 ... 242
 5.4.4 Effect of growth temperatures on α 243
5.5 SUMMARY ... 244

CHAPTER SIX: GENERAL DISCUSSION 245

6.1 FIELD STUDY .. 245
 6.1.1 Introduction ... 245
 6.1.2 Crop establishment - seedling transplants 245
 6.1.3 Growth and development 246
 6.1.4 The cultivars ... 247
 6.1.5 Further work ... 247

6.2 CO₂ EXCHANGE STUDIES OVER A RANGE OF HIGH
 TEMPERATURES ... 248
 6.2.1 Introduction ... 248
 6.2.2 Photosynthesis .. 249
 6.2.2.1 Ontogenetic changes in photosynthesis 249
 6.2.2.2 Mature fern photosynthesis 249
 6.2.2.3 The photosynthetic response to internal CO₂ and light
 intensity ... 249
 6.2.3 Respiration ... 251
 6.2.3.1 Shoot and crown respiration 251
 6.2.3.2 Photorespiration and dark respiration of mature fern.. 251
 6.2.4 The cultivars ... 252
 6.2.5 Further work ... 252

6.3 AGRONOMIC RELEVANCE ... 253

BIBLIOGRAPHY

APPENDICES
LIST OF TABLES

Table 2.1 Sowing and planting dates of the 7 successional planting
Table 2.2 Number of successional harvests for each planting date
Table 2.3 The parameters measured in the study
Table 2.4 Total dry weight (gram/plant) of 8 week old asparagus seedling transplants sown at different times.
Table 2.5 Logistic growth curve parameters and Mean Square for Error of total plant dry weight of asparagus plants grown in the field during the first season.
Table 2.6 Logistic growth curve parameters and Mean Square for Error of crown plant dry weight of asparagus plants grown in the field during the first season.
Table 2.7 Logistic growth curve parameters and Mean Square for Error of shoot dry weight of asparagus plants grown in the field during the first season fitted with the base temperature equal to 0 (tb=0).
Table 2.8 Heat unit accumulation in relation to harvest date
Table 2.9 Loge total dry weight (gram/plant) of asparagus during the first season at final harvest.
Table 2.10 Loge crown dry weight (gram/plant) of asparagus during the first season at final harvest
Table 2.11 Loge shoot dry weight (gram/plant) of asparagus during the first season at final harvest.
Table 2.12 Loge total dry weight (gram/plant) of asparagus during the second season at final harvest.
Table 2.13 Loge crown dry weight (gram/plant) of asparagus during the second season at final harvest
Table 2.14 Loge shoot dry weight (gram/plant) of asparagus during the second season at final harvest.
Table 2.15a Initial k value comparison between 2 cultivars of asparagus in the first growing season at the same planting date
Table 2.15b Initial k value comparison between planting date of 2 cultivars of asparagus at the first growing season.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.15c</td>
<td>Changes in allometric relationship between fern and crown dry weight of 2 cultivars of asparagus with time in the first growing season as affected by planting treatment</td>
</tr>
<tr>
<td>2.16</td>
<td>Log$_e$ number of shoots/plant of asparagus at final harvest in the first season</td>
</tr>
<tr>
<td>2.17</td>
<td>Log$_e$ number of buds/plant of asparagus at final harvest in the first season</td>
</tr>
<tr>
<td>2.18</td>
<td>Log$_e$ number of roots/plant of asparagus at final harvest in the first season</td>
</tr>
<tr>
<td>2.19</td>
<td>Number of shoots/plant of asparagus at final harvest in the second season</td>
</tr>
<tr>
<td>2.20</td>
<td>Log$_e$ number of buds/plant of asparagus at final harvest in the second season</td>
</tr>
<tr>
<td>2.21</td>
<td>Log$_e$ number of roots/plant of asparagus during at final harvest in the second season</td>
</tr>
<tr>
<td>2.22</td>
<td>Bud/actual shoot number ratio of asparagus at final harvest in the first season</td>
</tr>
<tr>
<td>2.23</td>
<td>Cumulative shoot plus bud/root number ratio of asparagus during the first season at final harvest</td>
</tr>
<tr>
<td>2.24</td>
<td>Bud/actual shoot number ratio of asparagus at final harvest in the second season</td>
</tr>
<tr>
<td>2.25</td>
<td>Cumulative shoot plus bud/root number ratio of asparagus at final harvest in the second season</td>
</tr>
<tr>
<td>3.1</td>
<td>Environmental conditions in growth room</td>
</tr>
<tr>
<td>3.2</td>
<td>Types of fern measured during the experiment</td>
</tr>
<tr>
<td>3.3</td>
<td>Ontogenetic changes in photosynthesis of asparagus fern grown at 30/20°C</td>
</tr>
<tr>
<td>3.4</td>
<td>Ontogenetic changes of photosynthesis of asparagus fern grown at 35/25°C</td>
</tr>
<tr>
<td>3.5</td>
<td>The mature fern photosynthesis of asparagus grown at 40/30°C</td>
</tr>
<tr>
<td>3.6</td>
<td>Photosynthesis of young fern grown at high temperature</td>
</tr>
<tr>
<td>3.7</td>
<td>Photosynthesis of intermediate fern grown at high temperature</td>
</tr>
</tbody>
</table>
Table 4.8 CO₂ compensation point (µmol mol⁻¹) of mature asparagus ferns at various temperatures

