Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
POSTPARTUM ANOESTRUM

IN THE PASTURE GRAZED

NEW ZEALAND DAIRY COW

SCOTT MCDOUGALL
1994
Postpartum Anoestrus in the Pasture Grazed New Zealand Dairy Cow

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Veterinary Clinical Sciences
Massey University

Scott McDougall
1994
Abstract

Postpartum anoestrus (PPA) is that period following parturition before ovulatory ovarian cycles have been re-established. This period lasts 20 to 30 days in normal, well-fed dairy cattle. To achieve an average interval between calvings of 365 days so that calving continues to occur at an appropriate time of the year, cows must resume cyclic activity, display behavioural oestrus, be mated and conceive by 83 days postpartum. An extended period of PPA compromises achievement of this target. Extended periods of PPA may result from either a failure to resume ovulations (anovulatory anoestrus) or a failure of expression or detection of behavioural oestrus (non-detection of oestrus).

The study population for this thesis was drawn from the research herds of the Dairying Research Corporation, Hamilton and from commercial herds from the Waikato region around Hamilton.

All herds calved seasonally between July and September and were milked twice daily. First calving occurred at approximately 2 years of age (i.e. heifers) and thereafter at 365 d intervals. Nutrition was predominantly from ryegrass/white clover pasture. The 10 year average rainfall of the distribution 1230 mm with higher rainfall in spring than summer. Average daily temperature ranges from a low of 8-9 °C in July to a maximum of 18.3 °C in January.

It was demonstrated that primiparous cattle had a longer PPA (40.2 vs. 27.2 ± 6.2 days for 2 year old and older cows, mean ± SED, respectively) and that Friesians had longer PPA intervals than Jerseys (39.3 ± 3.1 vs. 27.9 ± 2.7 days, respectively). Increasing the stocking rate resulted in an increased PPA interval (30.2 ± 2.8 vs. 27.1 ± 2.9 days, for high and low stocking rates, respectively). Body condition score (1 = thin, 10 = fat) at calving was inversely related to the PPA interval (regression slope = -7.9 days, P<0.05). Cows that had not commenced cycling 1 week before the planned start of mating (PSM) had lower condition scores (-0.3 ± 0.1), smaller total ovarian mass (-1.3 ± 0.2, arbitrary units), higher serum urea concentrations (0.31 ± 0.16 mmol/L) and lower blood glucose concentrations (-0.14 ± 0.06 mmol/L) than cows which had ovulated by this time. Significant differences in the proportion of cows not detected in oestrus and anovulatory anoestrus were demonstrated among the 8 farms studied. These data indicate that age, breed, stocking rate, body condition score and between farm factors influenced the PPA interval.
Large ovarian follicles (>9 mm) were present by 10.3 (± 0.7) days postpartum and regular turnover of follicles occurred in the ovaries of all cows examined by daily transrectal ultrasound. An average of 4.2 (± 0.6) large follicles appeared before the first ovulation which occurred at 43.4 (± 5.3) days postpartum. The largest follicle in anovulatory cows had lower intrafollicular concentrations of oestradiol (E₂), testosterone (T) and progesterone (P₄) than in cycling cows when ovariectomy occurred at approximately 60 days postpartum (47 vs. 372 ± 2.1 ng/ml; 1.4 vs. 10.0 ± 2.3 ng/ml, and 7.8 vs. 16.0 ± 1.8 ng/ml for E₂, T and P₄, respectively). However, there were no differences in the diameters, the number of granulosa cells or the rates of growth of the largest follicles between the anovulatory and cycling cows.

A luteinising hormone (LH) surge and ovulation was induced in 10 of 10 and 9 of 10 anovulatory heifers, respectively, following treatment with 250 μg of gonadotrophin releasing hormone (GnRH) when the largest follicle was >10 mm in diameter and growing, at 3 to 4 weeks postpartum. Sufficient GnRH receptors and releasable LH must have been present in the pituitary and the largest follicle must have been sufficiently mature to ovulate in response to the LH surge. However, only 3 of 9 ovulating heifers continued to ovulate beyond the first, short (<10 day) cycle.

