Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
FRONTPIECE. Oblique aerial photograph of the two photographic study areas. Main divide of southern Ruahine Range runs from centre left to top right. No. 1 catchment is in the foreground. The top half of the large slump in the Raparapawai catchment and the many other erosion scars are clearly seen. Date of photography is March 19 1975.

Photo: N.A. Trustrum
DETERMINATION OF PROCEDURES TO ESTABLISH
PRIORITIES FOR EROSION CONTROL AS
DETERMINED IN THE SOUTHERN
RUAMINE RANGES, NEW ZEALAND.

A thesis presented in partial fulfilment
of the requirements for the degree of
Masters in Agricultural Science in
Soil Science at Massey University.

Peter Robert Stephens.

1975.
ABSTRACT.

The aim of this study was to investigate several methods of potential usefulness in identifying some of the factors causing erosion in two catchments 'typical' of the southern Ruahine Ranges.

The condition of the southern Ruahine Ranges, in the headwaters of the Manawatu River catchment, is deteriorating. The state of equilibrium which has periodically existed between rock, soil, slope, vegetation, and climate has recently been upset, and the area is now in a state of decline. Unless remedial action is taken promptly, farm land will go out of production, public water supplies could be ruined, communications by rail, road, and telephone severely hindered, and the benefits of both the Pohangina-Oroua and Lower Manawatu Flood Control and Drainage Schemes could be lost. This study attempts to establish a basis from which positive steps to rectify the situation can be implemented.

Methodology involved the use of aerial photography and on-the-ground observations and measurements. Colour and colour infrared film types were compared with standard black-and-white panchromatic film to establish which was the most suitable to use in determining priorities for erosion control. Sequential panchromatic aerial photographs were taken in 1946, 1961, 1966, and 1974. In this mountainous area, aerial photographs are essential tools for determining the extent of eroded surfaces and erosion types.

Between 1946 and 1974 there has been a 120 percent increase in area of eroded slopes in the study area. The worst erosion in 1946, at which time herbivorous mammals had had little effect on vegetation, and in 1974, occurred in the 700 to 900 m altitudinal zone. This zone has the highest fault density in the study area, which consists of densely faulted and mélange-like rocks. This area has also undergone the most dramatic vegetation changes since 1946. Herbivorous mammals are considered to be only partly responsible for such changes. As a corollary, the highest percent increase in erosion has occurred in the altitudinal zone with the most intact vegetative canopy.

A positive relationship between the frequency of medium-sized earthquakes and increase of eroded areas has been tentatively
established. Further, most erosion has occurred during and following intense rainstorms. These two factors are considered to be the main ones causing erosion in the area.

Once factors causing erosion had been established, colour, colour infrared, and panchromatic film types were compared. Photographs used in this comparison were taken periodically throughout 1975 using a 35 mm camera. An assessment was made of the capabilities of each film type to show the following features: alignments, eroded surfaces, erosion types, vegetation types and condition, rock types, pug zones, seepage areas, and drainage pattern. Colour infrared was found to be the most suitable to use when determining priorities for erosion control.

A number of salient procedures that should be undertaken to determine priorities for erosion control are outlined. These include acquisition of all sequential photographs, photography using colour infrared, or preferably, using colour infrared and panchromatic film, a sound knowledge of ground conditions, and collation of relevant erosion, geological, botanical, and animal ecological data. A system that enables priority for erosion control of subcatchments to be established, using a rating value for factors causing erosion, is outlined.
I would like to express my sincere thanks to the following who have assisted me in this study:

Mr. D.G. Bowler, my supervisor, for initiating this interesting study, for his guidance and discussions on aspects of methodology, and for his criticism of the text.

Professor J.K. Syers for discussions on presentation of data and constructive criticism of the text.

Dr. V.E. Neall who gave much assistance in the geology section, both for the text and in the field.

Dr. J.H. Kirkman for his assistance in determining the clay mineralogy of fault pug materials.

