SEED PRODUCTION IN HYBRID DAHLIA

A thesis presented in partial fulfilment
of the requirements for the
Degree of Doctor of Philosophy
in Seed Technology
at Massey University
Palmerston North
New Zealand

SONGVUT PHETPRADAP

1992
ABSTRACT

Seed grown dahlias lack uniformity of growth habit and are particularly erratic bloomers. This results in a wide range of seed maturities within a plant and creates major problems for seed harvest. In an attempt to reduce the spread of flowering and improve uniformity, crop manipulation by hand pinching and the application of three plant growth regulators was investigated in field grown dahlia (*Dahlia hybrida*) cvs. Unwins Dwarf Mixture and Figaro White.

In 1987/88 the effects of pinching above nodes 3, 4 and 5 on flowering pattern, flower production and seed yield of dahlia cv. Unwins Dwarf Mixture were determined. Pinching had no effect on the number of flowers per plant or total flowering period. However pinching did shorten the days from first to peak flowering because of increased uniformity of lateral branch growth. Pinching above node 4 increased harvested seed yield by 40% and cleaned seed yield by 32% but only the former result was significant. Although pinching above node 4 also produced more seedheads per plant and seeds per seedhead than in non-pinched plants, differences were once again non-significant.

In the following season (1988/89) two rates of three plant growth regulators (PGRs) were applied at two growth stages (i.e. paclobutrazol 0.5 and 1.0 kg a.i. ha$^{-1}$, daminozide 2.0 and 4.0 kg a.i. ha$^{-1}$, chlormequat chloride 1.5 and 3.0 kg a.i. ha$^{-1}$ at visible terminal bud stage and stem elongation) to plants of two cultivars, Unwins Dwarf Mixture (multicolour, 70 cm tall) and Figaro White (white, 30-35 cm tall) to determine their effects on plant growth and development, flowering pattern, seed yield and yield components. Hand pinching above node 4 was also included as a treatment for comparison. In cv. Unwins Dwarf Mixture, hand pinching increased lateral branch length and promoted simultaneous flowering, but did not significantly increase seed yield or any of its components. All three PGR's retarded growth initially, but these effects mostly did not persist past first flowering. Flowering duration or flower numbers did not alter following PGR application, and so a high variation in seed maturation was still present in all plots. However two PGR treatments, paclobutrazol (1.0 kg a.i. ha$^{-1}$) applied at the first visible bud stage, and chlormequat chloride (1.5 kg a.i. ha$^{-1}$) applied at the
stem elongation stage significantly increased seed yield. The response to paclobutrazol came from an increased number of seeds per seedhead and greater uniformity of seedhead development, which reduced the seed loss during cleaning (from 44 to 11%). The reason for the seed yield increase following chloromequat application was not clear, as yield components did not differ significantly, but more seedheads per plant were recorded. In the dwarf cultivar Figaro White, PGRs did not increase seed yield. Retardation effects were transitory. Seed yield of this cultivar was very low because of poor seed setting in all treatments and it is suggested that white petal colour is unattractive to insect pollinators.

Response to PGRs is application rate and time dependent. Results from the previous trial suggested that paclobutrazol application could be more effective if applied earlier, whereas for chloromequat chloride, later application (i.e. at or after stem elongation) may be more appropriate. However, paclobutrazol application at the vegetative stage did not affect seed yield, and as in the previous experiment, seed yield was increased following application at the visible bud stage only. Chloromequat chloride applied at stem elongation also increased harvested seed yield but not cleaned seed yield, presumably as a result of loss of immature/light seed.

