Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A thesis presented in partial fulfilment of the requirements for the degree of
Master of Science
in Conservation Biology

at Massey University, Palmerston North, New Zealand.

Rachel Lynn Turner
2011
Abstract

The current monitoring strategy employed in the management of *Powelliphanta traversi tararuaensis*, a threatened species of giant carnivorous land snail from the Manawatu region of New Zealand, was used to assess the state of two remaining population strongholds – Shannon Forest and Ohau. Conservation targets were found to be amiss in the Shannon Forest population. Average abundance of live *P. t. tararuaensis* there measured well below the recovery goal set by the *Powelliphanta* Recovery Plan. A decline in recruitment was also noted for the Shannon population, with the average size of snails found increasing between the surveys, and a significant drop in numbers of smaller individuals. *P. t. tararuaensis* populations in Ohau were found to be healthier with respect to conservation goals, with two study areas within the site having live *P. t. tararuaensis* numbers well above the target for recovery.

Questions were then asked about the current monitoring program for *Powelliphanta*, in particular concerning the apparent destructive nature of the methodology and the lack of collection of detailed data on life history parameters and population dynamics. I thus tested the effect of a monitoring event on the short-term behaviour of *P. t. tararuaensis* using a mark-recapture study design. The disturbance to the area associated with monitoring had an effect on the re-sighting probability of marked snails, with individuals less likely to be encountered in the days following the monitoring event.

New techniques for monitoring *Powelliphanta* snails were then explored to address the short-fall in methods of gaining life history data in the current program. Attaching tags to the shells of *P. t. tararuaensis* for individual identification using certain adhesives was found to affect the foraging behaviour of wild rats. Loctite and Araldite glues should be used with caution in a field setting, as they may predispose marked snails to depredation by rats. An alternative method for individual snail recognition was then trialled, utilising natural marks on snail shells and a photographic database. It was discovered that individuals of *P. t. tararuaensis* could be recognised by naturally occurring shell variation, but the accuracy decreased over a six month time-frame as new marks were gained and old ones evolved.
This thesis concludes that the current monitoring system for *Powelliphanta* could be improved, both in the type of data gained for assessing management and conservation goals, and in the lessening of impact on snail behaviour. Monitoring strategies for land snails would benefit from incorporation of a non-invasive mark-recapture approach, such as photographic identification. Such techniques would allow for more directed conservation action, without potentially negative impacts on *Powelliphanta* behaviour.
Acknowledgements

Firstly, my deepest thanks to my parents Kelly and Kevin Turner, and my partner Claire. Without their love, support and sacrifice this thesis would simply not exist. I am also eternally grateful to my dedicated supervisors, Isabel Castro and Maria (Masha) Minor. Their guidance, advice, and friendship helped me not only produce this thesis, but probably also kept me from becoming a forest-dwelling hermit when things got tough! I am so lucky to have such a caring and inspirational pair of women behind me, thank you.

Thank you to my family, especially my bros, “The Aunties”, Uncle Rich and my cuzzies. Listening to my excited snail rants probably wasn’t the most riveting dinner conversation, but your encouragement means the world to me.

I owe a great deal of thanks to Gaylynne Carter, specialist on the captive maintenance of wild rats, for the invaluable help she gave towards my experiments. Without her expert advice and the considerable amount of assistance she provided, I would have been lost (or locked in a rat cage!). Thanks also to the team of volunteers who helped with field work, especially Shaun, and the tireless postgrad students of the Massey Ecology Department. I know the nights were sometimes long, cold, and uncomfortable, but you were all incredible, thank you for your time and support.

Thanks to Doug Armstrong for help and advice in the planning stages of this research, and thanks too for all the guidance with the mark-recapture analysis. Thank you as well to Clint Purches, who helped with the monitoring at Ohau and Shannon, and taught me the tricks of the trade. Many thanks to Ernslaw One Ltd and Rayonier New Zealand Ltd for allowing me access to their private forestry estate. The support and dedication of such companies gives important hope and direction for the future of Powelliphanta conservation. Thank you also to Ian Stringer, Kerry Weston and Steve Trewick for all the advice and inspiration in the early stages of this project. Also thanks to Nick Roskruge for the assistance with Iwi consultation, and to the Wellington Conservancy of the Department of Conservation for the help with research permits.