Oestradiol treatment (0.5 mg i.m.) of PPA cows when either a small, growing follicle (5 to 9 mm) or a large plateau follicle (>10 and ± 1 mm for 72 h) was present on the ovary resulted in 8 of 15 and 5 of 15 cows having an LH surge and ovulating, respectively. This illustrates that the E₂ positive feedback mechanism, a prerequisite for ovulation in a normal oestrous cycle, failed in nearly half of these PPA cows.

PPA cows had a lower LH pulse frequency and a higher LH pulse amplitude but similar mean LH concentration before and 3 and 10 days after ovariectomy compared to cyclic cows when ovariectomy occurred approximately 60 days postpartum. The LH parameters increased by a similar amount in the PPA and the cycling cows following ovariectomy. Exogenous E₂ treatment at 10 days post-ovariectomy resulted in a significant decrease in LH pulse frequency and an increase in LH pulse amplitude in the PPA but not the cycling cows. The GnRH pulse generator in the PPA cows appears to be suppressed by both ovarian and extra-ovarian factors. Additionally, hypersensitivity to negative E₂ feedback on LH pulse frequency was observed. Undernutrition and low body condition score have been hypothesised as contributing to increased negative E₂ feedback in cattle.
Treatment of anovulatory cows with P₄ for 5 days at 2 to 3 weeks postpartum resulted in a significant shortening of the intervals from calving to first ovulation, calving to first oestrus and calving to conception (30.7 ± 0.4 vs. 34.2 ± 1.0, 35.8 ± 2.6 vs. 40.0 ± 1.8 and 85.0 ± 3.0 vs. 93.4 ± 2.3 days, respectively, P<0.05) when compared with herdmates. Progesterone treatment produced a 'priming' effect, as the duration of the first postpartum luteal phase (9.5 ± 0.4 vs. 5.6 ± 0.9 days) and the proportion of cows detected in oestrus at the first postpartum ovulation (83.3 vs. 37.0, P<0.05) were both increased.

Treatment of anovulatory cows for 7 days with P₄ and 400 i.u. of equine chorionic gonadotrophin (eCG) increased the probability of first service and conception occurring, compared to untreated cows. Low body condition score at the time of treatment reduced the probability of first service and conception, but the increase in probability of first service or conception following P₄ and eCG treatment was the same among cows with either low or medium body condition score.

Supplementation of a white clover/ryegrass pasture diet with pasture silage did not alter the intervals from calving to first ovulation, calving to first oestrus or calving to conception when compared with control cows fed pasture only. Silage supplementation did reduce first service conception rate (37.5% vs. 53.3%, P = 0.09).

The proportion of cows not in oestrus by the date of the planned start of mating varied among herds possibly due to differences in the age structure, breed and nutritional management. Further research is required to identify management and animal factors associated with an unacceptably high proportion of the herd not detected in oestrus by this date. Failure of the E₂ positive feedback mechanism, low LH pulse frequency and low intrafollicular steroid concentrations were identified in PPA cows. Increased sensitivity of the E₂ negative feedback mechanisms due to depleted body fat reserves and/or poor postpartum nutrition associated with prolonged periods of negative energy balance postpartum may be the major mechanism for extended PPA. An understanding of the control of GnRH and LH release from the hypothalamus and pituitary respectively, will be required before the patho-physiology of PPA can be fully understood. Treatment of anovulatory cows either early (2 to 3 weeks) postpartum or immediately before the planned start of mating shortened PPA intervals. The mechanisms appear to involve a 'priming' effect on expression of behavioural oestrus and on the length of the first luteal phase.

This thesis increases the understanding of the factors that influence the PPA interval, the endocrinology of PPA and the treatment of PPA cows.
Acknowledgments

A project of this size is not completed without the support, encouragement and enthusiasm of a large number of people.

Professor Norm Williamson, as my main supervisor, has guided this project from the germ of an idea through to fruition. His probing questions and comments have led to clarification of aims and objectives, improved execution of experiments and honed the written word. To him my thanks.

From the first beer in Townsville, Queensland over which the possibility of studying postpartum anoestrous cows was first discussed, Dr Jock Macmillan has supported this project with enthusiasm. His input has ranged from negotiating the purchase of stock, through detailed discussion of experimental design to the final shape of the thesis itself. His commitment, understanding of concepts, knowledge of a wide range of fields and lateral thinking have been positive role models for me.