Because of the diversity of seed maturation, optimum harvest time is difficult to judge in dahlia grown for seed. Reproductive growth and development were monitored in glasshouse grown plants of cv. Unwins Dwarf Mixture, and the sequence of seed development determined in flowers produced on plants growing from tubers left in the field from a previous trial. Seed yield was most strongly related to seedhead numbers rather than seed numbers or weight, and thus the uniformity of seedhead maturation is important for a high yield of quality seed. Although the total flowering period was over two months (from 66-132 days after sowing (DAS)), around 80% of the total flowers produced were formed between 75-96 DAS. Each seedhead needed 33 days from first flower opening to reach seed physiological maturity, and seed could remain in the seedhead for a further 9 days before shedding began. Thus the optimum harvest time was between 33-42 days after first flowering (or 120-129 DAS) because during this time the maximum number of mature seedheads was recorded, seed had reached full viability, and seed shedding had not begun. Once seedheads opened, seed
moisture fell rapidly (from 40 to 14% in 3 days) and seed was completely shed by 54 DAF.

Delaying harvest until 60 days after peak flowering (DAPF) produced the greatest harvested seed yield in untreated plants because of the continued ripening of green seedheads. However, after cleaning, seed yield at 60 DAPF did not differ from that at 42 DAPF because of greater cleaning losses (43 cf. 27%). In addition, seed sprouting in the seedhead was observed by 54 DAPF. When harvested at 42 DAPF both paclobutrazol and chlormequat chloride significantly increased seed yield, but cleaning losses were high in chlormequat chloride treated plants. PGR’s did not delay seed maturity, so that as seed harvest was delayed any PGR yield advantage tended to disappear. PGR treatments did not affect thousand seed weight or germination.

Chlormequat chloride applied at 1.5 kg a.i. ha⁻¹ at the stem elongation stage increased secondary lateral branch production and hence the number of flower sites, while paclobutrazol applied at 1.0 kg a.i. ha⁻¹ at the first visible bud stage increased flowers, seedheads and/or seeds per seedhead over that of control plants. However, dahlia plants did not appear to be capable of supporting the extra number of seeds through to maturation; cleaned seed yield was not always increased because light seed was cleaned out of the seed lot. For dahlia seed production it may be more effective to try and achieve increased inter-plant uniformity by growing at very high density, rather than trying to achieve this effect through chemical manipulation. This idea is briefly discussed.
ACKNOWLEDGEMENTS

I wish to express my sincere thanks and gratitude to Dr John G. Hampton, my chief supervisor for his guidance, helpfulness and kind encouragement throughout my study, and especially for his constructive criticism and patience in interpreting my drafts and the correction of my manuscript.

I am also greatly indebted to Professor Murray J. Hill, my second supervisor for his warm encouragement, constructive criticisms, expert guidance, understanding and helpfulness in many ways.

My sincere thanks are also extended to:

Mrs. Karen A. Hill for her assistance particularly at planting and during harvesting of my crops, and to other staff of the Seed Technology Centre: Dr. Peter Coolbear, Mr. Craig McGill, Mr. Robert Southward and Mrs. Dulcie Humphrey for provision of facilities and assistance in so many ways.

Mr. Ray C. Johnstone for his valuable help and guidance for the field work.

To Mr. Cees Van Diepen, Kieft Blokker Holland, Flower Seed Company, in providing dahlia seed for my study.

To Massey University for awarding me the Helen E. Akers and the J.A. Anderson Scholarships to help support my study at the Seed Technology Centre.

The Faculty of Agricultural Production, Maejo Institute of Agricultural Technology, Chiangmai, Thailand for granting my study leave.

To all Thai and New Zealand friends and all postgraduate students of the Seed Technology Centre, Massey University for their friendship and assistance, particularly those who helped to plant and harvest my crops.
Finally, I would like to express my deep gratitude to my late father Mr. Sa-ngad, and my mother Mrs. Prem for their love, support and encouragement, and to Mr. Suchin and Mrs. Pojanee Wattanawaha, who took care of my sons during my study in New Zealand. To them, this thesis is dedicated. I also wish to thank my wife, Luckana, and children, Salisa, Parkpoom and Peera for their love, sacrifices, patience and understanding.
TABLE OF CONTENTS

