Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
POTASSIUM RELEASING AND SUPPLYING POWER
OF SELECTED YELLOW GREY EARTH SOILS OF
NEW ZEALAND

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Soil Science at Massey University

ARAVIND SURAPANENI

1994
ABSTRACT

The supply of soil potassium (K) to New Zealand pastures is currently being assessed by the quick test K (QTK) and reserve K (Kc) methods, which measure soil exchangeable K (Kex) and non-exchangeable K (Knex), respectively. QTK is based on a routine soil test and Kc is an assigned estimate appropriate to the soil group. No consideration is given to the variations of the Knex supply within a soil group. The objective of this research was to examine the K releasing and K supplying power of selected soils from the yellow-grey earth (YGE) group.

A wide variation was observed in the measured Kc values of the YGE soils in the North and South Islands. A glasshouse experiment showed that the supply of Knex to ryegrass grown on the 13 North Island YGE soils ranged from 0-41 mg 100 g⁻¹ and that of the 6 South Island YGE soils ranged from 3-35 mg 100 g⁻¹. The experiment also showed that there were lower levels of Knex supply in the pasture sites, compared to the virgin sites with respect to the South Island YGE soils. These results have implications to the use of the soil group concept which is used to estimate Knex supply in the Computerised Fertilizer Advisory Service (CFAS) K model, currently used by AgResearch.

In a laboratory study, the threshold K levels in terms of K concentration and the activity ratio in the equilibrated soil solution, Kex, and the amount of specifically held K were determined, in order to explain the variations in Knex supply. The threshold K levels were not related to the Knex release and supply.

The uptake of K by ryegrass was at best poorly to moderately correlated with the K extracted by current methods of determining K releasing power viz, QTK and Kc. The highest simple correlation was obtained from an improved acid-extractable K procedure (r = 0.96; P < 0.01). The differences in the Knex uptake by ryegrass from various soils were better explained by a simple method of determining soil Knex i.e., step K, than by the existing Kc method. A multiple regression equation with QTK
and step K as independent variables explained 96% of the variation in total K uptake among soils.

On the basis of K_{max} taken up by ryegrass in the glasshouse experiment, the 19 soils in this study were broadly grouped into two categories (i) soils with step K values of less than 35 mg 100 g$^{-1}$ and a K_c range of 8-10 mg 100 g$^{-1}$ and (ii) soils with step K values greater than 35 mg 100 g$^{-1}$ and a K_c range of 12-19 mg 100 g$^{-1}$.

Selected soils were fractioned into sand, silt, and clay separates and acid-extractable K levels of the fractions were measured. There was a wide range in the acid-extractable K levels among the soils for the same size fraction e.g., clay, and for different size fractions within the same soil. When weighted according to the particle size distribution of the soil, the sand was found to contribute 4-45%, silt 10-40%, and clay 15-85% of the K released by the sum of the 3 separates, using the improved acid extraction method. In all the soils, the clay separate released the most K per unit weight.

An agar pot trial technique was developed to measure the K supplying power of the soil separates. Although on a unit weight basis the clay separates showed a much greater activity than the other separates on a weighted basis, the contributions of sand and silt separates to the total K uptake of Marton (38%), Matapiro (41%), and Wharekaka (25%) soils was of considerable importance. The results demonstrated that the role of sand and silt separates deserve more consideration in estimating potential K releasing and supplying power than has hitherto been the case.

The study also attempted to relate K_{max} release and supply to the soil mineralogy. Although the gross mineralogy of the 19 soils was similar, differences in the K_{max} release and supply could be related to subtle differences and gradual changes in the clay mineralogy. The XRD patterns of the clays with a K_c range of 8-10 mg 100 g$^{-1}$ of soil differed from those with a K_c range of 12-19 mg 100 g$^{-1}$ of soil. The latter group of clays contain more K bearing minerals than the former group.
The practical implications of the measured differences in K_c values (K_{ext} supply) within the YGE soil group were dealt with. The measured K_{ext} supply in the North Island YGE soils ranged from 20-40 kg ha$^{-1}$ yr$^{-1}$, whereas the expected K_{ext} supply based on an assigned K_c value is 30 kg ha$^{-1}$ yr$^{-1}$. The difference between the expected and the measured K_{ext} may be sufficiently economically significant as to invalidate applying a single K_c value to a soil group. Possible improvements to the soil K supply component of the CFAS K model were suggested, particularly that step K values should replace K_c in the K supply model.
ACKNOWLEDGEMENTS

I would like to express my sincere thanks, gratitude and appreciation to the following people for their contribution towards the completion of this thesis.

