Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Factors influencing
selection of
settling sites within plants
and oviposition
by greenhouse whitefly
(Trialeurodes vaporariorum
Westwood)

A thesis presented in partial fulfilment of the
requirements for the degree of Doctor of Philosophy in
Plant Health at Massey University

Joan Elizabeth Breach

1991
Abstract
Orientation by adult greenhouse whitefly (*Trialeurodes vaporariorum* Westwood) to younger leaves is induced by negative geotaxis and positive phototaxis but there is a minor effect of features of the leaves. The selection of the lower leaf surface is predominantly the result of a preference for being upside-down (i.e. a response to gravity) but leaf characteristics also play a role. Negative phototaxis has a minor effect. Adult females lay more eggs on the younger leaves and on the lower leaf surface of some plant species but not others. Leaf hairiness and leaf angle are not significant factors in selection by adults of either 1) younger leaves or 2) the lower leaf surface nor are they significant factors in the number of eggs/female/day laid on either 1) leaves of different ages or 2) the lower or upper leaf surfaces.

Adult survival on sucrose sachets (aqueous sucrose solution sandwiched between two layers of Nescofilm) was optimum for 15–20% sucrose and eggs/female/day laid on the sucrose sachets was independent of sucrose concentration when it was between 10% and 30%. Eggs/female/day reached a maximum after 2–3 days and thereafter dropped sharply. The number of larvae that hatched was independent of sucrose concentration but higher concentrations appear to induce later hatch. Percent egg hatch varied from 40% to 77%. The number of eggs laid on 20% sucrose sachets in complete darkness was nearly twice that of any other light intensity. There was no graded relationship between light intensity and oviposition. More eggs were laid on 15% sucrose sachets in light/dark regimes of 8/16, 4/20 and 0/24 than of 12/12, 16/8 and 24/0 hours. No diurnal fluctuation in egg-laying occurred nor were more eggs laid in either light or dark periods. The sucrose sachet technique is a suitable tool for further studies on greenhouse whitefly behaviour.

The results provide further information for incorporation into integrated pest management research.
Acknowledgements

The final version of this thesis is at last final. The checking has been checked - again. The last mistake been found (or has it?). The protracted process of producing a properly presented thesis is finished. It but remains to acknowledge and thank those who made a contribution towards its completion.

First, I would like to thank my supervisors for their assistance: Dr Peter G. Fenemore for encouragement, returning work promptly and the many helpful comments, Professor Brian P. Springett for his insight and useful suggestions and Dr Hugo Varela-Alvarez for encouragement to keep going, patience in explaining the statistics and help in keeping the thesis in perspective with the rest of life.

The Department of Plant Health has been most generous in provision of facilities and time to work on my thesis. Mrs Lois J. Mather, Mrs Lorraine K. Davis, Mr Hugh Neilson (Department of Plant Health) and Mr David Sollitt (Department of Agronomy) provided valuable technical assistance. Dr Ian Gordon (Department of Agronomy) and Mr Greg Arnold (Department of Mathematics and Statistics) provided advice on statistics in the early stages of the experimentation. Central Photographic Unit took the photographs and provided facilities for mounting the prints. Dr Ian Warrington and Mrs Liz Halligan (Plant Physiology Division, Department of Scientific and Industrial Research) helped with the measurement of the light quality and intensity for the cool light source used in the experiments.

I would also like to acknowledge the encouragement of friends when I felt like giving up and the endurance of my husband Barrie who had to put up with the absence of his wife or her grumpiness when she was at home.

Thank you, all of you.

Greenhouse whiteflies may now rest in peace - on someone else's plants!
Table of Contents

Page

Abstract i
Acknowledgements ii
Table of Contents 1
List of Figures 3
List of Photographs 6
List of Tables 7
List of Tables in the Appendix 9
Introduction 12
Literature Review 14
Experiments 33
Statistical analysis of experiments 33

1 Factors influencing selection of settling sites within a plant. 35

1-1 Gravity, light direction, and leaf characteristics and selection of lower
leaf surface and younger leaves of intact plants. 37

1-2 Gravity, light direction, and leaf characteristics and selection of lower leaf
surface of excised leaflets. 62

1-3 Leaf characteristics, leaf age and leaf angle and selection of settling sites on
leaf discs set into water agar.