Salary support for this project has been from the Dairying Research Corporation under the direction of Mr. Ken Jury. A successful Foundation for Research, Science and Technology bid has funded the majority of the experimental work. InterAg, Hamilton generously provided much appreciated material (CIDR’s) support as well as partially funding travel to technical meetings. All experiments in this thesis were completed with the approval of the Animal Ethics Committee of AgResearch, Ruakura.

A large number of people have freely given their time to discuss ideas, experiments and/or commented on drafts of material in this thesis. They include Professor Maurice Boland, Dr’s Dawn Dalley, Tony Day, Mark Fisher, Keith Henderson, Harold Henderson, Peter Jolly, Bernie McCleod, Ken McNatty, Jim Peterson, Colin Prosser, Professor Jim Roche, Dr Errol Thom and Professor Bill Thatcher.

Chris Burke, Gwyn Verkerk and Viliami Taufa have spent many hours, often out of ‘normal’, sociable hours helping with blood sample collection, oestrous observations and ultrasonography. Without their assistance the volume and quality of data would be much reduced. The farm staff of the various DRC dairies have willingly collected samples, trained cows, applied treatments as well as allowing me access to the reproductive and milk production data from their herds. My thanks (in no particular order) to Michael Bennenbroek, Wally Carter, Peter Chubb. Erna Jansen, Pat Laboyrie. Jim Lancaster, Kevin
Macdonald and Ewan Spencer for their assistance. Cows from herds belonging to Murray and Margaret Johnson, Richard and Jeanette Myers, Alistair and Sue Smith, Kevin and Margaret Smith, and John and Jenny Neill were included in trials and their cooperation is greatly appreciated.

Many samples requiring hormone analysis were generated in the course of these experiments. Analyses of these samples was achieved with the assistance of Glenys Parton, Trish O’Donnell and Simone Prosser at the DRC; Lynne Meikle and Tim Manly at AgResearch, Invermay; and Anita Ledgard and Colin Prosser at AgResearch, Ruakura.

Data analysis has been done with the patient help of Harold Henderson, Rhonda Sutherland, Neil Cox and Dirk Pfeiffer.

Joanne Edson and Allison Smith have converted my rough typing into the finished product and on most occasions were able to translate my scrawled amendments into something sensible.

On a more personal note I would like to thank Gill for putting up with my focused bloody mindedness over the last 4 years, to my parents who fostered my interest in science and knowledge and to my friends Pam, Tony, Cath. Paul, Schuckie, Vicki F. and Harold and Vicki C. who have supported, cajoled and laughed with me through this ordeal.
Table of Contents

ABSTRACT i
ACKNOWLEDGMENTS iv
CONTENTS vi
TABLES AND FIGURES xii
LIST OF PUBLICATIONS xvi
ABBREVIATIONS xviii

CHAPTER 1: 1

INTRODUCTION
What is postpartum anoestrus (PPA)? 1
Length of PPA 1
Factors affecting the duration of PPA 2
Ovarian follicular development during PPA 4
Endocrinology of PPA 5
Nutritional effects on the hypothalmo-pituitary-ovarian axis 7
Treatment of PPA 7
Endocrine treatments of PPA 9
Nutritional and biostimulatory treatments of PPA 11
PPA in New Zealand 11
Aim and scope of this thesis 13
 (a) The characteristics of PPA 13
 (b) The follicular and endocrine status of the postpartum cow 13
 (c) The treatment of PPA 14

CHAPTER 2: 15

THE EFFECT OF STOCKING RATE AND BREED ON THE PERIOD OF POSTPARTUM ANOESTRUM
IN GRAZING DAIRY CATTLE
Abstract 15
Introduction 16
Materials and Methods 18
Laboratory analyses
Statistical analyses
Results
Intervals from calving to first ovulation and first oestrus and from planned start of mating to first service and to conception
Condition score, liveweight, milk solids production and blood metabolite concentrations
Relationships among CS, liveweight, milk solids production, blood metabolite concentrations and the intervals from calving to first ovulation and to first oestrus
Oestrus detection at the first, second and third postpartum ovulation
Discussion