My supervisors, Drs. J.H. Kirkman, P.E.H. Gregg, A.H.C. Roberts and R.W. Tillman for their valuable guidance. Thank you for your time, patience and encouragement.

All the past and present staff in the Department of Soil Science. I would like to take this opportunity to thank, in particular, Drs. N.S. Bolan, M.J. Hedley, and A. Basker all of whom were ready to discuss and forward sound criticism of the research presented here.

Dr. A.S. Palmer for helping in soil classification, Dr. R.C. Wallace for identifying primary minerals, and Dr. S. Saggar for resin K analysis.

The department's technical staff, headed by Lance Currie, is acknowledged. I would like to thank Mike Bretherton and Anne West for preparing some diagrams in this thesis, and Malcolm Boag for his proof reading.

Denise and Nicola for their friendship.

All my fellow postgraduates for their friendship.

The Fertilizer and Lime Research Centre and the University Grants Committee for funding my study.

Lee, Katy and Mike. Let us never forget the days of the alternative tea club.

Rosie, Henry and John at the Dynasty Restaurant. Their friendship during my time at the Dynasty was invaluable.
My mother and brothers in India, and my brothers in U.S. Thank you for your strength, blessings and support.

Finally I would like to thank my family - my wife, Chaithanya, and my son, Theja - for looking after me steadfastly during my last few years of study; especially you, Chaithanya, for you have been through so much since your arrival in New Zealand. I cannot thank you enough.

This thesis is dedicated to my late father and beloved mother.
GLOSSARY OF K TERMS USED IN THIS THESIS

GENERAL TERMS

Structural K : Strongly bonded K in the crystal structure of minerals. It is variously called mineral K, native K, inert K, matrix K, or unweathered K.

Fixed K : K present in the wedge (w-), step (s-), crack (c-), and interlayer (i-) positions of weathered micaceous minerals and amorphous clays.

K_{net}/Reserve K : Non-exchangeable K (structural K plus fixed K).

Also known as K_c in New Zealand.

K_{ex} : K present on planar (p-) and edge (e-) positions of clays and K sorbed at exchange sites on organic matter.

K : K in soil solution.

Available K : The K taken up by plants or K extracted by chemical methods that aim to mimic uptake by plants.

K availability : Reflects a complex of interdependent soil and plant processes that release the K that is taken up by plants. It is difficult to quantify.

K releasing power (K release) : Release of K from K_{net}/reserve form to K_{ex} and K forms.

Any chemical method that determines total "available K" is a measure of K releasing power.

K_{ex} releasing power (K_{ex} release) : K extracted by chemical methods that measure soil K, and K_{ex} forms e.g., NH4OAc-K_{ex}, QTK (also NH4OAc-extractable), CaCl2-K_{ex}, resin K etc.