(1) Leaf surface selection for four plant species. 82
(2) Leaf surface and leaf age selection. 88
(3) Leaf angle and leaf age selection. 92

continued . . .
2 Factors influencing oviposition.
Oviposition and leaf surface, leaf age, leaf angle, light intensity and light/dark regimes.

2-1 Oviposition on leaves.

(1) Oviposition on leaf discs versus intact leaves of 4 leaf ages.

(2) Oviposition on intact plants.
- both leaf surfaces and 4 leaf ages.

(3) Oviposition on leaf discs.
- Leaf surface, leaf age and leaf angle.

2-2 Oviposition on sucrose sachets and the effects of light intensity and light/dark regimes.

(1) Adult longevity and oviposition with a range of sucrose concentrations.

(2) Light intensity and oviposition.

(3) Light/dark regimes and oviposition.

Discussion 192
References 208
Appendices 229
Appendix 1: Rearing system for greenhouse whitefly 229
Appendix 2: Appendix Tables 233
List of Figures

Fig. 1-1/1 Adult preference for lower or upper leaf surface of intact plants under 4 orientation/light regimes. Tomato cv. Virosa. 44

Fig. 1-1/2 Adult preference for younger or older leaves of intact plants under 4 orientation/light regimes. Tomato cv. Virosa.
 b: Leaf age grouping oldest: 1-4; youngest: 8-13. 52

Fig. 1-1/3 Plan of leaf arrangement for plants in Experiment 1-1/2. 59

Fig. 1-2/1 Spectral photon flux density for cool light source. 67

Fig. 1-2/2 Adult preference for lower or upper leaf surface of excised leaflets under 16 orientation/light regimes. Tomato cv. Virosa. 70

Fig. 1-3/1 Adult preference for lower or upper surface of leaf discs - choice test.
 i. Tomato cv. Virosa.
 ii. Tobacco cv. White Burley.
 iii. Abutilon sp.
 iv. Datura sp. 85

Fig. 1-3/2 Adult preference for lower or upper surface and four leaf ages of leaf discs - choice test. Tomato cv. Virosa. 90

Fig. 1-3/3 Adult preference for leaf discs at angles 0°, 45°, 60° or 90°.
 i. Tomato cv. Virosa.
 ii. Tobacco cv. White Burley.
 iii. Rauriki.
 v. Rauriki 45°. Projected equal disc area.
 vi. Rauriki 60°. Projected equal disc area. 96

Fig. 1-3/4 Adult preference for younger or mature leaf discs inclined at 0°, 45°, 60° or 90°.
 i. Tomato cv. Virosa.
 ii. Tobacco cv. White Burley.
 iii. Rauriki. 102

continued . . .
Fig. 1-3/5 Adult preference for leaf discs of actual or equal projected area.
 i. Tomato cv. Virosa.
 ii. Rauriki.

Fig. 2-1/1 Oviposition on leaf discs and intact leaves - no choice test.
 i. Tomato cv. Moneymaker.
 ii. Tobacco cv. White Burley.

Fig. 2-1/2 Oviposition and leaf hair density on lower and upper leaf surface of 4 leaf ages.
 Tomato cv. Virosa.
 i. Choice test using leaf discs.
 ii. No choice test using intact plants.

Fig. 2-1/3 Oviposition and nitrogen, phosphorus and potassium content for 4 leaf ages.
 Tomato cv. Virosa.
 i. Choice test using leaf discs.
 ii. No choice test using intact plants.

Fig. 2-1/4 Oviposition on lower or upper surface of leaf discs of four plant species - choice test.

Fig. 2-1/5 Oviposition on horizontal or inclined (0°, 45°, 60° or 90°) leaf discs of younger or mature age.
 i. Tomato cv. Virosa.
 ii. Tobacco cv. White Burley.
 iii. Rauriki.