CHAPTER 3:
A CASE CONTROL STUDY OF POSTPARTUM ANOVULATION IN NEW ZEALAND DAIRY COWS
Abstract
Introduction
Materials and Methods
Animals and Design
Laboratory analyses
Statistical analyses
Results
Discussion

CHAPTER 4:
FOLLICLE PATTERNS DURING EXTENDED PERIODS OF POSTPARTUM ANOVULATION IN PASTURE-FED DAIRY COWS
Abstract
Introduction
Materials and Methods
Experiment 1. Validation of ultrasound measurement of ovarian structures
Experiment 2. Daily transrectal examination of the ovaries of postpartum dairy cows.
Results
Discussion
CHAPTER 5: CONCENTRATIONS OF STEROIDS, INSULIN-LIKE GROWTH FACTOR AND INSULIN-LIKE GROWTH FACTOR BINDING PROTEINS IN THE OVARIAN FOLLICLES OF ANOVULATORY AND CYCLING DAIRY COWS

Abstract
Introduction
Materials and Methods
Hormone assays
 Progesterone and Testosterone assays
 Oestradiol assay
 IGF assay
 IGFBP determinations
 Milk Progesterone assay
 LH assay
Statistical analyses
Results
 Follicle numbers and sizes before ovariectomy
 Ovarian weights and follicle numbers after ovariectomy
 Hormone concentrations in follicular fluid
Discussion

CHAPTER 6: GNRH INDUCES OVULATION OF A DOMINANT FOLLICLE IN DAIRY HEIFERS UNDERGOING TURNOVER OF ANOVULATORY FOLLICLES

Abstract
Introduction
Materials and Methods
 Animals and treatment
Hormone assays
Statistical analyses
Results
Discussion

CHAPTER 7:
THE EFFECTS OF OESTRADIOL ON THE RELEASE OF LUTEINISING HORMONE AND THE OVULATORY RESPONSE AT TWO STAGES OF FOLLICULAR DEVELOPMENT IN THE POSTPARTUM DAIRY COW

Abstract

Introduction

Materials and Methods

Animals and design

Hormone assays

Definitions

Statistical analyses

Results

Discussion

Conclusion

CHAPTER 8:

ANOVULATORY POSTPARTUM DAIRY COWS HAVE LOWER LH PULSE FREQUENCY THAN CYCLING COWS BEFORE AND AFTER OVARIECTOMY

Abstract

Introduction

Materials and Methods

Animals and procedures

Hormone assays

Statistical analyses

Results

Progesterone concentrations

LH data

Discussion

CHAPTER 9:

PROGESTERONE ENHANCES OESTRADIOL-INDUCED OESTRUS AND OVULATION DURING PPA IN DAIRY COWS

Abstract

Introduction

Materials and Methods
CHAPTER 10: 141

PROGESTERONE TREATMENT FOLLOWED BY EQUINE CHORIONIC GONADOTROPHIN SHORTENS THE INTERVALS TO FIRST SERVICE AND CONCEPTION IN PASTURE-FED ANOESTROUS DAIRY COWS 141

Abstract 141
Introduction 142
Materials and Methods 143
Laboratory analyses 145
Statistical analyses 145
Results 146
Discussion 150

CHAPTER 11: 152

SOME EFFECTS OF FEEDING PASTURE SILAGE AS A SUPPLEMENT TO PASTURE ON REPRODUCTIVE PERFORMANCE IN LACTATING DAIRY COWS 152

Abstract 152
Introduction 152
Materials and Methods 153
Results 156
The relationships among production, liveweight, CS and reproduction 160
Discussion 161

