Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Modelling, Optimisation and Control of a Falling-Film Evaporator

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of philosophy
in
Production Technology

at
Institute of Technology and Engineering
Massey University
Palmerston North
New Zealand

Shabeshe Paramalingam
2004
Acknowledgements

My primary thanks are to my supervisor, Dr. Huub Bakker, for his support, guidance, friendship, patience and encouragement throughout this project. Without his direction, motivation, committed attitude, help and advice this project would never have succeeded.

I would like to express my appreciation to my second supervisor Dr. Hong Chen, Fonterra-Ingredients, Whareroa, Fonterra Co-operative Ltd, for sharing his wealth of knowledge in evaporation and drying technology and for his support during this project. I thank him also for providing me with the tools, permission to conduct trials in a commercial evaporator and support to complete my project successfully. I really appreciate his encouragement and helpful attitude. My thanks go also to Clive Marsh for his valuable input to this project. I appreciate him spending his valuable time in supporting this project.

I would like to thank many staff at Whareroa with whom I have had the privilege to become familiar during my time at site. Special thanks go to the whey products managers, supervisors and operators for their encouragement, support and involvement during the evaporator trials.

Thanks to the Foundation for Research in Science and Technology for their sponsorship through the Graduate Research in Industry Fellowship programme. I am indebted to the staff of the Institute of Engineering and Technology, Massey University, New Zealand, for assistance with this work and for the facilities provided. Also thanks to my colleges and friends who made my time at Massey very enjoyable.

I would like to thank the Hawera community, in particular Neil and Helen Walker, for their hospitality, support and friendship during my stay. Finally, I would like to express my special thanks to my wife, Ahalya for her encouragement, patience and moral support throughout this project.
Contents

Acknowledgements ... i
Summary ... xi
Overview of work and contribution ... xiii
1) Introduction ... 1
2) Background .. 5
 2.1) Whey and whey proteins ... 5
 2.2) Whey processing ... 8
 2.3) Whey powder .. 13
 2.4) Properties .. 15
 2.5) Evaporators .. 18
 2.6) Evaporator modelling .. 26
 2.7) Evaporator control .. 28

PART-1 Parameter estimation and determination

3) Physical properties ... 33
 3.1) Introduction .. 33
 3.2) Methodology .. 35
 3.3) Results and discussion ... 41
 3.4) Conclusions ... 65

4) Discharge coefficients .. 67
 4.1) Introduction .. 67
 4.2) Methodology .. 69
 4.3) Results and discussion ... 72
 4.4) Conclusions ... 75

PART-2 Modelling of a falling-film evaporator

5) Modelling overview ... 77
 5.1) Model structure ... 77
 5.2) Whey evaporator parameters .. 78

6) Dynamic model derivation ... 79
 6.1) Distribution plate .. 79
 6.2) Preheat condensers / Vacuum condenser 82
Contents

6.3) Evaporation .. 85
6.4) Thermal vapour recompression .. 92
6.5) Conclusions .. 97

7) **Steady state models and model parameters** 99
7.1) Distribution plate .. 99
7.2) Preheat condensers / Vacuum condenser 100
7.3) Evaporation .. 100
7.4) Model parameters .. 104
7.5) Conclusions .. 126

8) **Linear dynamic models** ... 129
8.1) Linearization .. 129
8.2) Development of linear dynamic models 130
8.3) Complete linear evaporator model 151
8.4) Delay terms approximation .. 153

PART-3 Model applications

9) **Process improvements** .. 161
9.1) Process optimisation .. 161
9.2) Constraints in the evaporation process 162
9.3) Whey products evaporator optimisation 172
9.4) Optimum operating regime .. 185
9.5) Conclusions .. 188

10) **Controllability studies** .. 191
10.1) Process control .. 191
10.2) Control in a falling-film evaporator 191
10.3) Evaporator controllability analysis 193
10.4) Control loop performance .. 195
10.5) Cascade controller application to control product concentration .. 202
10.6) Conclusions .. 209

PART-4 Conclusions, recommendations and future work

11) **Overall Conclusions** .. 211

12) **Recommendations and future work** 213
12.1) Recommendations .. 213
12.2) Future work .. 215

