Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
To my family
CHEMICAL STUDIES ON SOME PLANTS THAT HYPERACCUMULATE NICKEL

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Chemistry
at
Massey University
Palmerston North, New Zealand.

Faye Allyson Homer
1991
ABSTRACT

Following the discovery of the hyperaccumulation of nickel by the Philippine plants *Dichapetalum gelonioides* subsp. *tuberculatum* and *Phyllanthus palawanensis*, the nature of the nickel in aqueous extracts has been investigated by gel filtration chromatography, ion-exchange chromatography, high-voltage electrophoresis and GC-MS.

Nickel in *D. gelonioides* subsp. *tuberculatum* was shown to associate mainly with compounds of high polarity and low molar mass. In *P. palawanensis* only about 50% of the nickel demonstrated this association, while 25% of the metal appeared to be in the form of pectate or bound to proteins. In both plants, nickel was shown to exist in anionic and cationic forms. A discussion of the usefulness of assigning portions of nickel to these forms is presented in the light of changes in the relative amounts of cationic and anionic nickel observed during ion-exchange chromatography and high-voltage electrophoresis.

Nickel, citric acid and malic acid comprised 95% of the purified extract from *D. gelonioides* subsp. *tuberculatum*. Only 25% of the low molar mass, high polarity nickel-rich fraction from *P. palawanensis* was accounted for by these constituents. Small amounts of Ca, Mg, K and Na were detected in each extract. The nickel:citric acid:malic acid mole ratios were 1:0.4:1 and 1:0.4:0.4 for *D. gelonioides* subsp. *tuberculatum* and *P. palawanensis* respectively. These observations are discussed in terms of the stabilities of the nickel citrate and nickel malate complexes. Tartaric acid was identified in both extracts, while 4-oxopentanoic acid and 2-furylacetic acid were identified in the nickel-rich fraction from *P. palawanensis* only. The role of these acids in the plant is discussed in an attempt to explain their presence in the nickel-rich material.

By using X-ray crystallography, it was shown that crystals obtained from a nickel-citrate-malate solution simulating the extract from *D. gelonioides* subsp. *tuberculatum*, contained nickel exclusively in the form of an anionic Ni(II)-citrate complex. It was assumed that a crystal obtained from a nickel-citrate-malate solution of mole ratio 1:0.4:0.4, as in the nickel-rich fraction from *P. palawanensis*, would have yielded similar results given the greater stability of the Ni-citrate complex over the Ni-malate complex.

Pot trials carried out on *Alyssum troodii* confirmed its hyperaccumulating status, and showed it to be a cobalt hyperaccumulator as well. The amount of cobalt taken up by the plant was an order of magnitude lower than that of nickel. It was observed that *A. troodii* survived soils with
available concentrations of nickel and cobalt at least five times higher than those commonly found in serpentine soils. Possible reasons for this behaviour are presented. *Alyssum troodii* also co-accumulated nickel and cobalt. However, while the cobalt concentration in plant organs showed little difference from that obtained when the plant was cultivated in soil enriched with cobalt only, the nickel levels were lower.

Aurinia saxatilis did not hyperaccumulate nickel and cobalt. The levels of the metals found in the plant were one-tenth of those observed in *A. troodii*. As in the Ni-hyperaccumulating plant, cobalt uptake appeared to suppress nickel uptake when the plant was cultivated in media containing added nickel and cobalt. A possible uptake mechanism giving rise to this differential uptake is discussed. Very little difference was discerned in the tolerance to, and uptake of, copper in the two plants. The levels of this metal in *A. troodii* were about one-tenth those of cobalt, while in *Au. saxatilis* the levels of copper and cobalt were comparable.

Low concentrations of nickel exerted a stimulatory effect on the germination of *A. troodii* seeds. Cobalt appeared to exert this effect on *Au. saxatilis* seeds at higher concentrations. Copper was not observed to be stimulatory to either plant.
ACKNOWLEDGEMENTS

I would like to express my gratitude to all those people who advised, assisted and encouraged me during this project.

I am extremely grateful to my parents. This achievement, like so many others, is a result of their faith in me, their support, and their encouragement.

I am particularly indebted to my chief supervisor Professor R.R. Brooks and my co-supervisor Associate Professor R.D. Reeves for their guidance and unstinting support. No Ph.D. student could be supervised by a better duo.

My gratitude is also extended to other staff of the Department of Chemistry and Biochemistry at Massey University. Thanks to Dr G. Midwinter who initially assisted me in carrying out electrophoretic separations, Mr J. Reid for amino acid determinations, Dr G. Norris and Mr S. Ingham for X-ray crystallography work, and Mr G. Freeman for allowing me the use of his laboratory, labware and chemicals on numerous occasions during the course of this research.

I thank Dr J. Clemens and his staff at the New Zealand Nursery Research Centre, Palmerston North, for allowing me the use of their facilities, and for the advice offered.

Thanks to Dr J. Lee, Dr J. Shaw and Mr J. Allen of the Department of Scientific and Industrial Research, Palmerston North for making GC-MS and ICP-AES analysis possible.