CHAPTER 12: 166

GENERAL DISCUSSION 166
Factors influencing the prevalence of anoestrus 166
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oestrus detection and diagnosis of anoestrum</td>
<td>171</td>
</tr>
<tr>
<td>The treatment of anoestrum</td>
<td>172</td>
</tr>
<tr>
<td>Endocrine treatments</td>
<td>172</td>
</tr>
<tr>
<td>Management</td>
<td>177</td>
</tr>
<tr>
<td>Follicular waves and endocrine control in the postpartum period</td>
<td>177</td>
</tr>
<tr>
<td>Follicular waves in the postpartum period</td>
<td>177</td>
</tr>
<tr>
<td>Presence of large follicles in the postpartum period</td>
<td>177</td>
</tr>
<tr>
<td>Endocrine control of follicle waves</td>
<td>179</td>
</tr>
<tr>
<td>Applications for follicular wave control</td>
<td>182</td>
</tr>
<tr>
<td>The endocrinology of postpartum anovulation</td>
<td>183</td>
</tr>
<tr>
<td>Tonic control of GnRH release from the hypothalamus</td>
<td>184</td>
</tr>
<tr>
<td>Control of the E₂ induced LH surge</td>
<td>187</td>
</tr>
<tr>
<td>Conclusions from follicular wave and endocrinology data</td>
<td>188</td>
</tr>
</tbody>
</table>

REFERENCES: 189
List of Tables and Figures

Table 2.1. The breed, numbers, stocking rate and metabolic weight of the four experimental herds. 18
Figure 2.1. The cumulative percentage of cows ovulating (top panel) and detected in oestrus (bottom panel) for the first time after calving in the 4 herds. 22
Table 2.2. The intervals from calving to first ovulation and from calving to first oestrus and the percentage of cows not ovulating or not detected in oestrus by 50 days postpartum for the 4 herds. 23
Table 2.3. The effect of age on the intervals from calving to first ovulation and to first oestrus. 23
Figure 2.2. The probability of not being inseminated analysed by stocking rate (top panel) and the probability of not conceiving (bottom panel) for the 4 herds. 24
Table 2.4. The average CS, liveweight and milksolids production, and blood metabolite concentrations in the peri-partum period for the 4 herds. 25
Figure 2.3. The average weekly milksolids production (top panel) and fortnightly liveweight (middle panel) and CS (bottom panel) for the 4 herds. 26
Table 2.5. The average CS, liveweight and milksolids production, and metabolite concentration for three age-groups. 27
Figure 2.4. The average weekly blood metabolites from 8 cows from each of the 4 herds. 28
Figure 2.5. Dry matter disappearance/cow (DMD) for the 4 herds. 30
Table 3.1. Details of the 8 herds used in this study. 40
Table 3.2. Findings from examination of NDO cows from 8 herds. 43
Table 3.3. Differences between anovulatory aneostrous and cycling cows for a range of physical, metabolic, mineral and production measures. 44
Table 4.1. The number of small, medium and large follicles detected upon transrectal ultrasound and ovarian dissection from 26 mixed age cows. 53
Figure 4.1. The relationship between the diameter (mm) of follicles (n = 70) estimated by transrectal ultrasound and by follicle dissection. 54
Figure 4.2. The daily diameter (mm) of the DF's from three cows which ovulated the first (9793), second (9798) or sixth (9768) postpartum DF. 56
Figure 4.3. The maximum diameter (mm; standard error of the difference as bars along the x axis) of the DF for cows ovulating the first, second, third, fourth, fifth to seventh or eighth and ninth DF postpartum. abc Different letters among diameters at the same DF number indicates significant difference (P<0.05). 57
Figure 4.4. The diameter and SED (bars along the x axis) of the second postpartum DF for each day following emergence (d = 0) from cows ovulating the second, third, fourth, fifth to seventh or eighth and ninth DF postpartum. * Indicates significant difference (P<0.05) among means on that day following emergence. 58
Figure 4.5. The relationship between the maximum diameter (mm) of the second postpartum DF (DF2) and the number of the DF ovulating. 59
Figure 4.6. The mean and SED (as bars on x axis) daily milk production and milksolids production, and liveweight and condition score at weekly or fortnightly intervals from 4 weeks prepartment to 14 weeks postpartum for cows having 1+2, 3+4 and >4 DF's before ovulation. 60

xii
Table 4.2. Growth characteristics of the second and ovulatory dominant follicle from 17 mixed age cows examined by ultrasound.

Figure 5.1. The least squares mean (SED as vertical bars on the x axis) of the dominant and sub-dominant follicle diameter aligned by day of ovariectomy from anovulatory or cycling cows, ovariectomised at the growing or plateau phase of follicle development.