Nomenclature .. 211
References .. 227
Appendices .. 235

iv
List of figures

Figure 1.0: Schematic diagram of the whey powder process .. 2
Figure 2.1: Whey process from cheese whey ... 9
Figure 2.2: Whey process from casein whey ... 10
Figure 2.3: Membrane process .. 11
Figure 2.4: Two-effect falling-film evaporator ... 13
Figure 2.5: Functional properties and applications of whey protein 14
Figure 2.6: Coefficients for tubes .. 16
Figure 2.7: Discharge coefficients .. 16
Figure 2.8: Flow coefficient curve for sharp-edged orifices ... 17
Figure 2.9: Natural circulation evaporator .. 18
Figure 2.10: Forced circulation evaporator ... 18
Figure 2.11: Climbing-film evaporator .. 19
Figure 2.12: Falling-film evaporator .. 19
Figure 2.13: Thin-film wiper evaporator .. 21
Figure 2.14: Thin-film centrifuge evaporator .. 21
Figure 2.15: Flash evaporator ... 22
Figure 2.16: Agitated-film evaporator .. 22
Figure 2.17: Single-effect falling-film evaporator .. 24
Figure 2.18: Whey evaporator plant at Fonterra-Ingredients, Whareroa 25
Figure 2.19: Control loops in the whey evaporator plant at Fonterra-Ingredients, Whareroa ... 30
Figure 3.1: Refractive Index meter .. 35
Figure 3.2: Rheomat viscometer .. 38
Figure 3.3: Capillary viscometer .. 39
Figure 3.4: The effect of temperature on the density of WPC-3 as a function of total solids concentration ... 42
Figure 3.5: The effect of temperature on the density of WPI as a function of total solids concentration ... 43
Figure 3.6: Viscosity of WPC-3 concentrates as a function of temperature and total solids concentration at low shear rates ... 44
Figure 3.7: Viscosity of WPC-3 concentrates as a function of temperature and total solids concentration at high shear rates ... 45
Figure 3.8: Viscosity of WPI concentrates as a function of temperature and total solids concentration at low shear rates ... 45
Figure 3.9: Viscosity of WPI concentrates as a function of temperature and total solids concentration at high shear rates ... 46
Figure 3.10: Advancing contact angle of WPC-3 concentrates as a function of temperature and total solids concentration at high shear rates ... 47
Figure 3.11: Surface tension of WPC-3 concentrates as a function of temperature and total solids concentration at high shear rates ... 48
Figure 3.12: Advancing contact angle of WPI concentrates as a function of temperature and total solids concentration at high shear rates ... 48
Figure 3.13: Surface tension of WPI concentrates as a function of temperature and total solids concentration at high shear rates
Figure 3.14: Regression model for viscosity of WPC-3 as a function of temperature and total solids concentration at high and low shear rates
Figure 3.15: Optimum value of \(k \) for WPC-3
Figure 3.16: Optimum value of \(\phi_m \) for WPI
Figure 3.17: Laboratory-determined percentage TS versus percentage TS predicted from RI measurements for WPC-3
Figure 3.18: Laboratory-determined percentage TS versus percentage TS predicted from RI measurements for WPI
Figure 3.19: Comparison of regression and semi-empirical density model predictions against plant data for WPI
Figure 3.20: Comparison of regression and semi-empirical density model predictions against plant data for WPC-3
Figure 3.21: Comparison of semi-empirical density model predictions against plant data for WPC-1 and WPC-2
Figure 3.22: Literature density model predictions comparison with new semi-empirical model for WPI
Figure 3.23: Semi-empirical viscosity model predictions compared with experimental data for WPC-1 and WPC-2 at 30°C
Figure 3.24: Comparison of semi-empirical viscosity model with literature viscosity models for WPC-3 at 40°C
Figure 3.25: Comparison of the Semi-empirical and literature models for the specific heat capacity of WPC-3
Figure 3.26: Comparison of the Semi-empirical and literature models for the specific heat capacity of whole milk
Figure 3.27: Model prediction of thermal conductivity with literature model predictions with WPC-3
Figure 4.1: Distribution plate arrangement in the whey evaporator at Fonterra, Whareroa
Figure 4.2: Apparatus for discharge coefficient measurements a-orifice, b-orifice thickness, c-vessel diameter (=hydraulic diameter)
Figure 4.3: The effect of liquid height on the coefficient of discharge as a function of tube diameter
Figure 4.4: The effect liquid height on coefficient of discharge with water as a function of the hole top edge shape
Figure 4.4: Coefficient of discharge for WPC and WPI
Figure 5.1: First effect of a two-effect falling-film evaporator
Figure 5.2: Whey evaporator with modelling parameters
Figure 6.1: Distribution plate sub-system
Figure 6.2: Condenser sub-system
Figure 6.3: Falling-film in an evaporator tube
Figure 6.4: Thermal Vapour Recompression system
Figure 6.5: TVR models compared for motive steam flow with experimental data......................... 95
Figure 6.6: TVR models for recycled vapour flow compared with experimental data.................. 96
Figure 7.1: Preheat condenser overall heat transfer coefficient as a function of the feed mass flow rate... 105
Figure 7.2: Preheat condenser overall heat transfer coefficient as a function of the feed viscosity ... 106
Figure 7.3: Preheat condenser outlet temperature predictions versus historical date (WPC-2) .. 109
Figure 7.4: Overall energy balance sum of squared error as a function of U_{loss} ... 109