Page

ABSTRACT ..i
ACKNOWLEDGEMENTS ..iv
TABLE OF CONTENTS ..vi
LIST OF TABLES ...xv
LIST OF FIGURES ..xxi
LIST OF PLATES ..xxii
LIST OF APPENDICES ..xxiii

GENERAL INTRODUCTION ...1

CHAPTER 1 LITERATURE REVIEW

1.1 General description of Dahlia ...4
1.2 Floral and apical morphology ...5
1.3 Species and cultivars ..7
1.4 Photoperiod and temperature effects on flowering9
1.5 Seed production practices
1.5.1 Climatic requirement ...12
1.5.2 Soil and fertility ...13
1.5.3 Sowing and planting ..14
1.5.4 Irrigation ...15
1.5.5 Seed maturation and harvesting ...15
1.5.6 Pests and diseases ..17
1.5.7 Weed control ..17
CHAPTER 2 EFFECTS OF PINCHING ON FLOWERING AND SEED YIELD

2.1 INTRODUCTION .. 20

2.2 MATERIALS AND METHODS

2.2.1 Site and land preparation ... 21
2.2.2 Planting procedure and crop management .. 21
2.2.3 Treatments and experimental design ... 22
2.2.4 Data collected
2.2.4.1 Flowering pattern ... 23
2.2.4.2 Plant height .. 25
2.2.4.3 Seed yield .. 25

2.3 RESULTS

2.3.1 Flowering pattern .. 27
2.3.2 Number of flowers per plant ... 27
2.3.3 Days to first flowering ... 27
2.3.4 Days to peak flowering .. 30
2.3.5 Plant height and morphological structure ... 30
2.3.6 Seed yield and yield components ... 30

2.4 DISCUSSION

2.4.1 Effects of pinching on flowering pattern .. 35
2.4.2 Effects of pinching on number of flowers ... 35
2.4.3 Effects of pinching on days to flowering ... 36
2.4.4 Effects of pinching on plant height and morphological structure 37
2.4.5 Effects of pinching on seed yield and yield components ... 37
2.5 CONCLUSION..38

CHAPTER 3 EFFECT OF HAND PINCHING AND PLANT GROWTH REGULATOR MANIPULATION OF PLANT GROWTH AND DEVELOPMENT ON SEED PRODUCTION

3.1 INTRODUCTION ..39

3.1.1 Plant growth regulators...40
 Chloromequat ..40
 Daminozide ..40
 Paclobutrazol ..40

3.1.2 Plant growth regulators in floriculture...41

3.1.3 Plant growth regulators in seed production...43

3.1.4 Plant growth regulators in dahlia..45

CHAPTER 3A CV. UNWINS DWARF MIXTURE

3A.1 MATERIALS AND METHODS

3A.1.1 Experimental site ...47
3A.1.2 Plant materials and establishment..47
3A.1.3 Treatment and experimental design..48
3A.1.4 Data collection