Messrs. N.A. Trustum (Ministry of Works and Development), and J.R. Clouston (Photographic Unit, Massey University) for helpful discussions on photography and the use of various film types. To the former for the use of his light table, and the latter for the use of his camera.

Messrs. A.H. Leigh and A. Cunningham (New Zealand Forest Service) with whom I had stimulating discussions regarding erosion, vegetation, and herbivorous mammals of the southern Ruahine Ranges. I am indebted to the latter for his hospitality.

Mr. C. Stephens for the use of his projector.

Mr. C.R. Renton (Manawatu Catchment Board and Regional Water Board) for supplying climate information.

Mr. E.D. Trask (New Zealand Aerial Mapping) for determining cost comparisons for aerial photography using different film types.

The officers of the Land Use Capability Assessment office and the National Plant Materials Centre. The former for the use of their Abney level and light table, the latter for the use of their camera.

Dr. V.E. Neall, and Messrs. P.L. Allen, P.C.L. Allen, B.J. Bargh, D.G. Bowler, J.R. Fletcher, R.L. Hathaway, A.H. Leigh, P.T. Mankivell, N.J. Page, J.F. Stephens, and N.A. Trustum for accompanying me in the field. In particular, I would like to thank P.L. Allen who lived in the study area with me, and fellow student B.J. Bargh...
who accompanied me on a number of occasions.

This study was carried out whilst I was employed by the Water and Soil Division of the Ministry of Works and Development, who provided financial assistance for flying, and the purchase of films and photographs.

Mrs. E. Lynch for typing the text.

Christine and Jacqueline.
TABLE OF CONTENTS

Abstract .. ii
Acknowledgements ... iv
Table of contents .. vi
List of figures .. viii
List of tables .. xii
SECTION 1 INTRODUCTION ... 1
1.1 Aim of study .. 1
1.2 Reasons for investigation ... 1
1.3 Location of study area .. 2
1.4 Criteria for choosing study area .. 2
1.5 Methodology of the study ... 5
SECTION 2 REVIEW OF LITERATURE ON THE USE OF CONVENTIONAL
AERIAL PHOTOGRAPHY FOR EROSION AND RELATED STUDIES 9
2.1 Introduction .. 9
2.2 Film types in conventional aerial photography 11
2.3 Use of conventional aerial photography in erosion studies 15
2.4 Use of conventional aerial photography in geological studies 20
2.5 Use of conventional aerial photography in soil studies 23
2.6 Use of conventional aerial photography in vegetation studies 25
2.7 Summary ... 29
SECTION 3 EQUIPMENT AND TECHNIQUE USED FOR AERIAL
PHOTOGRAPHY ... 30
3.1 Equipment used for aerial photography ... 30
3.2 Conditions governing date of aerial photography 30
3.3 Flight procedure .. 31
3.4 Film types used ... 32
3.5 Focal length of camera ... 34
SECTION 4 FEATURES OF THE STUDY AREA ... 35

4.1 Regional setting ... 35
 4.1.1 General .. 35
 4.1.2 Geology .. 35
 4.1.3 Physiography .. 35
 4.1.4 Vegetation ... 36
 4.1.5 Climate .. 36
 4.1.6 Erosion .. 36

4.2 Morphometry ... 38
 4.2.1 Area .. 38
 4.2.2 Average slope ... 38
 4.2.3 Longitudinal stream-channel profiles 39
 4.2.4 Hypsometric analysis .. 41
 4.2.5 Slope aspect ... 41

4.3 Geology ... 43
 4.3.1 Lithology of the study area .. 43
 4.3.2 Presence of large rounded boulders 45
 4.3.2.1 Characteristics of these boulders 45
 4.3.2.2 Relationship between distribution and size of boulders 45
 4.3.2.3 Significance of the large boulders 47
 4.3.3 Faults and lineations .. 49
 4.3.3.1 Use of aerial photography to map faults and lineations 49
 4.3.3.2 Field evidence of faulting 49
 4.3.3.3 Interpretation of fault pattern 50
 4.3.4 Clay mineralogy of pug material 53