Figure 7.5: Deviation between equations 7.21/7.22 and historical data as a function of overall evaporation heat transfer coefficient for water .. 111
Figure 7.6: Overall evaporation heat transfer coefficient for WPC-3 as a function of total solids concentration .. 113
Figure 7.7: Overall evaporation heat transfer coefficient of WPI as a function of total solids concentration ... 113
Figure 7.8: Fouling coefficient for water .. 116
Figure 7.9: Fouling coefficient for WPC-3 .. 116
Figure 7.10: Fouling coefficient for WPI-new (optimum operating conditions) 116
Figure 7.11: Fouling coefficient for WPI-current (current operating conditions) 117
Figure 7.12: Comparison of predicted heat transfer coefficients with values calculated from experimental data for WPC-3 ... 118
Figure 7.13: Model testing for WPI-current (current operating conditions) 119
Figure 7.14: Model testing for WPI-new (optimum operating conditions) 119
Figure 7.15: Model testing with WPC-2 .. 120
Figure 7.16: Residence time predictions compared with experimental data .. 123
Figure 7.17: Optimum values of TVR steam model constant, K_{TVR} .. 124
Figure 7.18: Optimum values of TVR vapour flow constant, K_{HTC} ... 124
Figure 7.19: TVR model predictions against the plant data .. 125
Figure 8.1: Complete linear interconnections for the whey evaporator 152
Figure 8.2: First order Padé approximations compared with actual responses for short and long pumping delays ... 153
Figure 8.3: Bode plot comparing the fifth order Padé approximation with actual response for falling-film delay ... 155
Figure 9.1: Comparison of mass of evaporation in the evaporator for different whey products .. 162
Figure 9.2: Comparison of mass of evaporation in the spray dryer for different whey products .. 163
Figure 9.3: Comparison of powder production rate for different whey products 164
Figure 9.4: Maximum operating temperature for different whey products 165
Figure 9.5: Viscosity of WPC-3 as a function of temperature for different total solids concentrations .. 165
Figure 9.6: Viscosity of WPI as a function of temperature for different total solids concentrations .. 166
Figure 9.7: Current operating concentration range and maximum achievable solids concentration for WPC-2 .. 167
Figure 9.8: Current operating concentration range and maximum achievable solids concentration for WPC-3 .. 167
Figure 9.9: Current operating concentration range and maximum achievable solids concentration for WPI .. 168
Figure 9.10: Current operating concentration range and maximum achievable solids concentration for WPI .. 168
Figure 9.11: Current operating flows and the wetting flow rates for water.. 170
Figure 9.12: Current operating flows and wetting flows for WPI .. 171
Figure 9.13: Current operating flows and wetting flows for WPC-3 .. 171
Figure 9.14: Comparison of preheat condenser heat transfer coefficients for water, WPC-3 and WPI .. 173
Figure 9.15: Comparison overall evaporation heat transfer coefficient for water WPC-3 and WPI .. 175
Figure 9.16: Evaporator arrangement for bypassing the 3rd preheat condenser .. 176
Figure 9.17: Comparison of overall evaporation heat transfer coefficient for WPI with and without flash at entry to the 1st effect .. 177
Figure 9.18: Comparison of overall evaporation heat transfer coefficients for different WPI specifications .. 178
Figure 9.19: Comparison of overall evaporation heat transfer coefficients from feed temperatures .. 182
Figure 9.20: Comparison of feed solids and the density with the trial products .. 182
Figure 9.21: Comparison of TVR compression ratio for different products at current and trial operating conditions .. 184
Figure 9.22: Motive steam pressure supplied to the evaporator as a function of control valve position .. 187
Figure 10.1: Control variables in the TVR falling-film evaporator .. 192
Figure 10.2: Falling-film evaporator control loops .. 196
Figure 10.3: Three-pass evaporator linear models interconnections .. 196
Figure 10.4: Bode plot of disturbance transfer functions (effect of feed flow on the exit flow from the distribution plate) .. 197
Figure 10.5: Bode plot of transfer functions (effect of disturbances and the manipulation on the 2nd effect temperature) .. 198
Figure 10.6: Magnitude bode plot of closed loop disturbance transfer function .. 199
Figure 10.7: Bode plot of transfer functions (effect of disturbances and the manipulation on the product concentration) .. 200
Figure 10.8: Single loop feedback control of product solids concentration .. 201
Figure 10.9: Magnitude bode plot of closed loop disturbance transfer function... 201
Figure 10.10: Three-pass evaporator linear models interconnections 202
Figure 10.11: Block diagram of the modified cascade control loop
for product concentration control.......................... 203
Figure 10.12: Block diagram of a conventional cascade control loop........ 204
Figure 10.13: Simplified cascade feedback loop for product
concentration control... 204
Figure 10.14: Bode magnitude plot of G_{do} for different inner
loop controller settings.. 206
Figure 10.15: Bode Magnitude plots of transfer function $W_p(s)/W_f(s)$
for single loop and cascade control.......................... 207
Figure 10.16: Product concentration in response to a disturbance
in the feed concentration....................................... 208
Figure 10.17: Product concentration in response to a step change in set point... 208
List of tables