Figure 5.2. The least squares mean (SED as vertical bars on the x axis) number of small (3 to 5 mm), medium (6 to 9 mm) and large (>9 mm) follicles per cow in anovulatory or cycling cows ovariectomised at the growing or plateau phase of follicle development. ab Means within day with different superscripts differ at P<0.05.

Figure 5.3. The least squares mean (and SED) of DF diameter, the density of granulosa cells and the follicular growth rate over 3 days in anovulatory (An) or cycling (Cyc) cows ovariectomised when the DF was in growing (G) or plateau (P) phase of development. abc Means within panel with different superscripts differ at P<0.05.

Figure 5.4. The geometric mean and least significant ratio (LSR) of the E2, T and P4 concentrations and the E2 to T ratio (E2 to T) in the DF from anovulatory (An) or cycling (Cyc) cows ovariectomised when the DF was in growing (G) or plateau (P) phase of development. abc Means within panel with different superscripts differ by P<0.05.

Figure 5.5. The IGFBP patterns from 7 follicular fluids (lanes 1 to 7) and ovine cerebrospinal fluid (Lane 8, control) following SDS-page electrophoresis and western-ligand blotting with IGF-II. Lanes 1 to 4 are from 1 cow with lane 4 being the identified dominant follicle, and lanes 5 to 7 from a second animal. The molecular weight (kDa) are indicated down the right margin.

Table 5.1. Concentration of insulin-like growth factor and insulin-like growth factor binding proteins of anovulatory or cycling cows ovariectomised at the growing or plateau phase of DF development.

Figure 5.6. The geometric mean optical density (and LSR) for the individual IGFBP's and the sum of all BP's (upper panel) and the relative percentage OD (SED; lower panel) of each IGFBP of molecular weight (MW) 24, 30, 34 and 43 kDa from follicles defined as either dominant or non-dominant. ab Means within each BP with different superscripts differ by P<0.05.

Figure 5.7. The log E2, P4, T and IGF concentrations within the DF and the number of LH pulses in the 8 h preceding ovariectomy.

Figure 6.1. Concentrations of LH (mean ± sem) in plasma of lactating heifers treated with either 250 μg of GnRH or 2.5 ml of saline.

Figure 6.2. The mean (SED as bars along x axis) diameter of 2 dominant follicles (treatment DF = w1 and subsequent DF = w2) following treatment with 250 μg of GnRH or 2.5 ml of saline. * Indicates significant (P<0.05) differences within day.

Figure 6.3. The milk progesterone concentration of nine cows which ovulated following injection with 250 μg of GnRH, divided into those that continued to ovulate (continue) and those that did not (non-continue) following the induced, first postpartum ovulation.

Figure 7.1. Luteinising Hormone concentration (top panel and SED, middle panel) for the first 20 h after treatment and for those having an LH surge (bottom panel, aligned by time of maximum concentration) following treatment with 0.5 mg oestradiol benzoate (ODB), or saline (saline) when the DF was either growing (Growing) or had ceased growing (Plateau). abc Indicate significant differences (P<0.05) among means on that day.

Figure 7.2. The mean diameter (+ sem) of the DF of the wave during which treatment was instituted (w1) and the subsequent wave (w2) following treatment with oestradiol benzoate (ODB) or saline (saline) when the DF was either growing (Growing) or had ceased growing (Plateau). * Indicates differences among treatments (P<0.05) on that day.

Table 7.1. The influence of oestradiol benzoate or saline on follicular growth when a dominant follicle was in growing or plateau phase of development.
Table 8.1. The mean LH concentration and pulse frequency and amplitude before and after ovariectomy in cows ovariectomised when the DF was growing or had reached plateau phase.

Figure 8.1. The LH concentration in plasma samples taken at 15 minute intervals before (d0), and 3 (d3) and 10 (d10) days after ovariectomy from a representative example of an anovulatory and a cycling cow.

Figure 8.2. The least square (± sem) means of the mean LH concentration, the pulse frequency and amplitude before (d0), and 3 (d3) and 10 (d10) days after ovariectomy in anovulatory and cycling cows. *, P<0.05; **, P<0.01; ***, P<0.001 between status within day.