I thank Dr M. Hoashi for the initial perusal of my thesis prior to typing, for typing the references, and for her advice and encouragement during the preparation of this thesis.

I am grateful to Dr A.J. M. Baker for his comments and advice on certain aspects of my thesis. Thanks are also extended to you, along with my two supervisors, for making available the plant material used in this research.

To Mrs J. Trow, I say thanks for doing a good job on the illustrations.
I acknowledge the receipt of a Commonwealth Scholarship from the New Zealand Government, which was made possible through the Government of Guyana.

Lastly, thanks to all my friends in New Zealand and abroad, for their encouragement during this research. A special thank you to Mr U. L. Opara for his moral support during the preparation of this thesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>Chapter I General Introduction</td>
<td>v</td>
</tr>
<tr>
<td>I.1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>I.1.1 Metallophytes Containing Elevated Levels of Nickel</td>
<td>4</td>
</tr>
<tr>
<td>I.1.2 The Essentiality of Nickel to Plants</td>
<td>6</td>
</tr>
<tr>
<td>I.1.3 Distribution of Nickel Hyperaccumulators in the Plant Kingdom</td>
<td>7</td>
</tr>
<tr>
<td>I.2 Evolution</td>
<td>8</td>
</tr>
<tr>
<td>I.3 Adaptation to Toxic Metals</td>
<td>11</td>
</tr>
<tr>
<td>I.4 Use of Metallophytes</td>
<td>12</td>
</tr>
<tr>
<td>I.5 Research Aims</td>
<td>13</td>
</tr>
<tr>
<td>PART 1 PHYTOCHEMICAL STUDIES</td>
<td>v</td>
</tr>
<tr>
<td>Chapter II Extraction and Isolation of Nickel Species from Two</td>
<td>v</td>
</tr>
<tr>
<td>Philippine Nickel-hyperaccumulating Plants</td>
<td>v</td>
</tr>
<tr>
<td>II.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>II.2 Nickel Hyperaccumulation in the Dichapetalum and Phyllanthus Genera</td>
<td>19</td>
</tr>
<tr>
<td>II.3 Survey of Techniques Used for Locating Nickel-binding Sites</td>
<td>26</td>
</tr>
<tr>
<td>in Plant Tissue</td>
<td></td>
</tr>
<tr>
<td>II.3.I Differential Centrifugation</td>
<td>26</td>
</tr>
<tr>
<td>II.3.II Proton Microprobe Analysis and Microscopic Examination</td>
<td>26</td>
</tr>
<tr>
<td>II.3.III Sequential Solvent Extraction</td>
<td>27</td>
</tr>
<tr>
<td>II.4 Aim and Rationale</td>
<td>28</td>
</tr>
<tr>
<td>II.5 Sequential Solvent Extraction of Nickel in Some</td>
<td>28</td>
</tr>
<tr>
<td>Philippine Nickel Hyperaccumulators</td>
<td></td>
</tr>
<tr>
<td>II.6 Atomic Absorption Spectrometry</td>
<td>29</td>
</tr>
<tr>
<td>II.7 Discussion</td>
<td>33</td>
</tr>
</tbody>
</table>
I.8 Aqueous Extraction of Nickel in Dichapetalum gelonioides subsp. tuberculatum
I.9 Gel Filtration Chromatography
I.10 Isolation of Nickel Complexes in the Extract from Dichapetalum gelonioides subsp. tuberculatum
I.11 Extraction of Nickel in Phyllanthus 'palawanensis'
I.12 Isolation of Nickel Complexes in the Extract from Phyllanthus 'palawanensis'
I.13 Results and Discussion

Chapter III The Ionic Nature of Nickel Complexes Isolated from Dichapetalum gelonioides subsp. tuberculatum and Phyllanthus 'palawanensis'

III.1 Introduction
III.2 Forms of Metal in Non-tolerant Plants
III.3 Forms of Metal in Tolerant Accumulating Plants
III.4 Metal-binding Polypeptides
III.5 Phytochelatins and Nickel-hyperaccumulating Plants
III.6 Aim and Rationale
III.7 Analytical Techniques

III.8 Separation of Nickel Complexes from Dichapetalum gelonioides subsp. tuberculatum by Ion-exchange Chromatography and High-voltage Electrophoresis

III.8.1 Cation-exchange Chromatography
III.8.2 Anion-exchange Chromatography
III.8.3 High-voltage Electrophoresis
III.8.4 Results and Discussion

III.9 Separation of Nickel Complexes in Extracts from Phyllanthus 'palawanensis'

III.9.1 Anion-exchange Chromatography
III.9.2 Cation-exchange Chromatography
III.9.3 Results and Discussion
III.10 Molar Mass Determination of Nickel Complexes Isolated from *P. palawanensis*
III.10.I The Use of Gel Filtration Chromatography for Molar Mass Determination
III.10.II Methodology
III.10.III Results and Discussion

III.11 Improved Extraction of Nickel from *P. palawanensis* and Separation of Resulting Nickel Complexes
III.11.I Methodology
III.11.II Ion-exchange Chromatography and High-voltage Electrophoresis
III.11.III Results and Discussion