Table 2.1: Compositions of whey powder .. 13
Table 3.1: Correlation factors for each whey product 41
Table 3.2: Viscosity regression coefficients .. 47
Table 3.3: Regression coefficients for advancing contact angle
 and surface tension .. 49
Table 3.4: Density model coefficients ... 50
Table 3.5: Specific heat capacity model coefficients 51
Table 3.6: Thermal conductivity model coefficients 52
Table 3.7: Voluminosity of whey components ... 53
Table 3.8: Viscosity model constants ... 56
Table 7.1: Process constants in the evaporation process 104
Table 7.2: Fouling coefficients .. 117
Table 7.3: Residence time measurements ... 121
Table 9.1: Summary of process constraints for whey products 172
Table 9.2: Current evaporator temperature profiles for different whey products 180
Table 9.3: Evaporator temperature profiles for the trial runs 183
Table 9.4: Optimum evaporator operating conditions for different products ... 185
Table 10.1: Control variables in the TVR falling-film evaporator 192
Table 10.2: Scaling parameters for controllability analysis 193
Table 10.3: Scaled static process gains for the evaporator with WPC-3 194
Falling-film evaporators are widely used in dairy industry for concentrating products. With increasing demand and competition, there is always a need for process improvement. This is made more difficult when using the same evaporator for concentrating different products. Therefore, it is vital to gain a greater understanding of the industrial falling-film evaporator process. This is possible through process modelling.

The aim of this work was to improve the process of whey products evaporation at Fonterra Ingredients-Whareroa, Fonterra Co-operative Ltd. This was done by an investigation of the evaporation process and optimisation of the operating conditions. Mathematical models were derived for this purpose, including dynamic and steady state models for the evaporator system and models for the physical properties of whey products. Complete evaporator simulations were established for process understanding, optimisation, and control. The steady state model was used for optimisation studies and the dynamic model was used for controllability studies.