Table 4.9 Carboxylation efficiency (mol kg⁻¹ s⁻¹) of mature asparagus ferns at various temperatures

Table 4.10 Stomatal limitation of mature asparagus fern at various temperatures

Table 5.1 Environmental conditions in the growth room

Table 5.2 Light compensation point (µmol m⁻² s⁻¹) of mature asparagus fern at various temperature

Table 5.3 Estimated Pmax (µmol kg⁻¹ s⁻¹) of mature fern at various temperature

Table 5.4 Pn700 of mature asparagus fern at various temperature

Table 5.5 The α (µmol CO₂ kg⁻¹/µmol quanta m⁻²) of light response curve of mature fern at various temperature
LIST OF FIGURES

Figure 1.1 The asparagus spear and subsequent characteristic fern growth. The leaf scales, so conspicuous in the spear, remain at each leaf base 4

Figure 1.2 The asparagus crown and the attached buds, spears, shoots and roots 5

Figure 1.3 PCR cycles in C₃ plants under 0% and 21% O₂ (from Laing et al., 1974) 28

Figure 1.4 The photosynthetic response to internal CO₂ concentration as proposed by Farquhar and Sharkey (1982) 32

Figure 2.1 Total dry weight of UC157 fitted to the 4 parameter logistic with a heat unit time scale with K constant for all planting (000 Sep; *** Oct; @@ Nov; AAA Dec; *** Jan; 000 Feb) 68

Figure 2.2 Total dry weight of Jersey Giant fitted to the 4 parameter logistic with a heat unit time scale with K constant for all planting (000 Sep; *** Oct; @@ Nov; AAA Dec; *** Jan; 000 Feb) 69

Figure 2.3 Crown dry weight of UC157 fitted to the 4 parameter logistic with a heat unit time scale with K constant for all planting (000 Sep; *** Oct; @@ Nov; AAA Dec; *** Jan; 000 Feb) 70

Figure 2.4 Crown dry weight of Jersey Giant fitted to the 4 parameter logistic with a heat unit time scale with K constant for all planting (000 Sep; *** Oct; @@ Nov; AAA Dec; *** Jan; 000 Feb) 71

Figure 2.5 Shoot dry weight of UC157 fitted to the 4 parameter logistic with a heat unit time scale with K constant for all planting (000 Sep; *** Oct; @@ Nov; AAA Dec; *** Jan; 000 Feb) 72

Figure 2.6 Shoot dry weight of Jersey Giant fitted to the 4 parameter logistic with a heat unit time scale with K constant for all planting (000 Sep; *** Oct; @@ Nov; AAA Dec; *** Jan; 000 Feb) 73

Figure 2.7 Total plant relative growth rate time trends for UC157 in the first season (000 Sep; *** Oct; @@ Nov; AAA Dec; *** Jan; 000 Feb) 74
Figure 2.8 Total plant relative growth rate time trends for Jersey Giant in the first season (Sep; Oct; Nov; Dec; Jan; Feb)

Figure 2.9 Crown relative growth rate time trends for UC157 in the first season (Sep; Oct; Nov; Dec; Jan; Feb)

Figure 2.10 Crown relative growth rate time trends for Jersey Giant in the first season (Sep; Oct; Nov; Dec; Jan; Feb)