K_{net} releasing power (K_{net} release) : K extracted by chemical methods believed to measure soil K_{net} of different solubility e.g., nitric
acid K (HNO₃-K), resin K etc.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{ex} + K_{nex}$ releasing power</td>
<td>K extracted by chemical methods that measure soil K_{ex} and K_{nex} e.g. HNO₃-K (acid-extractable K), NaTPB K etc.</td>
</tr>
<tr>
<td>K fixation</td>
<td>Reverse of K release. It is the phenomenon by which the "available K" becomes unavailable due to fixation by clay minerals and can not be easily extracted by methods used to assess "K_{ex} release."</td>
</tr>
<tr>
<td>K supplying power (K supply)</td>
<td>Supply of K to plants. Any biological method e.g., a ryegrass pot trial, that determines "available K" is a measure of K supplying power.</td>
</tr>
<tr>
<td>K_{ex} supplying power (K$_{ex}$ supply)</td>
<td>Total K uptake minus K_{nex} uptake.</td>
</tr>
<tr>
<td>K_{nex} supplying power (K$_{nex}$ supply)</td>
<td>K_{nex} uptake calculated from total K uptake minus fall in NH₄OAc extractable K_{ex}.</td>
</tr>
<tr>
<td>K losses</td>
<td>The predicted amount of K lost from a farming system by leaching, product removal etc.</td>
</tr>
<tr>
<td>Soil K supply (Soil K gain)</td>
<td>The predicted amount of total K supplied to a farming system. It constitutes soil K_{ex} supply and soil K_{nex} supply, but may or may not include fertilizer K depending on the context in which the term is used.</td>
</tr>
</tbody>
</table>

TERMS USED WHILE REFERRING TO THE METHODS THAT DETERMINE K RELEASING POWER

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{e}</td>
<td>K extracted by boiling HNO₃. It is a measure of difficultly soluble soil K_{nex}. It is analogous to constant rate K.</td>
</tr>
<tr>
<td>K_{ex}</td>
<td>K extracted by ammonium acetate (NH₄OAc). It either measures soil K_{ex} plus K_{e} or K_{ex} alone.</td>
</tr>
</tbody>
</table>
Threshold K level: Critical K concentration in the equilibrated soil solution below which K release from K\textsubscript{nex} sources is initiated.

Solution K: K measured in equilibrated 0.01 M CaCl\textsubscript{2} solution.

\(K_T\): K desorbed in CaCl\textsubscript{2} solution plus K extracted with NH\textsubscript{4}OAc.

\(AR^K\): K-Ca activity ratio in equilibrated soil solution.

\(K_G\): Gapon constant. This gives a measure of relative tightness of binding of K+ in relation to other cations.

\(QTK\): Quick test K. This measures approximately 80% of the soil K\textsubscript{ex} plus K\textsubscript{r}.

NaTPB K: K extracted by sodium tetraphenyl boron (NaTPB) reagent. This reagent measures soil K\textsubscript{ex} and K\textsubscript{nex}.

Resin K: K extracted by a mixed cation and anion resin membrane. In Chapter 6 it was used to measure soil K\textsubscript{ex} plus K\textsubscript{r}.

Acid-extractable K: K extracted by boiling with 1 M HNO\textsubscript{3}. It is a measure of soil K\textsubscript{ex} and easily soluble fraction of soil K\textsubscript{nex}.

Step K: A measure of soil K\textsubscript{nex} obtained by the difference between acid-extractable K and K\textsubscript{ex}. It is therefore a computed value.

\(QSK\): Quick step K. This is a measure of soil K\textsubscript{nex} obtained by the difference between acid-extractable K and QTK. It is also a computed value.

OTHERS

** : Significant at \(P < 0.05\)

* : Significant at \(P < 0.01\)

LSD : Least-squares difference

NS : Non significant

C.V : Coefficient of variation
TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. v