III.12 UV/VIS Spectrotrophometric Study of the Effect of Pyridine on Aquo-nickel and Nickel-citrate Systems
III.13 High-voltage Electrophoresis Using Phosphate buffer
III.14 Additional Cation-exchange Chromatography of Nickel Complexes in *D. gelonioides* subsp. *tuberculatum* and *P. palawanensis*
III.14.I Background
III.14.II The Effect of Concentration and IRC50-H Column Height on the Adsorption of Nickel
III.14.III Discussion and Conclusions

Chapter IV Characterisation of Nickel-binding Ligands in *Dichapetalum gelonioides* subsp. *tuberculatum* and *Phyllanthus palawanensis*
IV.1 Introduction
IV.2 Aim and Rationale
IV.3 Preparation of Purified Nickel Complexes from *D. gelonioides* subsp. *tuberculatum*
IV.3.I Extraction and Isolation
IV.3.II Crystallisation
IV.4 Preparation of Purified Nickel Complexes from P. 'palawanensis' 102

IV.4.I Isolation 102
IV.4.II Crystallisation 102

IV.5 Elemental Composition of Nickel-rich Fractions 104

IV.5.I Aim 104
IV.5.II Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 104
IV.5.III Results and Discussion 107

IV.6 Gas Chromatography-Mass Spectrometry 108

IV.6.I Instrumentation 108
IV.6.II Application to Plant Organic Acids 110
IV.6.III Gas Chromatographic-Mass Spectral Analysis of Isolated Purified Nickel Complexes 110

IV.7 Quantitative Gas Chromatography 111
IV.8 Results and Discussion 117

IV.9 Gel Filtration Chromatography Studies of Mixtures of Nickel-citrate, Nickel-malate and Nickel-citrate-malate 132

IV.9.I Introduction 132
IV.9.II Methodology 134
IV.9.III Results and Discussion 135
IV.9.IV High-voltage Electrophoresis of Mixtures of Nickel-citrate and Nickel-citrate-malate 139
IV.9.V Results and Discussion 140
IV.9.VI Conclusion 141

IV.10 Structural Elucidation of a Crystal Obtained from a Nickel-citrate-malate Solution of Mole Ratio 1:0.4:1 141

IV.10.I Introduction 141
IV.10.II Crystallisation of Nickel-citrate-malate Solution of Mole Ratio 1:0.4:1 144
IV.10.III X-ray Crystallography 145
IV.10.IV Results and Discussion

IV.11 Amino Acid Analysis

IV.11.I Introduction
IV.11.II Sample Preparation
IV.11.III Instrumentation
IV.11.IV Results and Discussion

Chapter V Determination of Fluoride in *Dichapetalum gelonioides* subsp. *tuberculatum*

V.1 Introduction
V.2 Aim and Rationale
V.3 Methods of Determining Covalently Bonded Fluoride in Biological Materials
V.4 Experimental Procedure

V.4.I Aqueous Extraction
V.4.II Alkaline Hydrolysis
V.4.III Ashing
V.4.IV Fluoride Determination

V.5 Results
V.6 Discussion

Chapter VI Urease Activity and Nickel-accumulating Plants

VI.1 Introduction
VI.2 Aim and Rationale
VI.3 Methodology

VI.3.I Principle
VI.3.II Experimental Procedure

VI.3.IIa Sample Preparation
VI.3.IIb Urease Assay

VI.4 Results and Discussion
PART 2 METAL UPTAKE STUDIES

Chapter VII Uptake of Nickel, Cobalt and Copper by Alyssum troodii and Aurinia saxatilis

VII.1 Introduction 188
VII.1.1 Metal Uptake Patterns 191
VII.1.2 Quantification of Metal Tolerance 192

VII.2 Aim and Rationale 195

VII.3 Experimental Methods 196
VII.3.1 Media Preparation 196
VII.3.2 Plant Cultivation 197
VII.3.3 Preparation and Analysis of Plant Material 197
VII.3.4 Preparation and Analysis of Soils 198
VII.3.5 Germination Tests 199

VII.4 Results 199
VII.4.1 Metal Uptake 199
VII.4.2 Relative Biomass Yields and Accumulatory Capacity 204
VII.4.3 The Effect of Nickel, Cobalt and Copper on Seed Germination 211
VII.4.4 Metal Content of Seeds 214
VII.4.5 Plant-available Metal Concentration at Time of Harvesting 214

VII.5 Discussion 215

Chapter VIII Concluding Discussion
VIII.1 Summary and General Conclusions 223
VIII.2 Recommendations for Further Research 228

List of References 231
Errata
Appendices
Ia) Fertiliser Composition 262
Ib) Composition of 1:1 Peat/Pumice Diluent Prior to the Addition of Metal 262
II) AAS Operating Conditions 263

IIIa) Concentration of Metals in Plants Cultivated in Soils Containing No Added Nickel, Cobalt or Copper 264

IIIb) Concentration of HCl(2 M)-Extractable metal in Soils Containing No Added Nickel, Cobalt or Copper 264

IV) Elemental Relationships in Cultivated A. troodii Plants 265

Publications Arising from this Thesis 267