Figure 2.11 Shoot relative growth rate time trends for UC157 in the first season (Sep; Oct; Nov; Dec; Jan; Feb)

Figure 2.12 Shoot relative growth rate time trends for Jersey Giant in the first season (Sep; Oct; Nov; Dec; Jan; Feb)

Figure 2.13 LOGe total plant dry weight of UC157 in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). I = Stderr. of means

Figure 2.14 LOGe total plant dry weight of Jersey Giant in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). I = Stderr. of means

Figure 2.15 LOGe crown dry weight of UC157 in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). I = Stderr. of means

Figure 2.16 LOGe crown dry weight of Jersey Giant in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). I = Stderr. of means

Figure 2.17 LOGe shoot dry weight of UC157 in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). I = Stderr. of means
Figure 2.18 LOGe shoot dry weight of Jersey Giant in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). $I = $ Stederr. of means

Figure 2.19 Average shoot/crown dry weight ratio of asparagus in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb). $I = $ Stederr. of means

Figure 2.20 Allometric relationships between shoot and crown dry weight. (Sep; Oct; Nov; Dec; Jan; Feb).

(a) UC157 and (b) Jersey Giant

Figure 2.21 Mean weekly temperature from 21 September 1990 to 5 April 1991

Figure 2.22 Actual shoot number of UC157 in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). $I = $ Stederr. of means

Figure 2.23 Actual shoot number of Jersey Giant in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). $I = $ Stederr. of means

Figure 2.24 Current shoot number of UC157 in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). $I = $ Stederr. of means

Figure 2.25 Current shoot number of Jersey Giant in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). $I = $ Stederr. of means

Figure 2.26 Cumulative shoot number of UC157 in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). $I = $ Stederr. of means

Figure 2.27 Cumulative shoot number of Jersey Giant in the first and second season (Sep; Oct; Nov; Dec; Jan; Feb; March). $I = $ Stederr. of means
Figure 2.28 Bud number of UC157 in the first and second season
(000 Sep; 三三 Oct; 三三 Nov; 三三 Dec; 三三 Jan;
000 Feb; 三三 March). I = Stderr. of means 115

Figure 2.29 Bud number of Jersey Giant in the first and second season (000 Sep; 三三 Oct; 三三 Nov; 三三 Dec;
三三 Jan; 000 Feb; 三三 March). I = Stderr. of means 116

Figure 2.30 Root number of UC157 in the first and second season
(000 Sep; 三三 Oct; 三三 Nov; 三三 Dec; 三三 Jan;
000 Feb; 三三 March). I = Stderr. of means 117

Figure 2.31 Root number of Jersey Giant in the first and second season (000 Sep; 三三 Oct; 三三 Nov; 三三 Dec; 三三 Jan;
000 Feb; 三三 March). I = Stderr. of means 118

Figure 2.32 Average bud/shoot number ratio of asparagus in the first and second season (000 Sep; 三三 Oct; 三三 Nov; 三三 Dec;
三三 Jan; 000 Feb; 三三 March). I = Stderr. of means 122

Figure 2.33 Cumulative shoot and bud/root number ratio of asparagus in the first and second season (000 Sep; 三三 Oct; 三三 Nov;
三三 Dec; 三三 Jan; 000 Feb; 三三 March). I = Stderr. of means 123

Figure 2.34 Allometric relationships between number of bud and crown dry weight during the first and second season. 127

Figure 3.1 Ontogenetic changes of photosynthesis of asparagus fern grown at 30/20C (000 UC157; 三三 Brocks; 三三 Tainan 1;
三三 Larac). I = Stderr. of means 151

Figure 3.2 Ontogenetic changes of photosynthesis of asparagus fern grown at 35/25C (000 UC157; 三三 Brocks; 三三 Tainan 1;
三三 Larac). I = Stderr. of means 152

Figure 3.3 Photosynthesis of mature fern average over weeks 4 to 6 after emergence (000 UC157; 三三 Brocks; 三三 Tainan 1;
三三 Larac). I = Stderr. of means 160
Figure 3.4 Photosynthesis of mature fern average 4 cultivars from weeks 4 to 6 after emergence (○○○ UC157; ★★★ Brocks; ⊙⊙⊙ Tainan 1; ▲▲▲ Larac). I = Stderr. of means 161