GLOSSARY OF K TERMS USED IN THIS THESIS vii

CONTENTS ... x

LIST OF FIGURES .. xix

LIST OF TABLES .. xxii

LIST OF APPENDICES .. xxvi

CHAPTER 1
INTRODUCTION

1.1 THE PURPOSE OF THE STUDY 1

1.2 THE STRUCTURE OF THE STUDY 3

CHAPTER 2
REVIEW OF LITERATURE

2.1 INTRODUCTION ... 5

2.2 FORMS OF SOIL K .. 5

2.2.1 Structural K .. 7

2.2.2 Fixed K .. 10

2.2.3 Exchangeable K (K_{ex}) 12

2.2.4 Soil solution K (K_s) .. 12

2.3 POTASSIUM EQUILIBRIA IN SOILS 12
2.4 RELEASE OF K FROM PRIMARY (STRUCTURAL K) AND SECONDARY (FIXED AND EXCHANGEABLE K FORMS) MINERALS IN SOILS .. 13
2.5 POTASSIUM FIXATION ... 15
2.6 PLANT AVAILABILITY OF K IN RELATION TO RELEASE/FIXATION PROCESSES .. 17
2.7 METHODS OF ASSESSING PLANT AVAILABLE K 19
 2.7.1 Methods for assessing K supplying power 20
 2.7.2 Methods for assessing K releasing power 22
 2.7.2.1 Methods for assessing K_{ex} releasing power 22
 2.7.2.2 Methods for assessing $K_{ex} + K_{net}$ releasing power 23
 2.7.2.3 Methods for assessing K_{net} releasing power 24
 2.7.2.4 Additional methods for assessing both K_{ex} and K_{net} releasing power 26
 2.7.3 Relationship between K releasing power and K supplying power 27
2.8 CONCEPTS FOR MAKING K FERTILIZER RECOMMENDATIONS 30
 2.8.1 Method that does not directly quantify either soil K gains (release/supply) or soil K losses 31
 2.8.2 Method that directly quantifies only the soil K gains (release/supply) ... 31
 2.8.3 Method that directly quantifies only the K losses 33
 2.8.4 Method that directly quantifies both soil K supply (gains) and soil K losses 35
2.9 THE CFAS MODEL FOR CALCULATING K FERTILIZER REQUIREMENTS 36
CHAPTER 3
GENERAL MATERIALS AND METHODS

3.1 INTRODUCTION .. 42
3.2 SOILS .. 42
3.3 SOIL PROPERTIES 49

CHAPTER 4
CHARACTERIZATION OF YGE SOILS BASED ON NON-EXCHANGEABLE K RELEASING AND SUPPLYING POWER

4.1 BACKGROUND ... 52
4.2 MATERIALS AND METHODS 55
 4.2.1 Soils and chemical measurements 55
 4.2.2 Artificial leaching technique 56
 4.2.3 Glasshouse experiment 56
 4.2.4 Statistical analysis 58
4.3 RESULTS AND DISCUSSION 58
 4.3.1 Exchangeable K release before cropping in the unleached and in the leached soils 58
 4.3.2 Dry matter yield 58
 4.3.2.1 Total dry matter yields from unleached soils .. 59
 4.3.2.2 Total dry matter yields from leached soils .. 62
 4.3.3 Potassium content of herbage 62
 4.3.4 Potassium uptake 65
 4.3.4.1 Potassium uptake from control pots 65
 4.3.4.2 Potassium uptake from unleached soils 65
 4.3.4.3 Potassium uptake from leached soils 69
4.3.5 Exchangeable K release after cropping the unleached and the leached soils ... 70

4.3.6 Comparative contribution of K_{ex} and K_{rel} to total K uptake from unleached and leached soils 71

4.3.6.1 Unleached soils ... 71

4.3.6.2 Leached soils ... 72

4.3.6.3 K_{rel} supply versus K_{rel} release 72

4.4 GENERAL DISCUSSION ON ARTIFICIAL LEACHING TECHNIQUE ... 74

4.5 CONCLUSIONS .. 75

CHAPTER 5
POTASSIUM THRESHOLD LEVELS OF YGE SOILS IN RELATION TO K RELEASING POWER, SUPPLYING POWER, AND SPECIFICITY

5.1 BACKGROUND ... 77

5.2 MATERIALS AND METHODS ... 82

5.2.1 Soils ... 82

5.2.2 Determination of the threshold K level .. 82

5.3 RESULTS AND DISCUSSION ... 87

5.3.1 Threshold K levels expressed in terms of K concentration in the equilibrating soil solution 87

5.3.2 Relationship between Gapon constant (K_{c}) and K_{ex} .. 93

5.3.3 Variation of threshold K levels ... 93

5.4 CONCLUSIONS ... 99
CHAPTER 6
ASSESSMENT OF THE K RELEASING POWER OF YGE SOILS IN
RELATION TO PLANT AVAILABLE K USING SELECTIVE SOIL TESTING
PROCEDURES