3A.1.4.1 Definitions ...51
3A.1.4.2 Seed yield and yield components ..52

3A.2 RESULTS

3A.2.1 Plant growth and development
 3A.2.1.1 Plant height and main stem length ...53
 3A.2.1.2 Lateral branch number ..53
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A.2.1.3</td>
<td>Flower number</td>
<td>56</td>
</tr>
<tr>
<td>3A.2.1.4</td>
<td>Flower stalk length</td>
<td>56</td>
</tr>
<tr>
<td>3A.2.1.5</td>
<td>Days to first flowering and peak flowering</td>
<td>56</td>
</tr>
<tr>
<td>3A.2.2</td>
<td>Seed yield and yield components</td>
<td>60</td>
</tr>
<tr>
<td>3A.2.3</td>
<td>Germination and seed viability</td>
<td>60</td>
</tr>
<tr>
<td>3A.3</td>
<td>DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>3A.3.1</td>
<td>Effects on plant growth and development</td>
<td>65</td>
</tr>
<tr>
<td>3A.3.1.1</td>
<td>Pinching</td>
<td>65</td>
</tr>
<tr>
<td>3A.3.1.2</td>
<td>Plant growth regulators</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Paclobutrazol</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Daminozide</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Chlormequat</td>
<td>67</td>
</tr>
<tr>
<td>3A.3.2</td>
<td>Effects on flowering</td>
<td>68</td>
</tr>
<tr>
<td>3A.3.2.1</td>
<td>Pinching</td>
<td>68</td>
</tr>
<tr>
<td>3A.3.2.2</td>
<td>Plant growth regulators</td>
<td>69</td>
</tr>
<tr>
<td>3A.3.3</td>
<td>Effects on seed yield and yield components</td>
<td>69</td>
</tr>
<tr>
<td>3A.3.3.1</td>
<td>Pinching</td>
<td>69</td>
</tr>
<tr>
<td>3A.3.3.2</td>
<td>Plant growth regulators</td>
<td>69</td>
</tr>
<tr>
<td>3A.4</td>
<td>CONCLUSION</td>
<td>71</td>
</tr>
</tbody>
</table>

CHAPTER 3B CV. FIGARO WHITE

3B.1 MATERIALS AND METHODS

3B.1.1 Experimental site | 72 |
3B.1.2 Plant materials and establishment | 72 |
3B.1.3 Treatments and experimental design | 73 |
3B.1.4 Data collection | 73 |
3B.1.4.1 Definitions | 73 |
3B.1.4.2 Growth measurements | 73 |
3B.1.4.3 Seed yield and yield components | 74 |
CHAPTER 4 EFFECTS OF TIME OF APPLICATION OF PACLOBUTRAZOL AND CHLORMEQUAT ON PLANT GROWTH AND DEVELOPMENT OF DAHLIA (C.V. UNWINS DWARF MIXTURE)

4.1 INTRODUCTION ...95

4.2 MATERIALS AND METHODS

4.2.1 Experimental site ..96
4.2.2 Plant material and establishment ... 97
4.2.3 Treatments and experimental design ... 97
4.2.4 Data collection .. 98
4.2.4.1 Plant measurements ... 99
4.2.4.2 Seed yield and yield components ... 99

4.3 RESULTS

4.3.1 Plant growth and development .. 100
4.3.1.1 Plant height ... 100
4.3.1.2 Main stem length ... 100
4.3.1.3 Branch length ... 103
4.3.1.4 Flower stalk length ... 105
4.3.1.5 Lateral branches, secondary branches and node number 106
4.3.2 Plant dry weight ... 108
4.3.3 Number of days to first and peak flowering 111
4.3.4 Seed yield and yield components .. 112

4.4 DISCUSSION

4.4.1 Plant growth and development .. 116
4.4.1.1 Plant height ... 116
4.4.1.2 Flower stalk length ... 117
4.4.1.3 Effect on lateral branches ... 118
4.4.1.4 Effect on flowering and flower production 118
4.4.2 Plant dry weight ... 119
4.4.3 Seed yield and yield components .. 119

4.5 CONCLUSION ... 121
CHAPTER 5 SEED DEVELOPMENT AND REPRODUCTIVE GROWTH STUDIES

5.1 INTRODUCTION ... 122

5.2 MATERIALS AND METHODS

5.2.1 Plant growth and reproductive development
5.2.1.1 Establishment .. 123
5.2.1.2 Plant measurements .. 124
5.2.2 Seed development ... 125

5.3 RESULTS

5.3.1 Plant growth and reproductive development
5.3.1.1 Plant growth and development 126
5.3.1.2 Bud production ... 126
5.3.1.3 Flowering pattern .. 129
5.3.1.4 Seedhead formation and maturation 129
5.3.1.5 Seed yield and yield components 129
5.3.2 Seed development
5.3.2.1 Change in seedhead colour .. 136
5.3.2.2 Change in seed colour .. 136
5.3.2.3 Change in seed weight ... 136
5.3.2.4 Seed moisture content ... 138
5.3.2.5 Seed germination and viability 138

5.4 DISCUSSION

5.4.1 Reproductive development ... 138
5.4.2 Seed yield and yield components 141
5.4.3 Seed development ... 143

5.5 CONCLUSION ... 145
CHAPTER 6 EFFECTS OF PACLOBUTRAZOL AND CHLORMEQUAT ON DAHLIA SEED YIELD AND DETERMINATION OF OPTIMUM HARVEST TIME.

