POTASSIUM RELEASING AND SUPPLYING POWER
OF SELECTED YELLOW GREY EARTH SOILS OF
NEW ZEALAND

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Soil Science at Massey University

ARAVIND SURAPANENI

1994
The supply of soil potassium (K) to New Zealand pastures is currently being assessed by the quick test K (QTK) and reserve K (K_r) methods, which measure soil exchangeable K (K_{ex}) and non-exchangeable K (K_{nex}), respectively. QTK is based on a routine soil test and K_r is an assigned estimate appropriate to the soil group. No consideration is given to the variations of the K_{nex} supply within a soil group. The objective of this research was to examine the K releasing and K supplying power of selected soils from the yellow-grey earth (YGE) group.

A wide variation was observed in the measured K_r values of the YGE soils in the North and South Islands. A glasshouse experiment showed that the supply of K_{nex} to ryegrass grown on the 13 North Island YGE soils ranged from 0-41 mg 100 g$^{-1}$ and that of the 6 South Island YGE soils ranged from 3-35 mg 100 g$^{-1}$. The experiment also showed that there were lower levels of K_{nex} supply in the pasture sites, compared to the virgin sites with respect to the South Island YGE soils. These results have implications to the use of the soil group concept which is used to estimate K_{nex} supply in the Computerised Fertilizer Advisory Service (CFAS) K model, currently used by AgResearch.

In a laboratory study, the threshold K levels in terms of K concentration and the activity ratio in the equilibrated soil solution, K_{ex}, and the amount of specifically held K were determined, in order to explain the variations in K_{nex} supply. The threshold K levels were not related to the K_{nex} release and supply.

The uptake of K by ryegrass was at best poorly to moderately correlated with the K extracted by current methods of determining K releasing power viz, QTK and K_r. The highest simple correlation was obtained from an improved acid-extractable K procedure ($r = 0.96; P < 0.01$). The differences in the K_{nex} uptake by ryegrass from various soils were better explained by a simple method of determining soil K_{nex} i.e., step K, than by the existing K_r method. A multiple regression equation with QTK
and step K as independent variables explained 96 % of the variation in total K uptake among soils.

On the basis of K_{max} taken up by ryegrass in the glasshouse experiment, the 19 soils in this study were broadly grouped into two categories (i) soils with step K values of less than 35 mg 100 g$^{-1}$ and a K_c range of 8-10 mg 100 g$^{-1}$ and (ii) soils with step K values greater than 35 mg 100 g$^{-1}$ and a K_c range of 12-19 mg 100 g$^{-1}$.

Selected soils were fractioned into sand, silt, and clay separates and acid-extractable K levels of the fractions were measured. There was a wide range in the acid-extractable K levels among the soils for the same size fraction e.g., clay, and for different size fractions within the same soil. When weighted according to the particle size distribution of the soil, the sand was found to contribute 4-45 %, silt 10-40 %, and clay 15-85 % of the K released by the sum of the 3 separates, using the improved acid extraction method. In all the soils, the clay separate released the most K per unit weight.

An agar pot trial technique was developed to measure the K supplying power of the soil separates. Although on a unit weight basis the clay separates showed a much greater activity than the other separates on a weighted basis, the contributions of sand and silt separates to the total K uptake of Marton (38 %), Matapiro (41 %), and Wharekaka (25 %) soils was of considerable importance. The results demonstrated that the role of sand and silt separates deserve more consideration in estimating potential K releasing and supplying power than has hitherto been the case.

The study also attempted to relate K_{max} release and supply to the soil mineralogy. Although the gross mineralogy of the 19 soils was similar, differences in the K_{max} release and supply could be related to subtle differences and gradual changes in the clay mineralogy. The XRD patterns of the clays with a K_c range of 8-10 mg 100 g$^{-1}$ of soil differed from those with a K_c range of 12-19 mg 100 g$^{-1}$ of soil. The latter group of clays contain more K bearing minerals than the former group.
The practical implications of the measured differences in K_e values (K_{me} supply) within the YGE soil group were dealt with. The measured K_{me} supply in the North Island YGE soils ranged from 20-40 kg ha$^{-1}$ yr$^{-1}$, whereas the expected K_{me} supply based on an assigned K_e value is 30 kg ha$^{-1}$ yr$^{-1}$. The difference between the expected and the measured K_{me} may be sufficiently economically significant as to invalidate applying a single K_e value to a soil group. Possible improvements to the soil K supply component of the CFAS K model were suggested, particularly that step K values should replace K_e in the K supply model.
ACKNOWLEDGEMENTS

I would like to express my sincere thanks, gratitude and appreciation to the following people for their contribution towards the completion of this thesis.

My supervisors, Drs. J.H. Kirkman, P.E.H. Gregg, A.H.C. Roberts and R.W. Tillman for their valuable guidance. Thank you for your time, patience and encouragement.

All the past and present staff in the Department of Soil Science. I would like to take this opportunity to thank, in particular, Drs. N.S. Bolan, M.J. Hedley, and A. Basker all of whom were ready to discuss and forward sound criticism of the research presented here.

Dr. A.S. Palmer for helping in soil classification, Dr. R.C. Wallace for identifying primary minerals, and Dr. S. Saggar for resin K analysis.

The department's technical staff, headed by Lance Currie, is acknowledged. I would like to thank Mike Bretherton and Anne West for preparing some diagrams in this thesis, and Malcolm Boag for his proof reading.

Denise and Nicola for their friendship.

All my fellow postgraduates for their friendship.

The Fertilizer and Lime Research Centre and the University Grants Committee for funding my study.

Lee, Katy and Mike. Let us never forget the days of the alternative tea club.

Rosie, Henry and John at the Dynasty Restaurant. Their friendship during my time at the Dynasty was invaluable.
My mother and brothers in India, and my brothers in U.S. Thank you for your strength, blessings and support.

Finally I would like to thank my family - my wife, Chaithanya, and my son, Theja - for looking after me steadfastly during my last few years of study; especially you, Chaithanya, for you have been through so much since your arrival in New Zealand. I cannot thank you enough.

This thesis is dedicated to my late father and beloved mother.
GLOSSARY OF K TERMS USED IN THIS THESIS

GENERAL TERMS

Structural K : Strongly bonded K in the crystal structure of minerals. It is variously called mineral K, native K, inert K, matrix K, or unweathered K.

Fixed K : K present in the wedge (w-), step (s-), crack (c-), and interlayer (i-) positions of weathered micaceous minerals and amorphous clays.

K_{res}/Reserve K : Non-exchangeable K (structural K plus fixed K).
Also known as K_e in New Zealand.

K_{ex} : K present on planar (p-) and edge (e-) positions of clays and K sorbed at exchange sites on organic matter.

K_s : K in soil solution.

Available K : The K taken up by plants or K extracted by chemical methods that aim to mimic uptake by plants.

K availability : Reflects a complex of interdependent soil and plant processes that release the K that is taken up by plants. It is difficult to quantify.

K releasing power (K release) : Release of K from K_{res}/reserve form to K_{ex} and K_s forms.

Any chemical method that determines total "available K" is a measure of K releasing power.

K_{ex} releasing power (K_{ex} release) : K extracted by chemical methods that measure soil K_s and K_{ex} forms e.g., NH_4OAc-K_{ex}, QTK (also NH_4OAc-extractable), CaCl_2-K_{ex}, resin K etc.

K_{res} releasing power (K_{res} release) : K extracted by chemical methods believed to measure soil K_{res} of different solubility e.g., nitric
acid K (HNO₃-K), resin K etc.

\[K_{ex} + K_{nex} \]

\textit{releasing power} : K extracted by chemical methods that measure soil \(K_{ex} \) and \(K_{nex} \) e.g. HNO₃-K (acid-extractable K), NaTPB K etc.

\(K \) fixation : Reverse of K release.

It is the phenomenon by which the "available K" becomes unavailable due to fixation by clay minerals and can not be easily extracted by methods used to assess "\(K_{ex} \) release."

\(K \) supplying power

\((K \) supply) : Supply of K to plants. Any biological method e.g., a ryegrass pot trial, that determines "available K" is a measure of K supplying power.

\(K_{ex} \) supplying power

\((K_{ex} \) supply) : Total K uptake minus \(K_{nex} \) uptake.

\(K_{nex} \) supplying power

\((K_{nex} \) supply) : \(K_{nex} \) uptake calculated from total K uptake minus fall in NH₄OAc extractable Kₜₑₓ.

\(K \) losses : The predicted amount of K lost from a farming system by leaching, product removal etc.

Soil K supply

\((Soil K gain) \) : The predicted amount of total K supplied to a farming system. It constitutes soil \(K_{ex} \) supply and soil \(K_{nex} \) supply, but may or may not include fertilizer K depending on the context in which the term is used.

TERMS USED WHILE REFERRING TO THE METHODS THAT DETERMINE K RELEASING POWER

\(K_c \) : K extracted by boiling HNO₃. It is a measure of difficultly soluble soil \(K_{nex} \). It is analogous to constant rate K.

\(K_{ex} \) : K extracted by ammonium acetate (NH₄OAc). It either measures soil \(K_{ex} \) plus \(K_c \) or \(K_{ex} \) alone.
Threshold K level : Critical K concentration in the equilibrated soil solution below which K release from K_{nex} sources is initiated.

Solution K : K measured in equilibrated 0.01 M CaCl$_2$ solution.

K_T : K desorbed in CaCl$_2$ solution plus K extracted with NH$_4$OAc.

AR^K : K-Ca activity ratio in equilibrated soil solution.

K_G : Gapon constant. This gives a measure of relative tightness of binding of K$^+$ in relation to other cations.

QTK : Quick test K. This measures approximately 80% of the soil K_{ex} plus K_r.

NaTPB K : K extracted by sodium tetraphenyl boron (NaTPB) reagent. This reagent measures soil K_{ex} and K_{nex}.