6.1 BACKGROUND .. 100

6.2 MATERIALS AND METHODS 102

6.2.1 Soils ... 102

6.2.2 Plant growth studies 102

6.2.3 Chemical extraction methods for assessing
K releasing power .. 102

6.2.3.1 Conventional methods 102

6.2.3.2 Standardisation of an acid
extraction procedure .. 103

6.2.3.3 Acid extraction procedure 103

6.2.3.4 Step K .. 104

6.2.4 Sand and silt separation 104

6.2.5 Relative contribution of the soil separates
to whole soil acid-extractable K 104

6.3 RESULTS AND DISCUSSION 106

6.3.1 Relationship between soil tests and
dry matter yield of ryegrass grown on
the unleached and the leached soils 106

6.3.2 Relationship between soil tests and K
uptake from the unleached and the
leached soils .. 110

6.3.3 Relationship between soil tests and
K_{ext} uptake .. 115

6.3.4 Characterization of YGE soils based on
acid-extractable K and step K methods of
assessing K releasing power 120
6.3.5 Contribution of acid-extractable K from soil separates .. 124

6.3.5.1 Potassium extracted from the peroxidised soil and soil separates by the acid extraction procedure ... 125

6.3.5.2 Relative contribution of the soil separates to whole soil acid-extractable potassium .. 128

6.4 CONCLUSIONS ... 130

CHAPTER 7
POTASSIUM RELEASING POWER AND SUPPLYING POWER OF SOIL TEXTURAL SEPARATES

7.1 BACKGROUND .. 131

7.2 MATERIALS AND METHODS ... 133

7.2.1 Soils .. 133

7.2.2 Separation of textural fractions (soil separates) 134

7.2.3 Chemical extractions ... 134

7.2.4 Removal of K_a from the soil separates 134

7.2.5 Percent contribution of K content (total K, K_a, acid-extractable K, and step K) of the soil separates on a whole soil basis 134

7.2.6 Growth chamber experiment ... 135

7.2.6.1 Agar pot cylinder ... 135

7.2.6.2 Agar potting technique ... 137

7.2.7 Relative contribution of the soil separates to whole soil plant K uptake ... 138

7.3 RESULTS AND DISCUSSION ... 139

7.3.1 Potassium releasing power of soil separates 139
7.3.1.1 Total K in the soil separates 139
7.3.1.2 Exchangeable K of the soil separates 141
7.3.1.3 Potassium releasing power of soil separates as assessed by the acid-extraction procedure 143
7.3.1.4 Potassium releasing power of soil separates as assessed by step K .. 143

7.3.2 Potassium supplying power of soil separates 145
7.3.2.1 Dry matter yields .. 145
7.3.2.2 Potassium content of herbage 146
7.3.2.3 Potassium uptake ... 149
 7.3.2.3.1 Uptake of K from the control pots 149
 7.3.2.3.2 Uptake of K from the soil separates 151
 7.3.2.3.3 Exchangeable K after cropping 151
 7.3.2.3.4 Comparative contribution of \(K_c \) and \(K_{soil} \) uptakes to total K uptake from the soil separates .. 152
 7.3.2.3.5 Predicted contribution of soil separates to K uptake of ryegrass grown in whole soil 152

7.3.3 Validity of the computational method used to arrive at the relative contribution of soil separates to whole soil K releasing and supplying power ... 155

7.3.4 Relationship between acid-extractable K and plant K uptake ... 158

7.4 CONCLUSIONS ... 161
CHAPTER 8
MINERALOGY OF YGE AND RELATED SOILS IN RELATION TO NON-EXCHANGEABLE K RELEASING AND SUPPLYING POWER