Figure 4.1 Closed system design for plan respiration studies 173

Figure 4.2 Shoot respiration of asparagus plant at different temperatures (○○○ UC157; ★★★ Brocks; ⊙⊙⊙ Tainan 1; ▲▲▲ Larac).
I = Stderr. of means 184

Figure 4.3 Crown respiration of asparagus plant at different temperatures (○○○ UC157; ★★★ Brocks; ⊙⊙⊙ Tainan 1; ▲▲▲ Larac).
I = Stderr. of means 185

Figure 4.4 Photorespiration of asparagus fern at different temperatures (○○○ UC157; ★★★ Brocks; ⊙⊙⊙ Tainan 1; ▲▲▲ Larac).
I = Stderr. of means 186

Figure 4.5 Dark respiration of asparagus fern at different temperatures (○○○ UC157; ★★★ Brocks; ⊙⊙⊙ Tainan 1; ▲▲▲ Larac).
I = Stderr. of means 187

Figure 4.6 Photosynthesis of asparagus fern at different temperatures (○○○ UC157; ★★★ Brocks; ⊙⊙⊙ Tainan 1; ▲▲▲ Larac).
I = Stderr. of means 188

Figure 4.7 ACi response curve of UC157 at different growth temperatures (○○○ 20/20C; ★★★ 25/25C; ⊙⊙⊙ 30/20C; ▲▲▲ 35/15C; ★★★★ 40/20C). The fitted lines are obtained from equation 5.4 193

Figure 4.8 ACi response curve of Brocks at different growth temperatures (○○○ 20/20C; ★★★ 25/25C; ⊙⊙⊙ 30/20C; ▲▲▲ 35/15C; ★★★★ 40/20C). The fitted lines are obtained from equation 5.4 194

Figure 4.9 ACi response curve of Tainan 1 at different growth temperatures (○○○ 20/20C; ★★★ 25/25C; ⊙⊙⊙ 30/20C; ▲▲▲ 35/15C; ★★★★ 40/20C). The fitted lines are obtained from equation 5.4 195
Figure 4.10 ACi response curve of Larac at different growth temperatures
(000 20/20C; *** 25/25C; @@@ 30/20C; >>> 35/15C; >>> 40/20C). The fitted lines are obtained from equation 5.4

Figure 4.11 CO2 compensation point of asparagus fern at different growth temperatures (000 UC157; *** Brocks; @@@ Tainan 1; >>> Larac). I = Stderr. of means

Figure 4.12 CE close to compensation point of asparagus ferns at different growth temperatures (000 UC157; *** Brocks; @@@ Tainan 1; >>> Larac). I = Stderr. of means

Figure 4.13 Stomatal limitation of asparagus fern at different growth temperatures (000 UC157; *** Brocks; @@@ Tainan 1; >>> Larac). I = Stderr. of means

Figure 5.1 Light response curve of UC157 at different growth temperatures (000 20/20C; *** 25/25C; @@@ 30/20C; >>> 35/15C; >>> 40/20C). The fitted lines are obtained from nonrectangular model (equation 4.3)

Figure 5.2 Light response curve of Brocks at different growth temperatures (000 20/20C; *** 25/25C; @@@ 30/20C; >>> 35/15C; >>> 40/20C). The fitted lines are obtained from nonrectangular model (equation 4.3)

Figure 5.3 Light response curve of Tainan 1 at different growth temperatures (000 20/20C; *** 25/25C; @@@ 30/20C; >>> 35/15C; >>> 40/20C). The fitted lines are obtained from nonrectangular model (equation 4.3)

Figure 5.4 Light response curve of Larac at different growth temperatures (000 20/20C; *** 25/25C; @@@ 30/20C; >>> 35/15C; >>> 40/20C). The fitted lines are obtained from nonrectangular model (equation 4.3)

Figure 5.5 Light response curve of asparagus fern grown at 35/15C (000 UC157; *** Brocks; @@@ Tainan 1; >>> Larac)
Figure 5.6 Predicted light compensation point of asparagus fern at different temperatures (000 UC157; *** Brocks; ΘΘΘ Tainan 1; ΔΔΔ Larac). I = Stderr. of means

Figure 5.7 Predicted Pmax of asparagus fern at different temperatures (000 UC157; *** Brocks; ΘΘΘ Tainan 1; ΔΔΔ Larac). I = Stderr. of means