4.4 Soils ... 54

4.5 Climate .. 56

4.6 Vegetation ... 59

4.7 Erosion .. 62
 4.7.1 Previous erosion phases in study area 62
 4.7.2 Erosion types ... 64
 4.7.3 Increase in area of eroded slopes since 1946 75
 4.7.4 Factors causing erosion ... 78
 4.7.4.1 Variety of factors ... 78
 4.7.4.2 Effect of herbivorous mammals on vegetation, soil, and erosion 78
 4.7.4.3 Effect of rainfall on erosion 82
LIST OF FIGURES

FRONTPIECE

Fig. 1. Locality map .. 3

Fig. 2. Oblique aerial photograph of southern Ruahine Ranges 4

Fig. 3. Vertical aerial photograph of Raparapawai catchment 6

Fig. 4. Vertical aerial photograph of No. 1 catchment ... 7

Fig. 5. Flight path ... 33

Fig. 6. Longitudinal stream-channel profiles ... 40

Fig. 7. Hypsometric curves .. 4.2

Fig. 8. Geology map ... 4.4

Fig. 9. Photograph of largest boulder ... 46

Fig. 10. Photograph of boulder split in two ... 46

Fig. 11. Relationship between boulder size and location in streambed 48

Fig. 12. Photograph of pug zone on fault ... 51

Fig. 13. Photograph of faulted rocks ... 51

Fig. 14. Rose diagram of fault strikes ... 52

Fig. 15. Takapari peaty loam ... 55

Fig. 16. Rainfall gauge locations in southern Ruahine Range 57

Fig. 17. Repeat photographs of Raparapawai catchment .. 60

Fig. 18. Vegetation map ... 61

Fig. 19. Debris slide in upper No. 1 catchment .. 65

Fig. 20. Debris slide in lower No. 1 catchment .. 65

Fig. 21. Oblique aerial photograph of Slump A .. 67

Fig. 22. Deterioration of slopes on Slump A ... 69

Fig. 23. Debris avalanche which occurred during cyclone Alison 72

Fig. 24. Debris avalanche on fault ... 72

Fig. 25. Showing rill erosion ... 73

Fig. 26. Showing rock fall debris ... 73

Fig. 27. Relationship between eroded surfaces, altitude, aspect, and time 76
Fig. 28. Frequency of earthquakes ... 87
Fig. 29. Comparative photo-interpretation. Waparapawai catchment ... 95
Fig. 30. Comparative photo-interpretation. No. 1 catchment ... 96
Fig. 31. Colour, colour infrared, and panchromatic vertical aerial photographs of No. 1 catchment ... 101
Fig. 32. Colour, colour infrared, and panchromatic vertical aerial photographs of Waparapawai catchment ... 102
Fig. 33. Showing difference in colour balance of colour infrared photographs ... 105
Table I. Sequential aerial photographs of study area .. 8
Table II. Days suitable for aerial photography ... 31
Table III. Area and average slope of study area ... 39
Table IV. Distribution of slope aspect in study area .. 41
Table V. Average annual rainfall ... 56
Table VI. Rainfall intensities ... 58
Table VII. Weather climate data ... 58
Table VIII. Increase in eroded slopes between 1946 and 1974 75
Table IX. Comparing eroded slopes and slope aspect .. 77
Table X. Fault density and erosion severity ... 85
Table XI. Earthquakes and erosion occurrence .. 88
Table XII. Length of alignments mapped in both catchments 94
Table XIII. Spectral signatures using colour and colour infrared aerial photographs 98
Table XIV. Rank of ease of interpretation .. 103
Table XV. Cost comparison of aerial photography using different film types 106
Table XVI. Rating values to determine priorities for erosion control 111