8.1 BACKGROUND ... 163

8.2 MATERIALS AND METHODS ... 165

8.2.1 Clay mineralogy ... 165

 8.2.2.1 Procedure for identification of clay minerals by X-ray diffraction analysis .. 165

 8.2.2.2 Interpretation of XRD patterns for clay mineral identification ... 166

 8.2.2.3 Transmission electron microscopy ... 167

8.2.2 Sand and silt mineralogy ... 168

8.3 RESULTS AND DISCUSSION .. 168

 8.3.1 Clay mineral identification ... 168

 8.3.2 XRD patterns of the clays with K_c ranges of 8-10 and 12-19 mg 100 g soil$^{-1}$... 169

 8.3.3 Relationship between mineralogy and K_{res} releasing and supplying power of soils .. 177

 8.3.4 Sand and silt mineralogy ... 180

8.4 CONCLUSIONS ... 182

CHAPTER 9
ASSESSMENT OF THE K SUPPLYING POWER OF YGE SOILS

9.1 BACKGROUND ... 183

9.2 THEORY ... 184

9.3 RESULTS AND DISCUSSION .. 188

 9.3.1 Soil K supply from exchangeable sources .. 188
9.3.2 Predicted soil K supply from non-exchangeable sources based on the assigned and measured Kₐ values ... 188

9.3.3 Relationship between observed K uptake by plants and predicted soil K supply .. 191

9.3.4 Development of a model for predicting soil K supply from the pot trial .. 194

9.4 GENERAL DISCUSSION .. 196

9.4.1 Variations due to reserve K supply ... 196

9.4.2 Variations due to soil Kₐ supply ... 198

9.4.3 Possible improvements to the CFAS soil supply model 200

9.5 CONCLUSIONS .. 203

CHAPTER 10

SUMMARY .. 205

BIBLIOGRAPHY .. 211

APPENDICES .. 225
LIST OF FIGURES

CHAPTER 2

Fig. 2.1 The dynamic equilibria between the forms of soil potassium ... 6
Fig. 2.2 The dynamics of weathering of primary minerals ... 8
Fig. 2.3 Model of a 2:1 layer-silicate clay showing 1.0 and 1.4 nm layers and planar (p), edge (e), interlayer (i), wedge (w), crack (c), and step (s) exchange sites (Goulding, 1987) 11
Fig. 2.4 Dry matter response to K fertilizer (Smith et al., 1978) ... 32
Fig. 2.5 Schematics of computation of fertilizer K to reach near-maximum yields on individual farms (McLean and Watson, 1985) .. 34
Fig. 2.6 Theoretical relationship between fertilizer K required for 90 % maximum yields and both QTK and Kc values ... 40

CHAPTER 4

Fig. 4.1 K_{ru} of unleached soils before and after cropping .. 60
Fig. 4.2 K_{ru} of leached soils before and after cropping ... 61
Fig. 4.3 Total dry matter of ryegrass grown on unleached and leached soils .. 63
Fig. 4.4 Total K uptake of ryegrass grown on unleached and leached soil .. 66
Fig. 4.5 Actual K_{ru} and K_{ua} contribution from the unleached soils .. 67
Fig. 4.6 Actual K_{ru} and K_{ua} contribution from
CHAPTER 5

Fig. 5.1 Theoretical relationship between K concentration in the equilibrium soil solution and K_T .. 80

Fig. 5.2 Relationship between total K extracted (K_T) and exchangeable K of soils ... 88

Fig. 5.3 Relationship between total K extracted (K_T) with K concentration in an equilibrated solution of 0.01 M CaCl$_2$ (K_s) .. 89

Fig. 5.4 Relationship between total K extracted (K_T) and K-Ca activity ratio (AR$_K$) of soils ... 90

Fig. 5.5 Relationship between Gapon constant (K_G) and exchangeable K (K_{ex}) of soils ... 94

CHAPTER 6

Fig. 6.1 Relationship between soil tests (mg K 100 g$^{-1}$) and dry matter yield (g pot$^{-1}$) of ryegrass grown on the unleached soils .. 107

Fig. 6.2 Relationship between soil tests (mg K 100 g$^{-1}$) and dry matter yield (g pot$^{-1}$) of ryegrass grown on the leached soils ... 111

Fig. 6.3 Relationship between soil tests (mg K 100 g$^{-1}$) and K uptake by ryegrass (mg 100 g$^{-1}$) from the unleached soils ... 112