Resin K : K extracted by a mixed cation and anion resin membrane. In Chapter 6 it was used to measure soil K_{ex} plus K_r.

Acid-extractable K : K extracted by boiling with 1 M HNO$_3$. It is a measure of soil K_{ex} and easily soluble fraction of soil K_{nex}.

Step K : A measure of soil K_{nex} obtained by the difference between acid-extractable K and K_{ex}. It is therefore a computed value.

QSK : Quick step K. This is a measure of soil K_{nex} obtained by the difference between acid-extractable K and QTK. It is also a computed value.

OTHERS

** : Significant at $P < 0.05$

* : Significant at $P < 0.01$

LSD : Least-squares difference

NS : Non significant

C.V : Coefficient of variation
TABLE OF CONTENTS

ABSTRACT ... ii
ACKNOWLEDGEMENTS ... v
GLOSSARY OF K TERMS USED IN THIS THESIS vii
CONTENTS .. x
LIST OF FIGURES .. xix
LIST OF TABLES ... xxii
LIST OF APPENDICES ... xxvi

CHAPTER 1
INTRODUCTION

1.1 THE PURPOSE OF THE STUDY 1
1.2 THE STRUCTURE OF THE STUDY 3

CHAPTER 2
REVIEW OF LITERATURE

2.1 INTRODUCTION .. 5
2.2 FORMS OF SOIL K .. 5
 2.2.1 Structural K .. 7
 2.2.2 Fixed K ... 10
 2.2.3 Exchangeable K (K_{ex}) 12
 2.2.4 Soil solution K (K_{s}) 12
2.3 POTASSIUM EQUILIBRIA IN SOILS 12
2.4 RELEASE OF K FROM PRIMARY (STRUCTURAL K) AND SECONDARY (FIXED AND EXCHANGEABLE K FORMS) MINERALS IN SOILS .. 13

2.5 POTASSIUM FIXATION ... 15

2.6 PLANT AVAILABILITY OF K IN RELATION TO RELEASE/FIXATION PROCESSES .. 17

2.7 METHODS OF ASSESSING PLANT AVAILABLE K 19
 2.7.1 Methods for assessing K supplying power 20
 2.7.2 Methods for assessing K releasing power 22
 2.7.2.1 Methods for assessing K_{ex} releasing power 22
 2.7.2.2 Methods for assessing K_{ex} plus K_{net} releasing power 23
 2.7.2.3 Methods for assessing K_{net} releasing power 24
 2.7.2.4 Additional methods for assessing both K_{ex} and K_{net} releasing power ... 26
 2.7.3 Relationship between K releasing power and K supplying power 27

2.8 CONCEPTS FOR MAKING K FERTILIZER RECOMMENDATIONS 30
 2.8.1 Method that does not directly quantify either soil K gains (release/supply) or soil K losses 31
 2.8.2 Method that directly quantifies only the soil K gains (release/supply) ... 31
 2.8.3 Method that directly quantifies only the K losses 33
 2.8.4 Method that directly quantifies both soil K supply (gains) and soil K losses .. 35

2.9 THE CFAS MODEL FOR CALCULATING K FERTILIZER REQUIREMENTS 36
CHAPTER 3
GENERAL MATERIALS AND METHODS

3.1 INTRODUCTION .. 42
3.2 SOILS ... 42
3.3 SOIL PROPERTIES .. 49

CHAPTER 4
CHARACTERIZATION OF YGE SOILS BASED ON NON-EXCHANGEABLE K RELEASING AND SUPPLYING POWER

4.1 BACKGROUND .. 52
4.2 MATERIALS AND METHODS 55
 4.2.1 Soils and chemical measurements 55
 4.2.2 Artificial leaching technique 56
 4.2.3 Glasshouse experiment 56
 4.2.4 Statistical analysis ... 58
4.3 RESULTS AND DISCUSSION 58
 4.3.1 Exchangeable K release before cropping in the unleached and in the leached soils 58
 4.3.2 Dry matter yield .. 58
 4.3.2.1 Total dry matter yields from unleached soils 59
 4.3.2.2 Total dry matter yields from leached soils 62
 4.3.3 Potassium content of herbage 62
 4.3.4 Potassium uptake .. 65
 4.3.4.1 Potassium uptake from control pots 65
 4.3.4.2 Potassium uptake from unleached soils 65
 4.3.4.3 Potassium uptake from leached soils 69
4.3.5 Exchangeable K release after cropping the unleached and the leached soils .. 70

4.3.6 Comparative contribution of K_{ex} and K_{acc} to total K uptake from unleached and leached soils 71

4.3.6.1 Unleached soils ... 71

4.3.6.2 Leached soils ... 72

4.3.6.3 K_{ex} supply versus K_{acc} release ... 72

4.4 GENERAL DISCUSSION ON ARTIFICIAL LEACHING TECHNIQUE .. 74

4.5 CONCLUSIONS ... 75

CHAPTER 5
POTASSIUM THRESHOLD LEVELS OF YGE SOILS IN RELATION TO K RELEASING POWER, SUPPLYING POWER, AND SPECIFICITY

5.1 BACKGROUND ... 77

5.2 MATERIALS AND METHODS .. 82

5.2.1 Soils .. 82

5.2.2 Determination of the threshold K level 82

5.3 RESULTS AND DISCUSSION .. 87

5.3.1 Threshold K levels expressed in terms of K concentration in the equilibrating soil solution 87

5.3.2 Relationship between Gapon constant (K_c) and K_{ex} 93

5.3.3 Variation of threshold K levels ... 93

5.4 CONCLUSIONS ... 99
CHAPTER 6
ASSESSMENT OF THE K RELEASING POWER OF YGE SOILS IN
RELATION TO PLANT AVAILABLE K USING SELECTIVE SOIL TESTING
PROCEDURES

6.1 BACKGROUND ... 100

6.2 MATERIALS AND METHODS 102

6.2.1 Soils ... 102

6.2.2 Plant growth studies 102

6.2.3 Chemical extraction methods for assessing
K releasing power .. 102

6.2.3.1 Conventional methods 102

6.2.3.2 Standardisation of an acid
extraction procedure .. 103

6.2.3.3 Acid extraction procedure 103

6.2.3.4 Step K .. 104

6.2.4 Sand and silt separation 104

6.2.5 Relative contribution of the soil separates
to whole soil acid-extractable K 104

6.3 RESULTS AND DISCUSSION 106

6.3.1 Relationship between soil tests and
dry matter yield of ryegrass grown on
the unleached and the leached soils 106

6.3.2 Relationship between soil tests and K
uptake from the unleached and the
leached soils .. 110

6.3.3 Relationship between soil tests and
K_{sex} uptake .. 115

6.3.4 Characterization of YGE soils based on
acid-extractable K and step K methods of
assessing K releasing power 120
6.3.5 Contribution of acid-extractable K from soil separates .. 124
 6.3.5.1 Potassium extracted from the peroxidised soil and soil separates by the acid extraction procedure ... 125
 6.3.5.2 Relative contribution of the soil separates to whole soil acid-extractable potassium ... 128

6.4 CONCLUSIONS ... 130

CHAPTER 7
POTASSIUM RELEASING POWER AND SUPPLYING POWER OF SOIL
TEXTURAL SEPARATES

7.1 BACKGROUND ... 131

7.2 MATERIALS AND METHODS .. 133
 7.2.1 Soils ... 133
 7.2.2 Separation of textural fractions (soil separates) .. 134
 7.2.3 Chemical extractions .. 134
 7.2.4 Removal of K\textsubscript{a} from the soil separates ... 134
 7.2.5 Percent contribution of K content (total K, K\textsubscript{a}, acid-extractable K, and step K) of the soil separates on a whole soil basis .. 134
 7.2.6 Growth chamber experiment ... 135
 7.2.6.1 Agar pot cylinder ... 135
 7.2.6.2 Agar potting technique .. 137
 7.2.7 Relative contribution of the soil separates to whole soil plant K uptake 138

7.3 RESULTS AND DISCUSSION ... 139
 7.3.1 Potassium releasing power of soil separates ... 139
CHAPTER 8
MINERALOGY OF YGE AND RELATED SOILS IN RELATION TO NON-EXCHANGEABLE K RELEASING AND SUPPLYING POWER

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>BACKGROUND</td>
<td>163</td>
</tr>
<tr>
<td>8.2</td>
<td>MATERIALS AND METHODS</td>
<td>165</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Clay mineralogy</td>
<td>165</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>Procedure for identification of clay minerals by X-ray diffraction analysis</td>
<td>165</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>Interpretation of XRD patterns for clay mineral identification</td>
<td>166</td>
</tr>
<tr>
<td>8.2.2.3</td>
<td>Transmission electron microscopy</td>
<td>167</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Sand and silt mineralogy</td>
<td>168</td>
</tr>
<tr>
<td>8.3</td>
<td>RESULTS AND DISCUSSION</td>
<td>168</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Clay mineral identification</td>
<td>168</td>
</tr>
<tr>
<td>8.3.2</td>
<td>XRD patterns of the clays with K_e ranges of 8-10 and 12-19 mg 100 g soil1</td>
<td>169</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Relationship between mineralogy and K_{nex} releasing and supplying power of soils</td>
<td>177</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Sand and silt mineralogy</td>
<td>180</td>
</tr>
<tr>
<td>8.4</td>
<td>CONCLUSIONS</td>
<td>182</td>
</tr>
</tbody>
</table>

CHAPTER 9
ASSESSMENT OF THE K SUPPLYING POWER OF YGE SOILS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>BACKGROUND</td>
<td>183</td>
</tr>
<tr>
<td>9.2</td>
<td>THEORY</td>
<td>184</td>
</tr>
<tr>
<td>9.3</td>
<td>RESULTS AND DISCUSSION</td>
<td>188</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Soil K supply from exchangeable sources</td>
<td>188</td>
</tr>
</tbody>
</table>
9.3.2 Predicted soil K supply from non-exchangeable sources based on the assigned and measured K_e values ... 188