6.1 INTRODUCTION ... 146

6.2 MATERIALS AND METHODS

6.2.1 Experimental site ... 147
6.2.2 Plant materials and establishment 147
6.2.3 Treatments and experimental design 147
6.2.4 Data collection .. 148
6.2.4.1 Flowering pattern ... 148
6.2.4.2 Seed yield and yield components 149

6.3 RESULTS

6.3.1 Flowering pattern .. 150
6.3.2 Total number of seedheads per plant 150
6.3.3 Number of mature seedheads 156
6.3.4 Number of ripe seedheads .. 158
6.3.5 Seed number per seedhead .. 160
6.3.6 Thousand seed weight (TSW) 160
6.3.7 Harvested seed yield .. 163
6.3.8 Total cleaned seed yield .. 165
6.3.9 Cleaned seed yield from mature seedheads 165
6.3.10 Cleaned seed yield from ripe seedheads 166
6.3.11 Germination .. 167
6.3.12 Viability ... 167

6.4 DISCUSSION

6.4.1 PGR effects on seed yield .. 173
6.4.2 Effects of time of harvest .. 173
6.4.3 PGR and time effects .. 174

6.5 CONCLUSION ... 175

CHAPTER 7 GENERAL DISCUSSION AND CONCLUSION 176

REFERENCES ... 183

APPENDICES .. 206
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Effects of pinching on number of flowers per plant</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Effects of pinching on time to first and peak flowering</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Effects of pinching on days from first flowering to first and second peak flowerings</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Effects of pinching on plant height</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Effects of pinching on seed yield components</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Effects of pinching on harvested and cleaned seed yield and percentage cleaning loss</td>
<td>34</td>
</tr>
<tr>
<td>Table 3A.1</td>
<td>Effect of hand pinching and growth regulator application on main stem length, lateral branch length from different positions on the plant and plant height at harvest (cv. Unwins Dwarf Mixture)</td>
<td>54</td>
</tr>
<tr>
<td>Table 3A.2</td>
<td>Effect of hand pinching and growth regulator application on number of lateral branches at harvest and number of flowers at peak flowering</td>
<td>57</td>
</tr>
<tr>
<td>Table 3A.3</td>
<td>Effect of hand pinching and growth regulator application on flower stalk length from different positions of the plant at harvest</td>
<td>58</td>
</tr>
</tbody>
</table>
Table 3A.4 Effect of mechanical pinching and growth regulator application on number of days to first and peak flowering ... 59

Table 3A.5 Effect of hand pinching and growth regulator application on harvested seed yield, cleaned seed yield and percentage cleaning loss .. 62

Table 3A.6 Effect of hand pinching and growth regulator application on number of seed heads per plant, seeds per seed head and seed weight .. 63

Table 3A.7 Effect of hand pinching and growth regulator application on germination and percent viability 64

Table 3B.1 Effect of hand pinching and growth regulator application on plant height and main stem length at peak flowering and seed harvest ... 76

Table 3B.2 Effect of hand pinching and growth regulator application on lateral branch length from different positions on the plant at peak flowering and seed harvest ... 77

Table 3B.3 Effect of hand pinching and growth regulator application on number of lateral and secondary lateral branches .. 79

Table 3B.4 Effect of hand pinching and growth regulator application on flower stalk length from different positions on the plant at peak flowering and harvest .. 80
Table 3B.5 Effect of hand pinching and growth regulator application on number of days to first flowering and peak flowering and number of flowers at peak flowering...82