Fig. 6.4 Correlation of soil tests (mg K 100 g$^{-1}$) with K uptake (mg 100 g$^{-1}$) from the leached soils .. 116

Fig. 6.5 Correlation of K_o, NaTPB K, acid-extractable K, and step K with K_{ex} uptake from the unleached soils (mg 100 g$^{-1}$) .. 117
with K_{net} uptake from the leached soils (mg K 100 g$^{-1}$) 118

Fig. 6.7 Changes in step K (mg 100 g$^{-1}$) of soils due to leaching and cropping 122

Fig. 6.8 Percent contribution of the acid-extractable K from the soil separates 129

CHAPTER 7

Fig. 7.1 Agar pot cylinder ... 136

Fig. 7.2 Relationship between K releasing power for the whole soil (Actual) and for the soil separates on a whole soil basis (Predicted) .. 156

Fig. 7.3 Relationship between K supplying power for the whole soil (Actual) and for the soil separates on a whole soil basis (Predicted) .. 157

Fig. 7.4 Relationship between acid-extractable K (mg 100 g$^{-1}$) and K uptake by ryegrass (mg 100 g$^{-1}$) from the soil separates and soils ... 159

CHAPTER 8

Fig. 8.1 X-ray diffractograms of soil clays ($< 2 \mu m$), K$_x$ range 8-10 mg 100 g soil$^{-1}$ 171

Fig. 8.2 X-ray diffractograms of soil clays ($< 2 \mu m$), K$_x$ range 12-19 mg 100 g soil$^{-1}$ 173
LIST OF TABLES

CHAPTER 3

Table 3.1 USDA, New Zealand Genetic (NZ genetic),
and new New Zealand (New NZ) classification
of soils used for the study .. 43
Table 3.2 Particle size analyses of the soils 50
Table 3.3 Some selected soil properties 51

CHAPTER 4

Table 4.1 Ranges of values used for K_{eq} and K_c
to classify the K status of New Zealand
soils for field (Metson, 1980) and fertilizer
recommendation (Campkin, 1985) purposes 53
Table 4.2 K_c values for the soils, and field classification
(Metson, 1980) and classification for fertilizer
recommendations (Campkin, 1985) based on the
ranges given in Table 4.1 54

CHAPTER 5

Table 5.1 Some features used for selecting soils to
determine threshold K levels 83
Table 5.2 Ratios of soil:solution used for determining
threshold K levels .. 84
Table 5.3 Threshold K levels (mean of duplicates) in
terms of K concentration in equilibrium soil
solution, K_{eq}, and AR^K, and the amount of
specifically held K .. 92
Table 5.4 Increase in K_r beyond threshold K level in
relation to K_{eq} uptake ... 96
Table 5.5 Changes in Solution and Exchangeable K
(mean of duplicates) with increasing shaking
time (h) at 1:400 Soil:CaCl$_2$ solution ratio 98
CHAPTER 6

Table 6.1 Regression analyses between dry matter (g pot⁻¹)
and K releasing power (mg 100 g⁻¹) 109

Table 6.2 Regression analyses between K uptake
and K releasing power (mg 100 g⁻¹) 114

Table 6.3 Regression analyses between Kₖₑₓ uptake
and Kₖₑₓ releasing power for unleached
soils (mg 100 g⁻¹) ... 120

Table 6.4 K releasing and supplying power (mg 100 g⁻¹)
of Marton soil used in this study compared
to the pot trial of Campkin (1972) 123

Table 6.5 Acid-extractable K of peroxidised soil and
its separates (mg 100 g⁻¹) 126

CHAPTER 7

Table 7.1 Some details of the soils selected for the
study based on Chapter 6 data 133

Table 7.2 Potassium contents of soil separates before
artificial removal of Kₖₑₓ 140

Table 7.3 Potassium contents (mg 100g⁻¹) of soil
separates after extraction of Kₖₑₓ
(before cropping) .. 142