9.3.3 Relationship between observed K uptake by plants and predicted soil K supply .. 191

9.3.4 Development of a model for predicting soil K supply from the pot trial ... 194

9.4 GENERAL DISCUSSION .. 196

9.4.1 Variations due to reserve K supply ... 196

9.4.2 Variations due to soil K_{eq} supply ... 198

9.4.3 Possible improvements to the CFAS soil supply model ... 200

9.5 CONCLUSIONS .. 203

CHAPTER 10

SUMMARY .. 205

BIBLIOGRAPHY .. 211

APPENDICES .. 225
LIST OF FIGURES

CHAPTER 2

Fig. 2.1 The dynamic equilibria between the forms of soil potassium .. 6

Fig. 2.2 The dynamics of weathering of primary minerals ... 8

Fig. 2.3 Model of a 2:1 layer-silicate clay showing 1.0 and 1.4 nm layers and planar (p), edge (e), interlayer (i), wedge (w), crack (c), and step (s) exchange sites (Goulding, 1987) 11

Fig. 2.4 Dry matter response to K fertilizer (Smith et al., 1978) ... 32

Fig. 2.5 Schematics of computation of fertilizer K to reach near-maximum yields on individual farms (McLean and Watson, 1985) ... 34

Fig 2.6 Theoretical relationship between fertilizer K required for 90% maximum yields and both QTK and Kc values ... 40

CHAPTER 4

Fig. 4.1 Kex of unleached soils before and after cropping .. 60

Fig. 4.2 Kex of leached soils before and after cropping ... 61

Fig. 4.3 Total dry matter of ryegrass grown on unleached and leached soils 63

Fig. 4.4 Total K uptake of ryegrass grown on unleached and leached soil 66

Fig. 4.5 Actual Kex and Kn contribution from the unleached soils .. 67

Fig. 4.6 Actual Kex and Kn contribution from
CHAPTER 5

Fig. 5.1 Theoretical relationship between K concentration in the equilibrium soil solution and K_T 80

Fig. 5.2 Relationship between total K extracted (K_T) and exchangeable K of soils .. 88

Fig. 5.3 Relationship between total K extracted (K_T) with K concentration in an equilibrated solution of 0.01 M CaCl$_2$ (K_e) .. 89

Fig. 5.4 Relationship between total K extracted (K_T) and K-Ca activity ratio (AR^K) of soils 90

Fig. 5.5 Relationship between Gapon constant (K_G) and exchangeable K (K_{ex}) of soils 94

CHAPTER 6

Fig. 6.1 Relationship between soil tests (mg K 100 g$^{-1}$) and dry matter yield (g pot$^{-1}$) of ryegrass grown on the unleached soils .. 107

Fig. 6.2 Relationship between soil tests (mg K 100 g$^{-1}$) and dry matter yield (g pot$^{-1}$) of ryegrass grown on the leached soils .. 111

Fig. 6.3 Relationship between soil tests (mg K 100 g$^{-1}$) and K uptake by ryegrass (mg 100 g$^{-1}$) from the unleached soils .. 112

Fig. 6.4 Correlation of soil tests (mg K 100 g$^{-1}$) with K uptake (mg 100 g$^{-1}$) from the leached soils 116

Fig. 6.5 Correlation of K_o, NaTPB K, acid-extractable K, and step K with K_{ex} uptake from the unleached soils (mg 100 g$^{-1}$) .. 117
with K_{net} uptake from the leached soils
(mg K 100 g^{-1}) .. 118

Fig. 6.7 Changes in step K (mg 100 g^{-1}) of soils
due to leaching and cropping 122

Fig. 6.8 Percent contribution of the acid-extractable
K from the soil separates ... 129

CHAPTER 7

Fig. 7.1 Agar pot cylinder ... 136

Fig. 7.2 Relationship between K releasing
power for the whole soil (Actual) and
for the soil separates on a whole soil
basis (Predicted) .. 156

Fig. 7.3 Relationship between K supplying
power for the whole soil (Actual) and
for the soil separates on a whole soil
basis (Predicted) .. 157

Fig. 7.4 Relationship between acid-extractable K
(mg 100 g^{-1}) and K uptake by ryegrass
(mg 100 g^{-1}) from the soil separates
and soils .. 159

CHAPTER 8

Fig. 8.1 X-ray diffractograms of soil clays
($< 2 \mu\text{m}$), K range 8-10 mg 100 g soil^{-1} 171

Fig. 8.2 X-ray diffractograms of soil clays
($< 2 \mu\text{m}$), K range 12-19 mg 100 g soil^{-1} 173
LIST OF TABLES

CHAPTER 3

Table 3.1 USDA, New Zealand Genetic (NZ genetic), and new New Zealand (New NZ) classification of soils used for the study 43

Table 3.2 Particle size analyses of the soils 50

Table 3.3 Some selected soil properties 51

CHAPTER 4

Table 4.1 Ranges of values used for K_{eq} and K_c to classify the K status of New Zealand soils for field (Metson, 1980) and fertilizer recommendation (Campkin, 1985) purposes 53

Table 4.2 K_c values for the soils, and field classification (Metson, 1980) and classification for fertilizer recommendations (Campkin, 1985) based on the ranges given in Table 4.1 54

CHAPTER 5

Table 5.1 Some features used for selecting soils to determine threshold K levels 83

Table 5.2 Ratios of soil:solution used for determining threshold K levels 84

Table 5.3 Threshold K levels (mean of duplicates) in terms of K concentration in equilibrium soil solution, K_{eq}, and AR_K, and the amount of specifically held K 92

Table 5.4 Increase in K_T beyond threshold K level in relation to K_{net} uptake 96

Table 5.5 Changes in Solution and Exchangeable K (mean of duplicates) with increasing shaking time (h) at 1:400 Soil:CaCl$_2$ solution ratio 98
CHAPTER 6

Table 6.1 Regression analyses between dry matter (g pot⁻¹) and K releasing power (mg 100 g⁻¹) .. 109

Table 6.2 Regression analyses between K uptake and K releasing power (mg 100 g⁻¹) ... 114

Table 6.3 Regression analyses between Kₚₑₓ uptake and Kₑₓ releasing power for unleached soils (mg 100 g⁻¹) 120

Table 6.4 K releasing and supplying power (mg 100 g⁻¹) of Marton soil used in this study compared to the pot trial of Campkin (1972) ... 123

Table 6.5 Acid-extractable K of peroxidised soil and its separates (mg 100 g⁻¹) ... 126

CHAPTER 7

Table 7.1 Some details of the soils selected for the study based on Chapter 6 data .. 133

Table 7.2 Potassium contents of soil separates before artificial removal of Kₑₓ ... 140

Table 7.3 Potassium contents (mg 100g⁻¹) of soil separates after extraction of Kₑₓ (before cropping) .. 142

Table 7.4 Relative contribution of soil separates to whole soil acid-extractable potassium .. 144

Table 7.5 Total dry matter (g pot⁻¹) of ryegrass shoots grown on soil separates and on whole soils 147

Table 7.6 Dry matter, herbage K, and K uptake of ryegrass roots in the clay separate ... 147

Table 7.7 Percent herbage K in ryegrass shoots for three harvests .. 148

Table 7.8 Total K uptake (less control) by ryegrass shoots from soil separates and from whole unperoxidised soil (mg 100 g⁻¹) 150
Table 7.9 Actual contribution of K_{ex} and K_{neo} to total K uptake of ryegrass tops from the soil separates (mg 100 g$^{-1}$) .. 153

Table 7.10 Percent contribution of K_{ex} and K_{neo} to total K uptake of ryegrass tops from the soil separates .. 153

Table 7.11 Percent contribution of total plant K uptake (shoots) from the soil separates on whole soil basis (calculated as described in section 7.2.7) .. 154

CHAPTER 8

Table 8.1 K_{ex}, Step K, and K_{neo} supply (mg 100 g$^{-1}$) of the unleached YGE soils of different regions (data from Chapters 4 and 6) .. 164

Table 8.2 Differences in the clay mineralogy and the amounts (subjective assessment), and in K releasing/supplying power of the YGE and related soils in the two K_c ranges .. 170

Table 8.3 Summary of clay minerals of 3 soils identified using XRD patterns in conjunction with TEM .. 178

Table 8.4 Non-exchangeable K releasing power and supplying power (mg 100 g$^{-1}$) of clay fraction (Chapter 7 data) .. 179

Table 8.5 Primary minerals in sand and coarse silt fractions expressed as percentage of total sample (soil after removal of organic matter, amorphous materials, and water) .. 181

Table 8.6 Probable sources of K from the clay and sand plus silt fractions .. 182

CHAPTER 9

Table 9.1 Simplified equations to estimate soil K supplies (kg ha$^{-1}$ yr$^{-1}$) for low, medium, and high K_c soils (Campkin, 1985) .. 186
<table>
<thead>
<tr>
<th>Table 9.2</th>
<th>K_c rating and measured K_c and QTK values of 19 soils</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 9.3</td>
<td>Predicted soil K supply from K_{ext} and K_{nex} sources</td>
<td>189</td>
</tr>
<tr>
<td>Table 9.4</td>
<td>List of New Zealand soils that have K_c values of more than 0.70 meq % as reported in the literature</td>
<td>192</td>
</tr>
<tr>
<td>Table 9.5</td>
<td>Regression analyses between K uptake (kg ha$^{-1}$) from the pot trial (Y-variable) and the soil K supply (kg ha$^{-1}$ yr$^{-1}$) predicted using existing models (X-variable)</td>
<td>193</td>
</tr>
<tr>
<td>Table 9.6</td>
<td>Relationship between observed and predicted uptake in other pot experiments in New Zealand using Campkin equation (9.1)</td>
<td>195</td>
</tr>
<tr>
<td>Table 9.7</td>
<td>Regression analyses between K_{nex} uptake (kg ha$^{-1}$) observed in the pot trial (X-variable) and that predicted (kg ha$^{-1}$ yr$^{-1}$) by models (Y-variable)</td>
<td>195</td>
</tr>
<tr>
<td>Table 9.8</td>
<td>Relationship between the observed and the predicted K uptake by ryegrass using equation 9.9 in the other pot experiments in New Zealand</td>
<td>197</td>
</tr>
<tr>
<td>Table 9.9</td>
<td>Quick test K values (parts per 250,000 of extract) of reference paddocks on No. 4 dairy farm on Massey University (M.J. Hedley, pers. comm.)</td>
<td>199</td>
</tr>
<tr>
<td>Table 9.10</td>
<td>Changes in step K (kg ha$^{-1}$) due to leaching and cropping</td>
<td>202</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