Table 3B.6 Effect of hand pinching and growth regulator application on plant dry weight at peak flowering..83

Table 3B.7 Effect of hand pinching and growth regulator application on harvested and cleaned seed yield per plant and percentage cleaning loss. ..85

Table 3B.8 Effect of hand pinching and growth regulator application on number of empty seed heads and number of seed heads at harvest ...86

Table 3B.9 Effect of hand pinching and growth regulator application on number of seeds per seed head and seed dry weight...87

Table 3B.10 Effect of hand pinching and growth regulator application on germination and percent viability...88

Table 4.1 Effect of PGR’s on plant height...101

Table 4.2 Effect of PGR’s on main stem length..101

Table 4.3 Effect of PGR’s on lateral branch length from different positions on the plant at first flowering..103
Table 4.4	Effect of PGR’s on lateral branch length from different positions on the plant at peak flowering.	104
Table 4.5	Effect of PGR’s on lateral branch length from different positions on the main stem at final harvest.	104
Table 4.6	Effect of PGR’s on flower stalk length from the main stem.	105
Table 4.7	Effect of PGR’s on flower stalk length from different positions on the plant at harvest.	106
Table 4.8	Effect of PGR’s on number of nodes on the main stem.	107
Table 4.9	Effect of PG’Rs on number of lateral branches per plant.	107
Table 4.10	Effect of PGR’s on number of secondary lateral branches per plant.	108
Table 4.11	Effect of PGR’s on plant dry weight at first flowering.	109
Table 4.12	Effect of PGR’s on plant dry weight at peak flowering.	110
Table 4.13	Effect of PGR’s on plant dry weight at final harvest.	110
Table 4.14	Effect of PGR’s on number of days to first and peak flowering.	111
Table 4.15 Effect of PGR's on total flowers produced per plant at peak flowering and seed harvest. 113

Table 4.16 Effect of PGR's on seed yield components. .. 113

Table 4.17 Effect of PGR's on number of green seedheads from different lateral branch positions .. 114

Table 4.18 Effect of PGR's on number of harvested brown seedheads from different lateral branch positions .. 114

Table 4.19 Effect of PGR's on germination and viability. ... 115

Table 4.20 Effect of PGR's on seed yield. ... 115

Table 5.1 Seed yield and yield components of dahlia cv. Unwins Dwarf Mixture. 131

Table 5.2 Seed yield from plants of dahlia cv. Unwins Dwarf Mixture with different flower colours. .. 132

Table 5.3 Harvested seedhead numbers per plant from plants with different flower colours in dahlia cv. Unwins Dwarf Mixture. .. 133

Table 5.4 Seed numbers per seedhead from plants with different flower colours in dahlia cv. Unwins Dwarf Mixture. .. 134

Table 5.5 Thousand seed weight from plants with different flower colours in dahlia cv. Unwins Dwarf Mixture. .. 135

Table 6.1 Number of seedheads (ripe, mature and empty), flowers and buds per plant at each harvest. ... 153
Table 6.2 | Effects of PGR’s on total seedheads per plant at each harvest. ... 155

Table 6.3 | Effects of PGR’s on number of mature seedheads at each harvest ... 157

Table 6.4 | Effects of PGR’s on number of ripe seedheads at each harvest ... 159

Table 6.5 | Effects of PGR’s on number of seeds per seedhead at each harvest ... 161

Table 6.6 | Effects of PGR’s on TSW at each harvest ... 162

Table 6.7 | Effects of PGR’s on harvested seed yield (g/plant) at each harvest ... 164

Table 6.8 | Effects of PGR’s on total cleaned seed yield (g/plant) at each harvest ... 168

Table 6.9 | Effects of PGR’s on cleaned seed yield (g/plant) from mature seedheads at each harvest 169