Table 7.4 Relative contribution of soil separates to whole
soil acid-extractable potassium 144

Table 7.5 Total dry matter (g pot⁻¹) of ryegrass
shoots grown on soil separates and
on whole soils .. 147

Table 7.6 Dry matter, herbage K, and K uptake of ryegrass
roots in the clay separate 147

Table 7.7 Percent herbage K in ryegrass shoots
for three harvests ... 148

Table 7.8 Total K uptake (less control) by ryegrass
shoots from soil separates and from whole
unperoxidised soil (mg 100 g⁻¹) 150
Table 7.9 Actual contribution of K_{eq} and K_{on} to total
K uptake of ryegrass tops from the soil
separates (mg 100 g^{-1}) ... 153
Table 7.10 Percent contribution of K_{eq} and K_{on}
to total K uptake of ryegrass tops
from the soil separates .. 153
Table 7.11 Percent contribution of total
plant K uptake (shoots) from the soil
separates on whole soil basis (calculated
as described in section 7.2.7) 154

CHAPTER 8
Table 8.1 K_{eq} Step K, and K_{on} supply (mg 100 g^{-1}) of the
unleached YGE soils of different regions
(data from Chapters 4 and 6) 164
Table 8.2 Differences in the clay mineralogy and the
amounts (subjective assessment), and in K
releasing/supplying power of the YGE and
related soils in the two K_{eq} ranges 170
Table 8.3 Summary of clay minerals of 3 soils
identified using XRD patterns in
conjunction with TEM 178
Table 8.4 Non-exchangeable K releasing power
and supplying power (mg 100 g^{-1}) of clay
fraction (Chapter 7 data) 179
Table 8.5 Primary minerals in sand and coarse silt
fractions expressed as percentage of total
sample (soil after removal of organic matter,
amorphous materials, and water) 181
Table 8.6 Probable sources of K from the clay
and sand plus silt fractions 182

CHAPTER 9
Table 9.1 Simplified equations to estimate soil K
supplies (kg ha^{-1} yr^{-1}) for low, medium, and
high K_{eq} soils (Campkin, 1985) 186
Table 9.2
Kc rating and measured Kc and QTK values of 19 soils .. 187

Table 9.3
Predicted soil K supply from Kex and Knex sources ... 189

Table 9.4
List of New Zealand soils that have Kc values of more than 0.70 meq % as reported in the literature ... 192

Table 9.5
Regression analyses between K uptake (kg ha⁻¹) from the pot trial (Y-variable) and the soil K supply (kg ha⁻¹ yr⁻¹) predicted using existing models (X-variable) 193

Table 9.6
Relationship between observed and predicted uptake in other pot experiments in New Zealand using Campkin equation (9.1) .. 195

Table 9.7
Regression analyses between Knex uptake (kg ha⁻¹) observed in the pot trial (X-variable) and that predicted (kg ha⁻¹ yr⁻¹) by models (Y-variable) 195

Table 9.8
Relationship between the observed and the predicted K uptake by ryegrass using equation 9.9 in the other pot experiments in New Zealand ... 197

Table 9.9
Quick test K values (parts per 250,000 of extract) of reference paddocks on No. 4 dairy farm on Massey University (M.J. Hedley, pers. comm.) .. 199

Table 9.10
Changes in step K (kg ha⁻¹) due to leaching and cropping .. 202
LIST OF APPENDICES

CHAPTER 4

Appendix 4.1 Dry matter (g pot⁻¹) of ryegrass grown on unleached (UL) and leached (L) soils 225

Appendix 4.2 Percent K content of ryegrass tops grown on unleached (UL) and leached (L) soils during four cuts .. 226

Appendix 4.3 Uptake of K (mg pot⁻¹) by ryegrass tops grown on unleached (UL) and leached (L) soils 227

CHAPTER 7

Appendix 7.1 Dry matter (mg pot⁻¹) of ryegrass shoots for the three harvests .. 228

Appendix 7.2 Potassium uptake (less control) by ryegrass tops from the soil separates for the 3 harvests (µg pot⁻¹) ... 229