CHAPTER 4

Appendix 4.1 Dry matter (g pot$^{-1}$) of ryegrass grown on
unleached (UL) and leached (L) soils 225

Appendix 4.2 Percent K content of ryegrass tops grown
on unleached (UL) and leached (L) soils
during four cuts .. 226

Appendix 4.3 Uptake of K (mg pot$^{-1}$) by ryegrass tops grown
on unleached (UL) and leached (L) soils 227

CHAPTER 7

Appendix 7.1 Dry matter (mg pot$^{-1}$) of ryegrass shoots for
the three harvests 228

Appendix 7.2 Potassium uptake (less control) by ryegrass
tops from the soil separates for the 3 harvests
(µg pot$^{-1}$) .. 229
CHAPTER 1

INTRODUCTION

1.1 THE PURPOSE OF THE STUDY

Potassium (K) is a major essential nutrient required for pasture and crop production in New Zealand. Not only is it taken up by plants in higher amounts than other cationic nutrients but also acts as a chemical traffic controller, regulating the movement of other nutrients in the plant system. Thus where a reduction in the supply of K from the soil is likely to limit plant growth and this reduction is of economic importance, K fertilizer application is undoubtedly warranted.

There has been an increasing demand for K fertilizers in New Zealand over the last two decades due primarily to the demands of increasing production levels under conventional farming, and the increasing area of soils used for more intensive production such as dairying, arable and horticultural crops. It has been calculated that soil K reserves are being depleted at an annual rate of approximately 226,000 tonnes, which is equivalent to an average loss rate of 11 kg K ha⁻¹ yr⁻¹ over 20.5 million ha (White, 1991). Hence, there is good reason for farmers and growers to be concerned about the future sustainability of K reserves in the soils of New Zealand.

During 1992-1993, New Zealand imported 214,284 tonnes K fertilizers to the value of $57 million (Imports Monthly, June 1993). This was $24 million more than the country spent on K fertilizers in 1985-86 when an average of 155,000 tonnes K fertilizers, worth $33 million, was imported into the country (Williams, 1988). Importation is expensive to both the farmer and to the nation and, therefore, it is necessary to ensure rational and efficient use of K fertilizers.

Currently, in New Zealand, the potassium fertilizer requirement for any pastoral farming system can be estimated using the model developed by Cornforth and Sinclair.
This model, called the "Computerised Fertilizer Advisory Service model" (CFAS model), takes into account the annual gains (supply) and losses of K that occur for an individual farm. The difference between the estimated supply and loss is the amount of fertilizer K that should be applied to the farm with the objective of maintaining productivity at the existing stock rate.

The usefulness of the CFAS model depends on its accuracy in estimating K supply and loss. Williams (1988) addressed the matter of K loss and presented an improved method for its estimation in dairy farming. This current study addresses the K supply component of the CFAS model.

In the CFAS model the soil K supply is assessed partly by a soil test and partly by an assigned value for long term K supply. The soil test (quick test K, QTK) measures the solution (K_s) and a proportion of the exchangeable (K_ex) pool, and the assigned value for long term K supply (reserve K, K_r) is an estimate of the non-exchangeable (K_{res}) which will become available annually. These values (low, 0.10; medium, 0.30; and high, 0.70 meq %) are assigned on the basis of soil genetic group. As a consequence, while the soils that belong to a particular soil genetic group or subgroup may have different QTK levels (which are highly variable) they are presently all deemed to supply similar amounts of K_{res}.

To date few studies have been conducted to evaluate the accuracy of using the exchangeable (QTK) and non-exchangeable K (K_r) parameters of the soil supply component of the model to estimate annual soil K supply. There is circumstantial evidence (Williams et al., 1986; Williams et al., 1990) that the model underestimates the soil K supply for soils with low quick test values but which contain K reserves rated as "medium". For soils of this type, the supply of K from non-exchangeable K sources is often sufficient to balance the K losses. An example of this situation is the Massey University No. 4 dairy farm, which is on a yellow-grey earth soil (low QTK and medium K_s soil). Over a period of years there was little indication of a depletion of the quick test values on this farm despite no added K fertilizers (M.J. Hedley, pers. comm.), and there has been little or no measurable response to K fertilizer by pasture
(P.E.H. Gregg, pers. comm.) yet the CFAS model estimates that K fertilizer is required.

Studies on the K status of New Zealand soils have so far dealt mostly with a variety of genetic soil groups covering a wide range of reserve K levels. Few attempts have been made to assess the K status of soils within a specific genetic group.

The purpose of this study is to gain a better understanding of the non-exchangeable K supply of yellow-grey earths and related soils, with the expectation that the information gained can be used to address some of the problems identified above.

1.2 THE STRUCTURE OF THE STUDY

The thesis comprises of 10 chapters.

Chapters 2 and 3 present a review of literature, and the common methods and methodology used in the thesis, respectively.

The first major objective of the study aims to test the hypothesis that soils within a given soil group, and hence with a single assigned value for the supply of K_{nex}, do in fact supply similar amounts of K_{nex} for plants. The glasshouse experiment described in Chapter 4 addresses this objective. In Chapter 5 an attempt is made to explain the variations in the K_{nex} supply of the soils used in the glasshouse experiment. A laboratory experiment based on the "threshold K level" concept of Datta and Sastry (1991) is described.

In Chapter 6, K extracted by different chemical methods is correlated with the K taken up by plants in the pot experiment (Chapter 4). Here the objective is to determine the most suitable K extraction method. Once it is demonstrated that a particular method is most suitable, that method is used to assist in determining the supply of K_{nex} from the sand, silt and clay separates. Chapter 7 addresses this issue and describes an "agar pot trial" that is carried out.
In Chapter 8 the K-bearing mineral contents of the soils obtained by mineralogical studies are considered in relation to the K_{max} supply. This chapter is sequential upon the information presented in Chapters 2, 4, 6, and 7.

In Chapter 9 some practical implications of the variations in the soil K supply parameter of the CFAS model are addressed.

In Chapter 10 the overall results of the study are assessed and summarised.
CHAPTER 2

REVIEW OF LITERATURE

2.1 INTRODUCTION

Potassium was recognised as an essential nutrient for plant growth by von Liebig (1840). Since then it has been studied extensively in both soils and plants and comprehensively reviewed by Reitemeier (1951), Arnold (1960 and 1962), Rich (1968), Metson (1980), Lee and Metson (1981), Sparks and Huang (1985), and Sparks (1987). Given the vast amount of literature available it is not the intention of the present review to cover all the information. Rather this review attempts to provide the reader with a general background to the different forms of soil K and the dynamic equilibria between them, the release and fixation of K by soil components, the methods of assessing K releasing power and K supplying power, the concepts for making K fertilizer recommendations, and the method of predicting the K fertilizer requirements of New Zealand pastures and crops.

2.2 FORMS OF SOIL K

Potassium exists in four forms in soil (Fig. 2.1). In order of increasing availability to plants these forms are structural, fixed, exchangeable, and solution K (Sparks, 1987). Organically bound K is relatively unimportant in mineral soils. The boundaries for the mineral forms are arbitrary and the amount of K available in each form at a given time depends on many factors including plant K uptake, fertilizer additions, crop and leaching losses and soil processes. Thus the amount of K in each form should be related to the method of determination (Grimme, 1985).

The nature of these forms has been established using a variety of chemical and instrumental techniques (Sparks, 1980; Martin and Sparks, 1985), but in the field distinct boundaries do not exist (Sharpley, 1990).
Fig. 2.1 The Dynamic Equilibria Between the Forms of Soil Potassium

A - Adsorption
D - Desorption
F - Fixation
R - Release
W - Weathering

Crop Residue Manure
Fertilizer K
Animal K
Soil Solution K
Leaching
Plant Uptake
Clay Minerals
Organic Matter
Intergrade Clays
Vermiculite
Amorphous Clays
Weathered Mica
Feldspar
Volcanic Glass
Mica
Weathering
Fertilizer K

Exchangeable K

Fixed K

Non-exchangeable K

Structural K
2.2.1 Structural K

Structural K is variously called mineral K, unweathered K, native K, matrix K, or inert K. It constitutes the bulk of the total K in most soils (Metson, 1980), the amount depends on the K composition of parent rocks and the stage of development of soils (Sparks and Huang, 1985). Structural K is bonded covalently within the crystal structure of the K bearing soil primary minerals such as mica, feldspar and volcanic glass (Schroeder, 1974; Tisdale et al., 1985). These minerals are found principally in coarse size fractions (sands and silts) of soils (Metson, 1980). When physically and chemically altered (either by edge, or wedge/layer or surface weathering) secondary layer silicates are formed, some of which may have K present in the crystal structure.