Figure 5.8 Pn700 of asparagus fern at different temperatures (000 UC157; *** Brocks; ΘΘΘ Tainan 1; ΔΔΔ Larac). I = Stderr. of means

Figure 5.9 The initial slope of light response curve of asparagus fern at different temperatures (000 UC157; *** Brocks; ΘΘΘ Tainan 1; ΔΔΔ Larac). I = Stderr. of means
GLOSSARY OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>CO₂ compensation point</td>
</tr>
<tr>
<td>ABA</td>
<td>abscisic acid</td>
</tr>
<tr>
<td>ACₗ</td>
<td>photosynthetic response to internal CO₂</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>CE</td>
<td>carboxylation efficiency</td>
</tr>
<tr>
<td>CER</td>
<td>CO₂ exchange rate</td>
</tr>
<tr>
<td>Cᵢ</td>
<td>internal CO₂</td>
</tr>
<tr>
<td>cv</td>
<td>cultivar</td>
</tr>
<tr>
<td>gᵢ</td>
<td>mesophyl conductance</td>
</tr>
<tr>
<td>HU</td>
<td>heat unit</td>
</tr>
<tr>
<td>IRGA</td>
<td>Infra Red Gas Analizer</td>
</tr>
<tr>
<td>Kₘ</td>
<td>Michael Menten kinetic</td>
</tr>
<tr>
<td>LCP</td>
<td>light compensation point</td>
</tr>
<tr>
<td>Ig</td>
<td>stomatal limitation</td>
</tr>
<tr>
<td>NADPH</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NAR</td>
<td>net assimilation rate</td>
</tr>
<tr>
<td>PAR</td>
<td>photosynthetic active radiation</td>
</tr>
<tr>
<td>PCR</td>
<td>photosynthetic carbon reduction</td>
</tr>
<tr>
<td>Pg</td>
<td>gross photosynthesis</td>
</tr>
<tr>
<td>PGA</td>
<td>phosphoglyceric acid</td>
</tr>
<tr>
<td>Pi</td>
<td>inorganic phosphate</td>
</tr>
<tr>
<td>PIB</td>
<td>post illumination CO₂ burst</td>
</tr>
<tr>
<td>Pmax</td>
<td>maximum photosynthesis at light saturation</td>
</tr>
<tr>
<td>Pn</td>
<td>net photosynthesis</td>
</tr>
<tr>
<td>Pn700</td>
<td>ratio of photosynthesis at standard light level to maximum photosynthesis</td>
</tr>
<tr>
<td>PPFD</td>
<td>photosynthetic photon flux density</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Rd</td>
<td>dark respiration</td>
</tr>
<tr>
<td>rg</td>
<td>gas phase resistance</td>
</tr>
<tr>
<td>RGR</td>
<td>relative growth rate</td>
</tr>
<tr>
<td>RI</td>
<td>photorespiration</td>
</tr>
<tr>
<td>rm</td>
<td>mesophyl resistance (1/CE)</td>
</tr>
<tr>
<td>RPGR</td>
<td>relative total plant growth rate</td>
</tr>
<tr>
<td>Rubisco</td>
<td>Ribulose-1,5 biphosphate carboxylase-oxygenase</td>
</tr>
<tr>
<td>RuBP</td>
<td>Ribulose-1,5 biphosphate</td>
</tr>
<tr>
<td>Tb</td>
<td>base temperature</td>
</tr>
<tr>
<td>TCA</td>
<td>tricarboxylic acid</td>
</tr>
<tr>
<td>T<sub>max</sub></td>
<td>maximum temperature</td>
</tr>
<tr>
<td>T<sub>mean</sub></td>
<td>mean temperature</td>
</tr>
<tr>
<td>T<sub>min</sub></td>
<td>minimum temperature</td>
</tr>
<tr>
<td>TPU</td>
<td>triose phosphate utilisation</td>
</tr>
<tr>
<td>V<sub>c</sub></td>
<td>rate of carboxylation reaction</td>
</tr>
<tr>
<td>V<sub>o</sub></td>
<td>rate of oxygenation reaction</td>
</tr>
<tr>
<td>α</td>
<td>quantum yield</td>
</tr>
<tr>
<td>Φ</td>
<td>ratio of oxygenase to carboxylase</td>
</tr>
</tbody>
</table>