Fig. 2-1/6 Regression of eggs and whitefly hours.
 i. Tomato cv. Virosa (Expt. 1-3/1).
 iii. Abutilon (Expt. 1-3/3).
 viii. Rauriki (Expt. 1-3/8).

Fig. 2-2/1 Survival of adults, sucrose concentration and sex group.

Fig. 2-2/2 Survival of adults feeding on sucrose solutions.

Fig. 2-2/3 Oviposition and sucrose concentration and sex group.

Fig. 2-2/4 Oviposition and sucrose concentration. continued . . .
Fig. 2-2/5 Oviposition, larval hatch and sucrose concentration and sex group. 163

Fig. 2-2/6 Oviposition, larval hatch and sucrose concentration. 165

Fig. 2-2/7 Percent egg hatch and sucrose concentration. 168

Fig. 2-2/8 Oviposition during 4 days under 5 light intensities. 20% sucrose sachets. 172

Fig. 2-2/9 Sum of eggs at 4 days under 5 light intensities. 20% sucrose sachets. 173

Fig. 2-2/10 Survival of adults under 5 light intensities. 20% sucrose sachets. 174

Fig. 2-2/11 Oviposition during 96 hours under 6 light/dark regimes. 15% sucrose sachets. 181

Fig. 2-2/12 Sum of eggs at 96 hours under 6 light/dark regimes. 15% sucrose sachets. 182

Fig. 2-2/13 Distribution of egg-laying over 96 hours under 6 light/dark regimes. 15% sucrose sachets. 183

Fig. 2-2/14 Oviposition in light versus dark periods under 4 light/dark regimes. 15% sucrose sachets. 185

Fig. 2-2/15 Adult survival under 6 light/dark regimes. 15% sucrose sachets. 188
List of Photographs

<table>
<thead>
<tr>
<th>Photograph</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/1</td>
<td>40</td>
<td>Tomato plants in cages for Experiments 1-1/1 and 1-1/2. Light from above plants.</td>
</tr>
<tr>
<td>1-1/2</td>
<td>41</td>
<td>Tomato plants in cages for Experiments 1-1/1 and 1-1/2. Light from below plants.</td>
</tr>
<tr>
<td>1-2</td>
<td>64</td>
<td>Tomato leaflets in cages for Experiment 1-2.</td>
</tr>
<tr>
<td>1-3/1</td>
<td>84</td>
<td>Cage with leaf discs set into holes in water agar for Experiment 1-3/5.</td>
</tr>
<tr>
<td>1-3/2</td>
<td>94</td>
<td>Cage with leaf discs set into holes in water agar for Experiments 1-3/1 to 1-3/3.</td>
</tr>
<tr>
<td>2-1/1</td>
<td>118</td>
<td>Tomato plants in growth cabinet for Experiment 2-1/1.</td>
</tr>
<tr>
<td>2-1/2</td>
<td>119</td>
<td>Tomato plant with cages for Experiment 2-1/1.</td>
</tr>
<tr>
<td>2-1/3</td>
<td>120</td>
<td>Close up of cages for Experiment 2-1/1.</td>
</tr>
<tr>
<td>2-1/4</td>
<td>121</td>
<td>Tobacco plant with cages for Experiment 2-1/2.</td>
</tr>
<tr>
<td>2-1/5</td>
<td>122</td>
<td>Tobacco leaf with cages for Experiment 2-1/2.</td>
</tr>
<tr>
<td>2-2</td>
<td>148</td>
<td>Close up of cages with sucrose sachets.</td>
</tr>
<tr>
<td>3</td>
<td>232</td>
<td>General view of cages of whitefly rearing system.</td>
</tr>
</tbody>
</table>
List of Tables

Table 1-1/1 Maximum and minimum temperatures (°C) within cages.

Table 1-1/2 Experiment 1-1/1 at 2 hours.
 i. Sum of adults in shade or light and on lower or upper leaf surface.
 ii. Sum of adults upside-down or right way up and on lower or upper leaf surface.
 iii. Sum of adults in shade or light and upside down or right way up.

Table 1-1/3 Experiment 1-1/1 at 24 hours.
 i. Sum of adults in shade or light.
 ii. Sum of adults upside-down or right way up and on lower or upper leaf surface.