Experiments were carried out on the physical properties of whey product. Regression models were developed in relation to the total solids concentration and to the temperature. Physical properties were also estimated from literature semi-empirical models (model constants were identified using the experimental data) and compared with the experimental values. The application of regression models is limited to one product within a predefined operating range with less than 5% error. The semi-empirical models are applicable to a variety of products and in a wider range of operating conditions with less than 10% error. The liquid height above the distribution plate in the evaporator is important to filter high frequency feed disturbances. The discharge coefficient has strong influence on the liquid height prediction but there were no investigation in the literature that applicable to the evaporator. Experiments were conducted to measure the discharge coefficient and to investigate how orifice shape affects discharge coefficient. The distribution plate model
derivation was improved and showed that the distribution plate thickness influences the discharge coefficient and discharge flow calculations.

Trials in a commercial evaporator showed that protein content has no influence on the evaporation process. Protein type, air content and viscosity have a significant influence on the evaporation process. A modified evaporator configuration proved that poor evaporator performance for whey protein isolate is caused by the heat treatment given prior to the evaporation. It was shown that 15% increase in the evaporator capacity can be achieved when operating at optimum operating conditions compared to standard industry practice. The energy savings resulting from the optimisation was about NZ$70,000/season.

The plant controllability studies focused on the disturbance rejection capabilities of current control loops, product density and effect temperature. Experience has shown that the use of a single feedback PI controller for product density control is not sufficient. The applicability of a cascade controller to this problem was tested and was shown that the disturbance rejection properties can be significantly improved.
Overview of work and contribution

A brief overview of the research work and the contributions made to the field of falling film evaporator modelling and control are outlined.

1) Modelling of a two-effect thermal vapour recompression falling film evaporator Fonterra Ingredients-Whareroa, Fonterra Co-operative Ltd.
 a. Dynamic modelling.
 b. Steady state model development and complete evaporator simulation.
 c. Linear dynamic model development and complete evaporator simulation.
 d. Identification of model constants.
 e. Model testing with whey products, water and milk products.

 a. Experimental data on density, viscosity, contact angle and surface tension of whey products.
 b. Calibration data of Refractive Index against the actual total solids concentration of whey products.
 c. Regression equation for actual total solids concentration as a function of Refractive Index of whey products.
 d. Regression equation for density and viscosity as a function of temperature and total solids concentration.
 e. Semi-empirical models for density, viscosity, thermal conductivity and specific heat capacity.
 f. Model testing of whey products, milk products and water.
 g. Investigation and measurements of the discharge coefficient for different products.

3) Optimisation of falling-film evaporator (Journal of Food Engineering, submitted)
 a. Determination of the optimum operating conditions for each whey product.
 b. Heat transfer coefficient data for whey products.
 c. Improved preheat condenser performance by re-routing the non-condensable gas line to the vacuum pumps.
 d. Demonstration of the need for correct control valve sizing and control of steam pressure in the falling film evaporator.
 e. Demonstration that the total whey protein content has no influence on the heat transfer coefficient but that the protein type and the product viscosity do.
 f. Demonstration from trials that the heat transfer coefficient of high whey protein content products can be improved with low heat treatment prior to the evaporator.
Overview of work and contribution

4) Cascade controller design for concentration control in a falling-film evaporator (Journal of Food Control, in press)
 a. A complete evaporator simulation with one pass model and three pass model.
 b. Demonstration that the feed solids and the 2nd effect temperature have significant influence on the product total solids concentration compared to the feed temperature.
 c. Demonstration that the 2nd effect temperature control is quick and can be tuned so that it can be assumed to be constant.
 d. Demonstration that the product total solids control is slow due to the large falling film residence time and pipe delays.
 e. Demonstration that the use of cascade control for controlling product total solids improved the disturbance rejection bandwidth, allowing the controller to be tuned to correct the disturbances quickly.

5) Recommended future work
 a. Study of the influence of the compositions, component interactions and shear rate on the viscosity of whey products. Development of a generic viscosity model for both milk and whey products.
 b. Measurement of thermal conductivity of whey products, development of a reliable method for measurement of air content in the product and development of a generic model that can calculate the film heat transfer coefficient from product composition.
 c. Study of the influence of whey protein types and their interactions at different temperatures on foaming and its relevance to the film heat transfer coefficient.