To Erica Dahya, Kathy Hamilton and Agnes Dzang, you made the sometimes confusing world of postgrad admin SO much easier. What you do for students at Massey
is amazing. Thank you. Many thanks also to the Whakatane Historical Society Trust, especially Tiena Jordan, for the considerable support and funding given towards the completion of this project. The Trust has been behind me throughout my entire postgraduate career, and I owe them much appreciation for their faith in me and this research. Thank you too to Graduate Women Manawatu and Massey University for funding towards this project, I could not have completed this thesis without your generous support.

To the wonderful selection of people I have had the pleasure of calling flatmates and friends over the duration of this research - thank you, and I’m sorry! Thank you for the patience, tolerance and faith you had in me, and sorry for bringing up snail sex and statistics in everyday conversation. I don’t know why you guys hang out with me, but I thank the Universe every day for having you in my lives!
| Chapter One |
| Introduction | 1 |
| References | 10 |

| Chapter Two |
The monitoring of a giant land snail (Powelliphanta traversi tararuensis) in two remaining population strongholds	17
Introduction	17
Methods	19
Results	32
Discussion	40
References	43

| Chapter Three |
What lies beneath: The effect of monitoring on the short-term behaviour of Powelliphanta traversi tararuensis	47
Introduction	47
Methods	49
Results	57
Discussion	61
References	63

| Chapter Four |
Device attachment to Powelliphanta traversi tararuensis: implications for depredation by ship rats (Rattus rattus)	67
Introduction	67
Methods	70
Results	78
Discussion	81
References	83

| Chapter Five |
| Photographic identification of Powelliphanta traversi tararuensis: a novel method for monitoring terrestrial gastropods | 88 |
Chapter Six

Summary and Recommendations...109
References...112

Appendix A...114
Appendix B...136
Appendix C...142
Appendix D...144
Appendix E...145
List of Figures

Figure 1.1. Evolutionary hypothesis of Powelliphanta snails .. 5
Figure 1.2. An individual of P. t. tararuaensis ... 6
Figure 1.3. The current locales of P. t. tararuaensis ... 7
Figure 2.1. Locations of the Ohau and Shannon study sites ... 21
Figure 2.2. The Ohau Operational area .. 22
Figure 2.3. Locations of existing DoC monitoring quadrats ... 23
Figure 2.4. Location of the five areas of EOL Shannon Forest 26
Figure 2.5. Quadrats within the Shannon Forest ... 27
Figure 2.6. Examples of causes of death in Powelliphanta ... 30
Figure 2.7. Abundance of live snails in Ohau ... 33
Figure 2.8. Size distribution of live snails found in the Ohau site 34
Figure 2.9. Abundance of dead snails in Ohau ... 35
Figure 2.10. Abundance of live snails in Shannon .. 36
Figure 2.11. Average number of live snails for the 12 quadrats 37
Figure 2.12. Size distribution of live snails found in the Shannon site 38
Figure 2.13. Abundance of dead snails in Shannon ... 39
Figure 2.14. Causes of death for Shannon P. t tararuaensis snails 39
Figure 3.1. Locations of the three study sites .. 51
Figure 3.2. Basic setup of a study plot ... 52
Figure 3.3. Changes in numbers of snails seen in the disturbed quadrats 59
Figure 4.1. The rat enclosure setup ... 73
Figure 4.2. Rat “investigating” behaviour .. 75
Figure 4.3. Rat “manipulation with mouth” behaviour .. 76
Figure 4.4. Rat “manipulation with mouth and forepaws” behaviour 77
Figure 4.5. Time (seconds) spent interacting with each glue treatment 80
Figure 4.6. Number of interactions with each glue treatment 81
Figure 5.1. Two individuals of P. t tararuaensis .. 92
Figure 5.2. Variations in natural markings of individual snails 93
Figure 5.3. Full shell of the same individual snail ... 98
Figure 5.4. Same individual, showing protoconch only ... 98
Figure 5.5. Same individual, depicting natural mark change 99
List of Tables

Table 2.1. *P. t. tararuaensis* monitoring quadrats in Ohau..24
Table 2.2. *P. t. tararuaensis* monitoring quadrats in Shannon..28
Table 2.3. P-values from the sequential Sidak post hoc test on area...32
Table 3.1. Summary of the six quadrats created for this study..53
Table 3.2. Dates of survey...55
Table 3.3. *P. t. tararuaensis* sighting data treatment quadrats...58
Table 3.4. Mean number of marked and total snails seen each night...59
Table 3.5. Results summary from re-sighting probability models...60
Table 4.1. Friedman’s tests for the effect of adhesives...79
Table 4.2. Mann-Whitney tests for pairwise means comparisons..79
Table 5.1. Average time taken to complete, and average scores for tests..97
Table 5.2. Tukey’s post hoc tests...97