Micas, commonly muscovite and biotite, are layered minerals of silica and alumina that contain K⁺ ions bonded to oxygen ions between the layers. Feldspars, including orthoclase and microcline, consist of a three dimensional honeycomb framework of linked silica and alumina with K acting as a balancing cation heterogeneously dispersed throughout the structure (Sparks, 1987). The composition of volcanic glass is often similar to feldspars but the structure is disordered and amorphous to x-rays. In New Zealand, micaceous minerals are mainly found in the clay fractions of brown-grey earths, yellow-grey earths, and the less weathered yellow-brown earths, feldspars are found in the sand and silt fractions of most soils, and volcanic glass mainly in the yellow-brown loam (basic volcanic glass) and yellow-brown pumice (acidic volcanic glass) soils (Fieldes and Swindale, 1954).

The K in the structures of these minerals is not immediately available for plant growth, but becomes available as a result of weathering. The general sequence of weathering of K-bearing primary minerals in soils is depicted in Fig. 2.2 and has been described by Tributh (1987). A similar sequence was also proposed by Fieldes and Swindale (1954) for the zonal soils of New Zealand. Weathering of micas results in the formation of illite, vermiculite, smectite, and transitional clay minerals. Feldspars and volcanic glass weather to X-ray amorphous hydroxides together with clay minerals such as halloysite (Kirkman, 1981).
Fig. 2.2 The Dynamics of Weathering of Primary Minerals

Decrease of particle size and lowering of K content

- Muscovite
- Weathered hydrous mica
- Illite
- Transitionary clay minerals
- Vermiculite
- Mixed layered silicates
- Smectite

K (%) ~10 6-8 4-8 ~3 <1 <1 <1
d (nm) 1.0 1.0 1.0 1.0-1.4 1.4 1.4-1.8 1.8

Increase of water content, specific surface area, and cation exchange capacity

- Feldspars
- Volcanic glass

Basic
Acidic

Slow
Fast
Slow

Amorphous hydroxides
During the process of weathering the size of particles is reduced, K is depleted (from about 10% in micas to less than 1% in smectite) and the inter lattice spacing increases from 1.0 nm (micas) to 1.8 nm (smectites). Clay mineral formation may not always be in the same sequence as shown in Fig. 2.2 since soil conditions may favour the formation of one mineral over another. For example, transformation of illite to smectite is favoured under conditions of high pH, whereas at lower pH values interstratified minerals are favoured (Tributh et al., 1987).

In New Zealand soils, the dominance of either micaeous minerals, or smectite, or 1:1 kaolin is influenced by the stage of weathering as well as inheritance from the parent materials. For example, the least weathered zonal soils (brown-grey earths) contain weakly-hydrated mica, illite, clay-vermiculite, and amorphous hydrous oxides of Al and Fe (Fieldes, 1968). With increased weathering and leaching, 2:1 clays are transformed to K-depleted clay vermiculite, and then to 1:1 minerals (metahalloysite and kaolinite). Thus in podzols and the podzolized yellow-brown earths, kaolinite and secondary silica are the main clay-size minerals (Fieldes and Taylor, 1961). On the other hand, the mineralogical features of the intrazonal soils (e.g., yellow-brown pumice soils, yellow-brown loams, red loams, brown loams) are largely inherited from the parent materials (rhyolitic or andesitic or mixed tephra, or scoriaceous basalt or flow basalt), modified by soil development (Fieldes and Taylor, 1961) and hence contain either allophane, mixed amorphous hydrous oxides, hydrous feldspars, metahalloysite, Fe oxides, crystalline oxides, or kaolinite. Layer silicates with 2:1 structure are either low or absent in these soils.

The 2:1 micaeous minerals are predominant in controlling the relationship between forms of K. Not all New Zealand soils, however, are dominated by these minerals. For example, the more strongly weathered and leached 'zonal' soils, and the 'intrazonal' soils derived from parent materials of volcanic origin with low mica content all have low K status and hence may be K deficient (Lee and Metson, 1981) for pasture or crop growth.
2.2.2 Fixed K

Fixed K has been defined as that fraction of soil K not bonded covalently within the crystal structure but rather found between adjacent 2:1 layers (bridging them by electrostatic bonds) of weathered micaceous minerals (Sparks and Huang, 1985; Martin and Sparks, 1985).

Due to the affinity of K⁺ for clay surfaces, several types of adsorption (exchange) sites for K on layered clay minerals (Fig. 2.3) have been postulated (Mengel and Kirkby, 1987; Goulding, 1987). Those on planar surfaces (p-position) have low K⁺ selectivity (non-specific), those on edge (e-), wedge (w-), step (s-) and crack (c-) adsorption positions have medium K⁺ selectivity (medium-specific), and those at interlayer sites (i-position) have high K⁺ selectivity (high-specific). The K present in the e-, w-, s-, and c- positions (Fig. 2.3) can be referred to as fixed K. The K in the i-positions of clay sized (weathered) micas and the K in amorphous clays can be regarded as native or strongly fixed K due to the position deep in the structure of the clay mineral. The differences in the mechanisms by which K is held at adsorption sites of the mica-like group of minerals (hydrous mica, illite, and vermiculite), and the smectite/kaolinite group are well documented (Bar et al., 1987).

The amount of fixed K in soil at any given time depends on the particle size distribution, types and amounts of the clay minerals, and addition and removal of K. While addition of K to soils containing K depleted interlayer sites (e.g., vermiculite) results in strong K adsorption (fixation), removal of K from the soil by either plant uptake, leaching or microbial utilisation could result in release of K from any of the sites holding this form of K. This fixed K along with the native or strongly-fixed K, forms the main K reserve and buffer of the pedosphere and is generally not removed by extractants used to determine exchangeable K (Kₑₑ). It is therefore known as the "non-exchangeable K" (Kₑₑ) or "reserve K". Soils containing 1:1 clay minerals contain less Kₑₑ due to the absence of K-specific sites in 1:1 clay minerals and hence all the Kₑₑ is in the unweathered minerals (structural K). Thus all soils which contain either structural K, or fixed K, or both, can be regarded as containing Kₑₑ. The basic
Fig. 2.3 Model of a 2:1 layer-silicate clay showing 1.0 and 1.4 nm layers and planar (p), edge (e), interlayer (i), wedge (w), crack (c), and step (s) exchange sites (Goulding, 1987)
difference between fixed K and structural K is that the release of fixed K is reversible whereas the release of structural K is irreversible.

From the above discussion it is concluded that exchangeable K and fixed K are found predominantly in the clay fraction and that structural K is found mostly in the unweathered primary minerals of the sand and silt fraction.

2.2.3 Exchangeable K (K_{ex})

Exchangeable K (K_{ex}) is the K sorbed at exchange sites, mainly on clays and humic colloids. In clays, K_{ex} is held at non specific adsorption sites (p- and e-positions) by bonds of varying strengths. Usually the contribution of K_{ex} to the total K content of soils is below 2% i.e., between 10 and 400 ppm (Schroeder, 1974). In the major dairy farming soils of New Zealand K_{ex} levels (measured by the NH$_4$OAc method) account for between 1 and 5% of the total soil K content (Williams, 1988).

For all soils, especially those that contain significant amounts of micaceous minerals, K_{ex} will be in dynamic equilibrium with the fixed K and also in equilibrium with K in solution (K_s).

2.2.4 Soil solution K (K_s)

The K in the soil solution is immediately available for plant growth, and depletion in K_s below a certain level results in a rapid replenishment from K_{ex}. Thus K_s equilibrates with K_{ex} and the two forms are closely interdependent.

2.3 POTASSIUM EQUILIBRIA IN SOILS

Equilibria exist between the forms of K in soils. An equilibrium is reached and said to be dynamic when the rate of the forward reaction (fixation or adsorption in Fig. 2.1) is equal to that of the backward reaction (release). Equilibria appear to favour solution K. When the K in equilibrium soil solution is depleted the rate of its replenishment
(intensity) depends on the clay composition and the magnitude of release (quantity) depends on the clay content and humus that acts as buffering agent (McLean, 1978). The equilibria are therefore more dynamic in soils which contain significant amounts of 2:1 layered silicate minerals.

When the concentration of K_s is lowered it is rapidly replenished from the K_{ex} form, which in turn is more slowly replenished from fixed and/or structural forms (K_{res} or reserve K). The equilibrium between solution and K_{ex} is controlled to a large extent by the degree of K bond strength of the adsorption sites in the p-positions. For example, the adsorption sites of 2:1 clay minerals have high K bond strength (i.e., they bind K strongly) and that of organic matter and kaolinite (a 1:1 mineral) have low K bond strength (Mengel and Kirkby, 1987). On the other hand when excess K is added to the K_s to K_{ex} equilibrium the K_{ex} component tends to remain the same thus the added K tends to move into the K_{res} pool. The equilibrium system is therefore dependent on the operation of two processes viz, K release and K fixation.

2.4 RELEASE OF K FROM PRIMARY (STRUCTURAL K) AND SECONDARY (FIXED AND EXCHANGEABLE K FORMS) MINERALS IN SOILS

Release of K from structural forms to either fixed, exchangeable or soluble forms in soil is irreversible as far as K-bearing primary minerals, such as feldspars and volcanic glass, are concerned. Most of the K released from the primary minerals in the weathering process is adsorbed by the secondary clay minerals.

Release of K from feldspars initially proceeds rapidly at the surface, but as the silica-alumina residual layer increases in thickness the rate of release of K from deeper in the mineral is reduced and finally prevented (Correns, 1963; Rasmussen, 1972). K release from feldspars also involves lattice destruction (Robert, 1986). Feldspars, however, occur most commonly in the silt and sand fractions of soils and are therefore less important sources of K than micas.
The rate of release of K from acidic glasses is considered to be low, whereas it is high from basic glasses, as in young soils from basalt (Metson, 1968a and 1968b). In New Zealand, volcanic glasses are the principal K bearing primary minerals in the yellow-brown pumice soils from rhyolitic ash and pumice.