Table 1-1/4 Experiment 1-1/2 at 2 hours.
 i. Sum of adults in shade or light and on lower or upper leaf surface.
 ii. Sum of adults upside-down or right way up and on lower or upper leaf surface.
 iii. Sum of adults in shade or light and upside-down or right way up.

Table 1-1/5 Experiment 1-1/2 at 24 hours.
 i. Sum of adults on lower or upper leaf surface.
 ii. Sum of adults upside-down or right way up and in shade or light.

Table 1-1/6 Direction of whitefly response to gravity, light and leaf age.

Table 1-2/1 Adult preference for lower or upper leaf surface of excised leaflets. Tomato cv. Virosa.

Table 1-2/2 Group B at 12 hours.

Table 1-2/3a Group C at 12 hours.

Table 1-2/3b Group C at 12 hours.
 continued . . .
Table 2-1/1 Oviposition on leaf discs and intact leaves. Total whiteflies alive at the end of the experiment.
 i. Tomato cv. Moneymaker.
 ii. Tobacco cv. White Burley.

Table 2-2/1 Sum of eggs for each count time between day 3 and day 4 for the 0/24 hour light/dark regime.
List of Tables in the Appendix

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-1/1</td>
<td>Adult preference for lower or upper leaf surface of intact plants under 4 orientation/light regimes. Tomato cv. Virosa.</td>
<td>233</td>
</tr>
</tbody>
</table>
| A1-1/2 | Adult preference for younger or older leaves of intact plants under 4 orientation/light regimes. Tomato cv. Virosa.
 b. Leaf age grouping: oldest: 1-4; youngest: 8-13. | 235 |
| A1-2/1 | Adult preference for lower or upper leaf surface of excised leaflets under 16 orientation/light regimes. Tomato cv. Virosa. | 237 |
| A1-3/1 | Adult preference for lower or upper surface of leaf discs - choice test.
 i. Tomato cv. Virosa.
 ii. Tobacco cv. White Burley.
 iii. Abutilon sp.
 iv. Datura sp. | 243 |
| A1-3/2 | Adult preference for lower or upper leaf surface and four leaf ages of leaf discs - choice test.
 i. Tomato cv. Virosa.
 ii. Mean leaf hairs per mm sq. | 245 |
| A1-3/3 | Adult preference for leaf discs at angles 0°, 45°, 60° or 90°.
 i. Tomato cv. Virosa.
 ii. Tobacco cv. White Burley.
 iii. Rauriki.
 v. Rauriki 45°. Projected equal disc area.
 vi. Rauriki 60°. Projected equal disc area. | 248 |

continued . . .
Appendix Tables

Table A1-3/4 Adult preference for younger or older leaf discs at angles 0°, 45°, 60° or 90°.
 i. Tomato cv. Virosa.
 ii. Tobacco cv. White Burley.
 iii. Rauriki.

Table A1-3/5 Adult preference for inclined or horizontal leaf discs at angles 0°, 45° or 60°. Comparison of actual and projected equal disc area.
 i. Tomato cv. Virosa.
 ii. Rauriki.

Table A2-1/1 Oviposition on leaf discs and intact leaves of 4 leaf ages. No choice test.
 i. Tomato cv. Moneymaker.
 ii. Tobacco cv. White Burley.

Table A2-1/2 Tomato cv. Virosa.
 i. Oviposition and leaf hair density of intact plants - 4 leaf ages and both leaf surfaces. No choice test.
 ii. Oviposition and nitrogen, phosphorus and potassium content for 4 leaf ages.

Table A2-1/3 Oviposition on lower or upper surface of leaf discs. Choice test.

Table A2-1/4 Oviposition on lower or upper surface of leaf discs of 4 ages. Choice test.
 Tomato cv. Virosa.

Table A2-1/5 Oviposition on horizontal or inclined leaf discs of younger or mature leaf age.
 i. Tomato cv. Virosa.
 ii. Tobacco cv. White Burley.
 iii. Rauriki.

Table A2-2/1 Adult survival and sex group within sucrose concentration over time. continued . . .