Table 6.10 | Effects of PGR’s on cleaned seed yield (g/plant) from ripe seedheads at each harvest 170

Table 6.11 | Effects of PGR’s on seed germination at each harvest .. 171

Table 6.12 | Effects of PGR’s on seed viability at each harvest .. 172
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flowering pattern of dahlia cv. Unwins Dwarf Mixture</td>
<td>28</td>
</tr>
<tr>
<td>5.1</td>
<td>Plant height and main stem length at different days after sowing in dahlia cv. Unwins Dwarf Mixture</td>
<td>127</td>
</tr>
<tr>
<td>5.2</td>
<td>Number of nodes on main stem and lateral branches at different days after sowing in dahlia cv. Unwins Dwarf Mixture</td>
<td>128</td>
</tr>
<tr>
<td>5.3</td>
<td>Pattern of bud, flower, seedhead and harvested seedhead production of Dahlia cv. Unwins Dwarf Mixture</td>
<td>130</td>
</tr>
<tr>
<td>5.4</td>
<td>Change in seed fresh weight, seed dry weight, seed moisture content, germination and viability of dahlia cv. Unwins Dwarf Mixture</td>
<td>139</td>
</tr>
<tr>
<td>6.1</td>
<td>Effect of plant growth regulators on flowering pattern</td>
<td>152</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 1.1</td>
<td>Dahlia cv. Unwins Dwarf Mixture</td>
<td>8</td>
</tr>
<tr>
<td>Plate 1.2</td>
<td>Dahlia cv. Figaro White</td>
<td>8</td>
</tr>
<tr>
<td>Plate 2.1</td>
<td>Experimental plots and tagged plant</td>
<td>24</td>
</tr>
<tr>
<td>Plate 2.2</td>
<td>Flower buds, flowers and seed heads at different development stages present on an individual plant just prior to harvest</td>
<td>29</td>
</tr>
<tr>
<td>Plate 2.3</td>
<td>Plant structure of control plant and plant pinched above node 4</td>
<td>33</td>
</tr>
<tr>
<td>Plate 3A.1</td>
<td>Stage of plant growth at hand pinching and PGR application</td>
<td>50</td>
</tr>
<tr>
<td>Plate 3A.2</td>
<td>Experimental plots, plants prior to first flowering and plants at peak flowering</td>
<td>55</td>
</tr>
<tr>
<td>Plate 3A.3</td>
<td>Control, hand-pinched and PGR treated plots at three weeks before seed harvest</td>
<td>61</td>
</tr>
<tr>
<td>Plate 4.1</td>
<td>Plant structure at peak flowering</td>
<td>102</td>
</tr>
<tr>
<td>Plate 5.1</td>
<td>Stages of development of dahlia seedheads from flowering to maturity</td>
<td>137</td>
</tr>
<tr>
<td>Plate 6.1</td>
<td>Appearance of seedheads at harvest</td>
<td>151</td>
</tr>
<tr>
<td>Plate 6.2</td>
<td>Seed sprouting in the head</td>
<td>154</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix 1.1 Glossary of botanical terms.

Appendix 2.2 Soil sample test results.

Appendix 5.1 Monthly records of temperature, sunshine and daylength from January 1988 to May 1990.

Appendix 6.1 Analysis of variance for total seedheads per plant

Appendix 6.2 Analysis of variance for mature seedheads.

Appendix 6.3 Analysis of variance for ripe seedheads.

Appendix 6.4 Analysis of variance for number of seeds per seedhead.

Appendix 6.5 Analysis of variance for TSW.

Appendix 6.6 Analysis of variance for harvested seed yield.
Appendix 6.7 Analysis of variance for total cleaned seed yield.

Appendix 6.8 Analysis of variance for cleaned seed yield from mature seedheads.

Appendix 6.9 Analysis of variance for cleaned seed yield from ripe seedheads.

Appendix 6.10 Analysis of variance for seed germination.

Appendix 6.11 Analysis of variance for seed viability.