Structural K release from primary micas on the other hand is not necessarily completely irreversible. This is because weathering of primary micas results in transformations in the silicate layers often accompanied by a decrease in particle size and also by an expansion of the b-axis. As a consequence, 2:1 weathered micaceous minerals with different adsorption (exchange) sites (Fig. 2.3) are formed. These sites control the relationship between the forms of K and enable clay minerals to exhibit varying degrees of K fixation and release.

Fixed K in the secondary clay minerals (e.g., weathered mica) is also vulnerable to release by further weathering. The release depends on the K concentration in the bathing soil solution, each mineral having a different critical concentration below which release occurs (Talibudeen, 1975). The release occurs basically by an exchange process involving hydrated Na\(^+\), Mg\(^{++}\), and Ca\(^{++}\) which are larger in size than K\(^+\) followed by partial expansion and dissolution of silicate layers (von Reichenbach, 1972; Martin and Sparks, 1985; Mengel and Kirkby, 1987). The replacing ions enter the unexpanded interlayers, which results in the formation of frayed edge or wedge zones (typical of weathering micas) which favour diffusion of K out of the mineral to either exchange sites on the outer parts of the clay particles or directly to the soil solution. Rausell-Colom et al. (1965) and Scott (1968) have also presented evidence for very slow solid state diffusion of non-hydrated K\(_{\text{ex}}\) ions out of the interlayer space and simultaneous inward diffusion of exchanging cations.

The proportion of wedge zones decreases in the order micas > illite > vermiculite > smectite (Arifin et al., 1973). This reflects the decreasing proportion of K in the i- and w- positions in these minerals. The amount and the release of fixed K in soils therefore depends on the clay types present and the rate of K release from them.
The rate of release of fixed K is, however, a diffusion controlled process characterised by a linear relationship between the percent of K released versus the square root of time (Feigenbaum et al., 1981; Martin and Sparks, 1985; Sparks, 1985; Dhillon et al., 1989). The difference in K concentration between the newly-mobile, just-released K and that in the external solution provides the driving force for this diffusion (Quirk and Chute, 1968; Martin and Sparks, 1985).

2.5 POTASSIUM FIXATION

The reverse of release i.e., the reverse of weathering, during which the larger cation species are replaced from w-positions by K⁺, is called fixation. This occurs in the K-specific binding sites (K-selective sites) of the interlayer zone of the K-depleted 2:1 clay minerals. The K⁺ ions are geometrically and ionically entrapped in the di-trigonal facing holes of the interlayer oxygens between the unit cells of expanding 2:1 layer silicates (Beckett and Nafady, 1967; Arifin et al., 1973). The entrapment causes the collapse of the layer structure to the 1.0-1.2 nm d(001) spacing. For example, when Ca-saturated smectite or vermiculite is treated with K, the d(001) spacings collapse to 1.2 nm and 1.0 nm, respectively (Sawhney, 1969). This type of fixation may be visualised as an ion exchange reaction.

The second fixation mechanism, which is relatively unimportant, is considered to happen via formation of insoluble K compounds, especially aluminosilicates (Shaviv et al., 1985). At high pH K may precipitate with alumina and silicates (Volk, 1938).

The clay type is considered to be the dominant factor that determines the course of fixation. In general, soils containing micas, hydrous micas, or vermiculites have the highest fixation capacities, while smectitic and kaolinitic soils have low capacities (Shaviv et al., 1985). Differences in the K fixation properties of soils also arise due to the presence or absence of wedge zones in the weathered micaceous minerals. The effect of wedge zones in K fixation is determined by their position and number in the 2:1 clay minerals (Arifin et al., 1973). Fixation would be less effective if the wedge zone is located near the edge of the particle and more effective if penetrated deep within
the particle. The number of wedge zones would diminish according to the weathering sequence in the order micas > illite > vermiculite > smectite as mentioned earlier.

Assessment of K fixation in heterogenous soils is more complex than the above considerations because soils may contain numerous types of K-depleted and partially expanded clay minerals of varying particle size and crystallinity, which have different adsorption characteristics. As Martin and Sparks (1985) pointed out, it may be logical to assume that if fixation takes place, K release also occurs, but the reverse may not always be true.

It is doubtful if K fixation in the disordered micas (weathered / expanded / mixed / interstratified) results in complete reversion of the mineral phase to pedogenic mica having 1.0 nm basal spacing (Bertsch and Thomas, 1985; Tribu th, 1987). Arifin et al. (1973) suggested that reorganisation is brought about by progressive entrapment of K+ ions in the selective adsorption sites of the wedge zones of the disordered micas. As a result, the silicate layers progressively collapse and rearrange to a mica-like structure with increased entrapment of K+ ions. They pointed out that the ease of reconstitution of the mica-like lattice by K fixation would be determined by the availability of wedge zones, the degree of crystallinity, and the interlayer charge density. Intensive weathering may result in fewer wedge zones, less crystallinity, and lower interlayer charge density of micas.

In summary K release and fixation in soils is chiefly a function of mineralogy i.e., the amounts and types of primary and secondary minerals present. Soils that are high in kaolinite and smectite release only small quantities of K_{mex} whereas soils containing mica-like and vermiculite minerals release substantial amounts of K_{mex} to plants. The minerals that determine whether K is released or fixed have been listed by Rich (1972) and Goulding (1987). Since K release and K fixation fundamentally involve ion exchange reactions, the factors that influence one process also influence the other. These factors have been reviewed by Rich (1972), Sparks and Huang (1985), Martin and Sparks (1985), and Goulding (1987) and include wetting and drying, freezing and thawing, plant roots, protonation, manuring, soil structure, rainfall and temperature.
2.6 PLANT AVAILABILITY OF K IN RELATION TO RELEASE/FIXATION PROCESSES

With respect to soil-plant relationships, a number of vague terms have been used liberally in the literature. Pertinent examples include available K, K availability, K releasing power, and K supplying power. "Available K" (meaning quantity) is meaningful only if either the time during which it can be made available to plants or the chemical method by which it is determined is stated because all the forms of K are eventually plant available.

"Potassium availability", as the name implies, describes a complex situation and denotes a quality dependent on soil properties as well as plant characteristics (Grimme, 1985). It reflects the overall "availability" of K to plants. Where "availability" is poor, K uptake by crop or pasture is also low and unsatisfactory yields are obtained. It therefore includes other factors in addition to the "available K". Andres (1990) listed a number of site factors on which the availability of soil K for plant uptake depends.

The soil factors that influence K availability include factors that control K flux rates/K diffusion viz, temperature, water content, tortuosity, and K concentration in the soil solution, factors that influence exchange equilibria viz, amounts and proportions of K in relation to other cations, K buffering capacity, the rate of K release from K_{ex} to solution form, and K fixation (Haby et al., 1990). The soil factors also include soil solution parameters and plant water use related to mass flow. Plant factors include plant type and genetics, age, K requirement, transpiration rate, root morphology and growth rate, K absorption mechanism of the root (Haby et al., 1990). K availability therefore is difficult to quantify and available K is only one of the many factors contributing to K availability under field conditions. Its quantity is dependent on both soil and plant factors and a single clear-cut value for K availability is not possible.

"Potassium releasing power" refers to the change of K_{ex} to K_{e} and K_s and the release of K_{e} to K_{r}. It denotes the total availability from the soil, not the total uptake of K, because the entire amount of K that was released may not be used by the plants (some
may be lost by leaching and/or by simultaneous fixation by K-specific sites in the weathered micaceous minerals). Hence any chemical method denoting "available K" would reflect the K releasing power of soils. On the other hand any biological method denoting "available K" reflects "K supplying power". Thus K supplying power could be equated to the actual uptake of K by the growing plants (Pearson, 1952; Ramanathan and Krishnamoorthy, 1982). Plant growth studies on available K (actual uptake of K by plants) are really about the K supplying power of soil and chemical extractions are about K releasing power.

Consequently, with respect to plant performance (reflecting K supplying power), it is not the total amount of K that can be released but rather the rate of release and the K concentration maintained in the soil solution at the root zone that is important. Both of these must be high enough to support good plant growth and to prevent K deficiency symptoms. They are influenced not only by exchange processes between solid (K-bearing minerals) and liquid (soil solution) phases, but also by transportation of water towards the roots. Furthermore, when the level of K in the soil solution is low, release from K_{ex} will occur and when it is high the reverse (fixation) is true (section 2.3). This is due to the dynamic equilibria that exist between the various forms of K (Martin and Sparks, 1985), which indicate soil minerals can function both as K sources and K sinks. Plant root uptake of K disturbs the dynamic equilibria and favours the flux of K towards the roots.

Significant increases of K concentration in the soil solution will occur only after the K selective adsorption sites have been saturated with K. There are many examples where K fertilization did not have a positive effect on yield (Richards et al., 1988) because normal application rates did not raise the K concentration in the soil solution by a significant amount.

Potassium availability to plants is therefore mainly a function of the K diffusion flux that a soil can maintain towards the plant roots (Barber, 1962; Grimme, 1974; Kuchenbuch, 1987). Usual K levels in soil solution are inadequate to supply sufficient K by diffusion flux. A sufficiently high flux rate of K, however, is only attained and
sustained by a sufficiently high concentration of solution K backed up by either high quantities of \(K_{eq} \) and/or \(K_{net} \) or by the addition of K fertilizers.

2.7 METHODS OF ASSESSING PLANT AVAILABLE K

Plant available K can be assessed either by plant growth studies or by simple chemical extraction methods or a combination of both procedures. When assessed by plant K uptake studies, it can be termed "K supplying power" whereas by extracting the soil with one or more extractants, a chemical index of available K (K releasing power) is achieved (section 2.6). The uptake of K by plants, however, is the true index of plant available K.