Figure 8.3. The difference (± SED) of the mean LH concentration and the pulse frequency and amplitude between d12 and d10 after treatment with two oestradiol patches on d10 after ovariectomy of cows ovariectomised while anovulatory (An) or cycling (Cyc). Symbols on top of the error bars indicate the significance of the change compared to 0, and symbols on the horizontal bars indicate differences among An and Cyc cows.

Table 8.2. The difference and standard error of the difference of mean LH concentration, pulse frequency and pulse amplitude between day 3 and day 0 and between day 10 and day 3 after ovariectomy in dairy cows.

Figure 9.1. Average (± sem) milk progesterone concentrations (ng/ml) before, during and after 5 days of treatment with a CIDR device containing 1.9 g of progesterone (Progesterone, n = 49) or a blank device (Blank, n = 47).

Table 9.1. The effect of progesterone and/or oestradiol benzoate on oestrus and ovulation in anovulatory dairy cows.

Figure 9.2. The distribution of intervals from the end of treatment to first detected oestrus for cows treated with either a CIDR device containing 1.9 g of progesterone and saline (P4 Saline) or a CIDR device containing 1.9 g of progesterone and an injection of 0.6 mg of oestradiol-benzoate (P4 ODB), a Blank device and saline (Blank Saline) and a Blank device and an injection of 0.6 mg of oestradiol-benzoate (Blank ODB).

Table 9.2. The effect of progesterone and/or oestradiol benzoate on the intervals from calving to first oestrus, to first service and to conception.

Table 9.3. The effect of progesterone and/or oestradiol benzoate on mating performance of anovulatory dairy cows.

Table 9.4. The effect of progesterone and/or oestradiol benzoate on mating performance of anovulatory dairy cows.

Table 10.1. The number (and percentage) of cows not observed in oestrus and the number with anoestrous anoestrus in 8 herds.

Figure 10.1. The probability of insemination and conception following treatment before (Round 1) or approximately 2 weeks after (Round 2) the PSM for cows treated with either P4 and eCG, P4 and ODB or a blank device (Nil). Cows were retrospectively categorised by condition score (≤3.5; Low or >3.5; High) at device insertion.

Table 10.2. The type of treatment and the number of anovulatory anoestrous cows in each treatment.

Figure 11.1. Average (± sem of herd means) daily pre-grazing pasture dry matter (a), pasture dry matter intake (b) and total dry matter intake (c) for herds fed either pasture (o; n = 3 herds) or pasture and pasture silage (p; n = 2 herds). * = P<0.05 within month between treatments.

Figure 11.2. Average (± sem of herd means) daily milk volume (a), milkfat (b) and milk protein (c) production and the liveweight (d) and condition score (e) for herds fed either pasture (o; n
= 3 herds) or pasture and pasture silage (\(\ast; n = 2\) herds). * = \(P < 0.05\) within month between treatments.

Table 11.1. The reproductive performance of cows fed either pasture \((n = 60)\) or pasture silage and pasture \((n = 40)\).

Table 11.2. The factors effecting the intervals from calving to first ovulation, to first oestrus, or to conception.

Figure 11.3. The estimated probability of conception \((1.00 = \text{conception})\) at first service determined by logistic regression modelling (upper) and the observed conception rate (lower) for cows fed solely pasture (open bars) or pasture and pasture silage (\(\ast\) or hatched bars) plotted against daily milk production 3 weeks before PSM (psm-3). The numbers within the bars are the number of cows in each category and the error bars are binomial.
List of Publications Arising from this Thesis

In Press:

McDougall S, Clark DA, Macmillan KL and Williamson NB (1994) Some effects of feeding pasture silage as a supplement to pasture on reproductive performance in lactating dairy cows *New Zealand Veterinary Journal*

Submitted:

McDougall S, Macmillan KL and Williamson NB The effect of estradiol on release of Luteinizing Hormone and the ovulatory response at two stages of follicular development in the postpartum cow *Biology of Reproduction*

Conference proceedings:

Macmillan KL, McDougall S, Taufa VK and Day AM (1994) Ovulation and oestrus among dairy cows with anovulatory anoestrous following progesterone treatment *Australian Society for Reproductive Biology* 26 74

McDougall S (1993) Stocking rate, breed, condition score and anoestrum *Ruakura Dairy Farmers' Conference* 45 51-56

McDougall S and Macmillan KL (1994) Anovulatory dairy cows have lower LH pulse frequency and intrafollicular concentrations of oestradiol (E2) and testosterone (T) than cyclic cows Australian Society for Reproductive Biology 26 49

McDougall S, Macmillan KL and Williamson NB (1992) Effect of stocking rate and breed on calving to first ovulation and oestrus in pasture fed dairy cows 12th International Congress on Animal Reproduction 72-74

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Anovulatory anoestrous</td>
</tr>
<tr>
<td>BOH</td>
<td>β-hydroxy-butyrate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>C_con</td>
<td>Calving to conception interval (days)</td>
</tr>
<tr>
<td>C_hl</td>
<td>Calving to first oestrus interval (days)</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval(s)</td>
</tr>
<tr>
<td>CL</td>
<td>Corpus luteum</td>
</tr>
<tr>
<td>C_ovn1</td>
<td>Calving to first ovulation interval (days)</td>
</tr>
<tr>
<td>C_sl</td>
<td>Calving to first service interval (days)</td>
</tr>
<tr>
<td>CS</td>
<td>Body condition score</td>
</tr>
<tr>
<td>DF</td>
<td>Dominant follicle</td>
</tr>
<tr>
<td>DMD</td>
<td>Dry matter disappearance</td>
</tr>
<tr>
<td>DMI</td>
<td>Dry matter intake (kg/cow/day)</td>
</tr>
<tr>
<td>E<sub>2</sub></td>
<td>Oestradiol 17-β</td>
</tr>
<tr>
<td>eCG</td>
<td>Equine chorionic gonadotrophin</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetraacetate</td>
</tr>
<tr>
<td>EV</td>
<td>Oestradiol valerate</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle Stimulating Hormone</td>
</tr>
<tr>
<td>GH</td>
<td>Growth Hormone</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotrophin Releasing Hormone</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>H-P-O</td>
<td>Hypothalamic-pituitary-ovarian</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuscular</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenous</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-like Growth Factor</td>
</tr>
<tr>
<td>IGFBP</td>
<td>Insulin-like Growth Factor Binding Proteins</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinising Hormone</td>
</tr>
<tr>
<td>MPA</td>
<td>Medroxyprogesterone acetate</td>
</tr>
<tr>
<td>NDO</td>
<td>Not detected in oestrus</td>
</tr>
<tr>
<td>NEB</td>
<td>Negative energy balance</td>
</tr>
<tr>
<td>NEFA</td>
<td>Non Esterified Fatty acids</td>
</tr>
<tr>
<td>ODB</td>
<td>Oestradiol benzoate</td>
</tr>
<tr>
<td>P₄</td>
<td>Progesterone</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PGF$_2$$_a$</td>
<td>Prostaglandin F$_2$$_a$</td>
</tr>
<tr>
<td>PP</td>
<td>Postpartum</td>
</tr>
<tr>
<td>PPA</td>
<td>Postpartum anoestrum</td>
</tr>
<tr>
<td>PSC</td>
<td>Planned start of calving</td>
</tr>
<tr>
<td>PSM</td>
<td>Planned start of mating</td>
</tr>
<tr>
<td>PSM-7</td>
<td>7 days before the planned start of mating</td>
</tr>
<tr>
<td>PSM_con</td>
<td>Planned start of mating to conception</td>
</tr>
<tr>
<td>PSM_s1</td>
<td>Planned start of mating to first service</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>s.c.</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>s/c</td>
<td>Services/successful conception</td>
</tr>
<tr>
<td>sem</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SED</td>
<td>Standard error of the difference</td>
</tr>
<tr>
<td>SR</td>
<td>Stocking rate</td>
</tr>
<tr>
<td>T</td>
<td>Testosterone</td>
</tr>
<tr>
<td>TT4</td>
<td>Total thyroxine</td>
</tr>
</tbody>
</table>