Consequently, while "plant available K" can be equated to the K supplying power of the soil, it can only be related to the K releasing power. Thus both K releasing power and K supplying power are measures of the ability of a soil to supply K to plants, but as indicated in section 2.6 they have different meanings. The reliability of K releasing power as an index of plant available K depends on how closely its value, in absolute terms, approaches the actual amount of K required or taken up by plants (K supplying power).

The annual K uptake of an average grass-clover pasture in New Zealand was estimated to be in the range of 225-280 kg ha\(^{-1}\) (During, 1984). Unfortunately none of the existing methods of measuring K releasing power match these levels of K uptake because extraction of K by reported chemical methods does not mimic extraction by plants. Soil chemical methods operate by different mechanisms. For example, K uptake during plant growth is a dynamic process with periods of K depletion in the root zones and release of \(K_{eq} \) to both \(K_{eq} \) and solution forms by K-bearing soil minerals. The situation is further complicated in grazed pastures where K is recycled (redistributed) at a faster rate than under cropping. On the other hand, methods used for measuring K releasing power are mostly based on equilibration processes. Furthermore, they do not directly account for the soil processes and the influence of soil, site, and climate which control K availability. Hence any chemical procedure to
be used as an index of K supplying power, though not exactly equating to K uptake, must at least provide a good relationship (correlation) between test results and the actual K uptake during the growing season for a specific crop (Haby et al., 1990).

2.7.1 Methods for assessing K supplying power

Methods used to study soil K supplying power are mostly biological and adopt exhaustive cropping experiments either in the field or in pots. They involve growing plants to K exhaustion, and measuring cumulative K uptake to get a direct measure of K supplying power. To get additional information they are often conducted in association with chemical extraction methods (mainly the NH$_4$OAc method of measuring K$_{ex}$). For example, the K supplying power (K uptake) can be apportioned into two categories based on depletion of K$_{ex}$ due to cropping. The categories are K$_{ex}$ supplying power (K$_{ex}$ uptake) and K$_{nex}$ supplying power (K$_{nex}$) and they reflect K uptake from soil K$_{ex}$ and soil K$_{nex}$ sources, respectively. The K$_{nex}$ supplying power is calculated as the difference between the K$_{ex}$ releasing power (NH$_4$OAc extractable K) plus added fertilizer K at the start of the experiment, and plant uptake plus the K$_{ex}$ releasing power at any time period within the experiment (Grissinger and Jeffries, 1957; Tabatabai and Hanway, 1969; During and Campkin, 1980; Havlin and Westfall, 1985; Richards et al., 1988; Tarafdar and Mukhopadhyay, 1989; Badraoui et al., 1992; Portela, 1993).

A positive value of K$_{nex}$ supplying power in a field experiment indicates a source of K (K$_{nex}$, and/or K$_{ex}$ below the sampling depth) for plants while a negative value indicates that there is a sink for K (fixation, leaching, or runoff). In a pot experiment, however, the only probable source and sink is the K$_{nex}$ (reserve K). Therefore, if the K$_{nex}$ supplying power is positive, K release has occurred and if negative, K fixation has taken place.

There are important environmental differences between plants growing in the field and in pots (Arnold and Close, 1961; Arnold, 1970; Feigenbaum and Kafkafi, 1972; Goulding, 1987; Johnston and Goulding, 1990; Portela, 1993). These differences account for the divergence between the K supplying power as measured in the field and
that measured in the pot, and they indicate that results from pot experiments are
difficult to relate to the field situation. Arnold (1970), however, rightly criticised the
use of pot trials for other than soil comparative purposes, on the ground that the
intensity of soil exploration was great (10-20 times that under field conditions) and that
K was depleted to very low exchangeable K levels which were irrelevant under field
conditions. Weber and Grimme (1986) suggested that one year of intensive cropping
with ryegrass was approximately equivalent to 10-15 years of normal cropping in the
field. Despite these reservations the pot trial technique is widely used because it is
controlled and very useful for comparing soils under standardized environmental
conditions.

The standard methods of pot culture are Chaminade, Stanford and DeMent, and
Neubauer (Goulding, 1987). Culture vessel techniques using agar-gel are becoming
popular for measuring K supplying power at rhizosphere scale of investigation
(Kuchenbuch and Jungk, 1982; Hinsinger et al., 1992; Hinsinger et al., 1993;
Hinsinger and Jaillard, 1993). The K supplying power (Kex and Knex) of a soil may,
however, vary in magnitude depending on the pot trial technique used. The two
important factors that contribute to this variation are: (i) soil to plant ratio, and (ii)
cropping period.

Both field (Lee and Metson, 1977; During and Campkin, 1980) and pot (Haylock,
1956b; Campkin, 1972; Lee and Gibson, 1974; During and Duganzich, 1979; Jackson
and During, 1979; Jackson, 1985) trials have been used to assess the K supplying
power of New Zealand soils. The K supplying power to a lucerne crop over 3 years
in a field trial on a soil from the Spring Creek series (flood-banded fine alluvium
derived from greywacke) was reported to be 571 kg K ha⁻¹ (Lee and Metson, 1977).
This would be considered a high value for this region. Data from the first year of a
national series of K trials on pastures (Campkin, 1983) revealed that the K supplying
power of some YGE soils in the South Island (Christchurch and Timaru regions) ranged
from 92 to 282 kg ha⁻¹. In contrast, During and Campkin (1980) measured the K
supplying power of some North Island soils derived from volcanic and sedimentary
parent materials and identified the sources and sinks of Knex. The Knex supply to
ryegrass (K_{ex} supplying power) in this study was as high as 500 kg ha$^{-1}$ yr$^{-1}$ with a more usual rate of supply of 200-300 kg ha$^{-1}$ yr$^{-1}$. It is inferred that there is a wide range of K supplying power of New Zealand soils.

Potassium supply measured by pot trial methods is more often used as a tool to compare K supplying abilities of different soils and to further evaluate soil chemical methods for assessing K releasing power. The choice of the method (field or pot) for measuring K supplying power therefore depends on the objective of the research.

2.7.2 Methods for assessing K releasing power

In contrast to the methods used to assess K supply, which depend on the growth of plants, the assessment of K releasing power is based on chemical extraction methods, several of which form the basis of soil testing methods. Extraction methods depend on the solubility of soil K in different reagents including water, salt solutions or mixed salt solutions, organic and inorganic acids of varying strengths and temperature. Depending upon the activity of the extractants and the method, the amount of K extracted is variable. For example, strong acids extract a greater proportion of soil K than weak acids and NH$_4^+$ containing extractants (Metson, 1980; McLean and Watson, 1985).

Although comprehensive reviews on the methods of K releasing power have been carried out by numerous investigators (Doll and Lucas, 1973; Grimme and Nemeth, 1979; McLean and Watson, 1985; Martin and Sparks, 1985; and Goulding, 1987), they were inadequate in categorising these methods based on the form of soil K that is measured. Goulding (1987) discussed the most widely used and/or useful methods in relation to their advantages and disadvantages.

2.7.2.1 Methods for assessing K_{ex} releasing power

Methods for assessing K_{ex} are based on the use of cations such as NH$_4^+$, Ca$^{++}$, Ba$^{++}$, Mg$^{++}$, and Na$^+$ which replace K$^+$ on soil exchange sites (p- and e-). They also measure K$^+$ in the soil solution. Of all the methods, the M NH$_4$OAc (pH 7) procedure
has been most widely used. James and Weaver (1975) outlined the basis for \(\text{NH}_4\text{OAc} \) becoming the classical procedure for determining \(K_{ex} \), but Goulding (1987) warned that "the use of this reagent may diminish with wider availability of instrumental techniques in which the acetate ion interferes with detection".

There are reports that \(\text{NH}_4\text{OAc} \) "overestimates" the amount of K that is truly present at the exchange sites (p- and e-) of base-saturated soils with appreciable amounts of vermiculite (Martin and Sparks, 1983; Richards et al., 1988; Richards and Bates, 1989; Simard et al., 1989). This "overestimation" of \(K_{ex} \) by \(\text{NH}_4\text{OAc} \) is in relation to a comparison with \(K_{ex} \) release measured by a Ca salt, and in fact is a result of the smaller \(\text{NH}_4^+ \) ions exchanging with K located at both the soil exchange (non-specific) and fixed (specific/wedge) sites whereas \(\text{Ca}^{++} \) replaces K at non-specific sites only.

"Overestimation" is probably not the best word in the above context because no two methods of assessing \(K_{ex} \) releasing power can be comparable in absolute terms. Rather, \(K_{ex} \) released by \(\text{NH}_4\text{OAc} \) is better referred to as "\(\text{NH}_4\text{OAc} \) extractable \(K_{ex} \)" and that released by Ca salts as "Ca extractable \(K_{ex} \)". Thus "K releasing power" is best considered as being specific to the extractant and the technique.

Dilute solutions of strong acids such as 0.1 M HNO\(_3\) have been used as an alternative for assessing \(K_{ex} \) releasing power (Haylock, 1956a) but the H\(^+\) ion may displace more K than is truly exchangeable.

2.7.2.2 Methods for assessing \(K_{ex} \) plus \(K_{net} \) releasing power

There are methods that are used as a single measure of K status that include both \(K_{ex} \) and \(K_{net} \) forms and use only one extractant. They involve either treating the soil with acid e.g., boiling with M HNO\(_3\), continuous leaching with 0.01 M HCl, or with a salt precipitant (sodium tetraphenyl boron, NaTPB). Of these, single extraction with boiling nitric acid is used widely (Pratt, 1951; Grissinger and Jeffries, 1957; Campkin, 1972; Wood and Schroeder, 1992).
In New Zealand K_{ex} plus K_{nex} releasing power has been assessed for a wide range of soils using both HNO_3 (Campkin, 1972) and NaTPB (Jackson, 1985; Williams et al., 1986). Jackson (1985) gave a list of workers who used NaTPB extensively in both clay mineralogical and agronomical studies.

2.7.2.3 Methods for assessing K_{nex} releasing power

Methods of assessing only K_{nex} releasing power involve more than one determination. The computation method, subtracting the K_{ex} release from the K extracted by strong acids, usually M HNO_3, is the most popular. Thus a minimum of two measurements (one to measure K_{ex} release and another to measure K_{ex} plus K_{nex} release) are made before computation.

Several workers have proposed methods to calculate the amount of K_{nex} released (Pratt, 1952; Haylock, 1956a; Metson et al., 1956; Campkin, 1972; Hay et al., 1976; Knudsen et al., 1982; Al-kanani et al., 1984; Richards and Bates, 1988; Richards and Bates, 1989; Simard et al., 1989). The methods differ in the methodology used to measure K_{ex} releasing power and in the methodology to extract K by HNO_3. For example Pratt (1952) measured K_{ex} by a leaching solution (acetate salt of NH_4 and Mg) and subtracted this value from the K extracted by HNO_3. The methods of Haylock (1956a) and Metson et al. (1956) were similar in that five successive HNO_3 extractions were used to extract K_{nex} but differ in the methods used to remove K_{ex}. The former used 0.1 M HNO_3 to remove K_{ex} but did not use this value in computing the amount of K_{nex} release. The latter used NH_4OAc to measure K_{ex} and used this in the calculations. Both these methods, however, are based on similar formulae to calculate the K_{nex} released, even though the amount released varied according to inclusion or exclusion of K_{ex} release in the formulae.

The K_{nex} determined by computation methods is variously called step K (Haylock, 1956a; McLean, 1961; Campkin, 1972; Richards and Bates, 1988), K_{int} (Hay, 1971; Hay et al., 1976), Delta K (Metson et al., 1956), wedge K ((Richards and Bates, 1989), K_{tet} (Liu and Bates, 1990) or simply non-exchangeable K (Knudsen et al., 1982).
For convenience, this will be called "step K" in this study. Unfortunately the existing computational methods are tedious and involve additional measurements and/or sequential extractions. The easiest method to use is the K_{int} method described by Hay (1971), and Hay et al. (1976). The K_{int} is the K extracted by boiling 1 M HNO$_3$ (1:100 soil to acid ratio) together with the K included in one further washing with the acid minus the K_{ex} value (measured by NH$_4$OAc). A simpler method would be to eliminate the washing step of Hay's method because this merely extracts additional readily soluble K.

A further extension of the step K method led to the development of yet another method of K_{rre} determination called the K_c/reserve K method (Metson et al., 1956; Metson, 1968a) or the constant rate K (Haylock, 1956a; Richards and Bates, 1988). Blakemore et al. (1987) standardised this method. All the K_{ex} (which can be measured by NH$_4$OAc method) and the more accessible K_{rre} (which can be measured by step K method) is removed before the K_c value is determined. Thus while step K gives the actual amount of the more soluble K_{rre} released (short/medium term) K_c measures the rate of release of difficultly soluble K from K_{rre} sources in the long term (Metson, 1980).

In New Zealand, the K_c method of assessing K_{rre} releasing power is used widely. It was developed as a guide to measure the long term rate of release of K from soil K_{rre}, but not to measure the absolute amount of K_{rre} (Metson, 1980; Lee, 1984). This K_c measurement is meaningful because it reflects the soil mineralogy and gives an indication of the potential K_{rre} release that is inherent in the soil (Lee, 1984). Thus K_c levels are expected to decrease with increasing K depletion of micaceous clays and decrease even further with the predominance of 1:1 layer and oxide clays (Metson and Lee, 1977; Metson, 1980).

The K_{rre} releasing power of New Zealand soils, as measured by the K_c method, ranges from virtually zero to 31.2 mg 100 g soil$^{-1}$ (Metson, 1968b) and was categorised as being low, medium, or high (Metson, 1980; Lee and Metson, 1981; Campkin, 1985). This categorisation was based on the K_c measurements of selected undeveloped soils that broadly represented various New Zealand genetic groups, followed by an arbitrary
descriptive rating (Metson, 1980; Campkin, 1985). The numerical limits used to define the \(K_c \) categories by Metson (1980) are, however, different to those used by Campkin (1985).

Lee and Metson (1981) summarised the extensive information of Metson (1980) on the \(K_{nax} \) releasing power (\(K_c \) method) of New Zealand genetic soil groups. Thus the YGE soils in the North Island region were rated "medium \(K_c \)" and their counterparts in the South Island rated "high \(K_c \)" with respect to their \(K_{nax} \) releasing power (Cornforth and Sinclair, 1984; Campkin, 1985). This rating, however, was not based on \(K_c \) values of all the soils within the YGE group of respective Islands, but on selected soils that were believed to give a reasonable coverage of this genetic group. Nevertheless, a variation in the extent of \(K_{nax} \) release (step K method or \(K_c \) method) would be expected within the soils of both the Islands due to the mineralogy being variable through differences in soil forming factors within each regional YGE group.

In New Zealand, information on \(K_{nax} \) releasing power as measured by the step K method is not as extensively used as information based on the \(K_c \) method of measuring \(K_{nax} \) release. Like \(K_c \), step K values showed wide variations according to genetic soil groups (Metson, 1968b). Haylock (1956a) used step K as a method for detection of K deficient (responsive) and K non-deficient (non-responsive) soils. Metson et al. (1956), Haylock (1956a and 1956b), Campkin (1972), Lee and Gibson (1974), and Hay et al. (1976) appear to be the only workers to have reported the short term \(K_{nax} \) releasing power (measured by step K) in New Zealand soils.

2.7.2.4 Additional methods for assessing both \(K_{ex} \) and \(K_{nax} \) releasing power

These methods were developed principally as tools for understanding exchange processes in soils. They include exchange isotherms (Goulding, 1983; Goulding, 1986; Elkhatib and Hern, 1988), quantity/intensity (Q/I) relationships (Beckett, 1964; Lee, 1973; During and Duganzich, 1979; Sparks and Huang, 1985; Haby et al., 1990; Cervantes and Hanson, 1991; Herlihy, 1992), electro-ultrafiltration (EUF) (Nemeth, 1982; Sparks, 1987; Haby et al., 1990; Herlihy, 1992; Liu et al., 1992), and cation
exchange resins (Lee and Gibson, 1974; Talibudeen et al., 1978; Martin and Sparks, 1983; Havlin and Westfall, 1985). Apart from measuring both K_{ex} and K_{nex}, they also measure the concentration or activity of K in the soil solution. The K_{nex} is, however, indirectly measured as the buffering capacity in some of these methods (e.g., Q/I and EUF).

Cation exchange resins have been employed to investigate K release from soil clay minerals, especially for evaluating kinetics of K_{nex} release using different rate equations (Martin and Sparks, 1983). The end results of these kinetic studies (e.g., K_{ex} and K_{nex} release rate coefficient) indicate the rate of K_{nex} release (low or high) as well as the mechanism of release (which is invariably by diffusion-controlled exchange).

While single equilibrium extractions with cation (Ca$^{++}$ or Na$^{+}$) saturated resins are satisfactory for measuring K_{ex} release power alone, multiple extractions are necessary to build up K release curves that can differentiate K_{ex} (immediate) and K_{nex} (short and long term) releasing powers (Talibudeen et al., 1978; Havlin and Westfall, 1985).

All these methods, however, are deemed to be of little use for practical predictions of K releasing power (Sparks, 1987) because they are expensive and time consuming.

The so-called "universal extractants" (Jones, 1990; Grzebisz and Oertli, 1993) that measure either K_{ex} (e.g., CaCl$_2$) or K_{ex} plus K_{nex} (e.g., Mehlich 3) can also be categorised under the additional methods for assessing both K_{ex} and K_{nex} releasing power.

2.7.3 Relationship between K releasing power and K supplying power

While the above methods of K release give an empirical measure of the likely release of K, their utility under practical field situations would be enhanced if a close relationship could be established between K releasing power and K supplying power of soils. The methods, however, provide little information on the rate at which the soil supplies K to the plants.
The success of any chemical method for evaluating K release depends on the ability to measure K_{nex}, not K_{ex}. This is because plants take up K not only from the K_{ex} form but also from the K_{nex} form, the amounts varying considerably between soils as well as between plant species (Lee and Metson, 1977; Memon et al., 1988). Moreover, all the chemical methods measure more or less similar amounts of soil K_{ex} but varying amounts of K_{nex}. The varying amounts of measured K_{nex} are due to varying strengths of the acid, acid to soil ratios, and boiling times used to assess K_{nex} release.

A great deal of effort has been expended in searching for the method of evaluating K releasing power that most closely approaches K uptake by plants. A linear relationship between K uptake (y-axis) against any method of measuring K releasing power (x-axis) that gives the smallest y-intercept value, and a slope near unity signifying the quantities of K removed, and is more nearly equivalent to K uptake (crop removal) would be best suited to predicting the K supplying power (Garman, 1957). Thus far no one method meets these criteria. The next best way to evaluate the credibility of the methods that measure K release for determining K supplying power is based on the correlation coefficient (r) or percent prediction (R^2) between K release and K supply. If the correlation is high for a particular method of assessing K release it might be expected that the method predicts the trend in the K supplying power of soils but its use should be limited to that range of validity for which it has been adequately tested. In situations where several methods proved to be equally satisfactory, Oertli (1990) suggested that the most efficient one should be chosen.

The neutral molar NH$_4$OAc method of assessing K release is widely used as an index of K release for predicting the K supply of soils. It is, however, more successful for soils where K_{nex} release is insignificant i.e., where K_{ex} is the major source of K available to plants (e.g., volcanic ash soils). For example, in soils dominated by kaolinitic, smectitic, or amorphous minerals any method of measuring K_{ex} releasing power (including the NH$_4$OAc method) may well reflect the K supplying power (Sharpley, 1989). This is because such soils contain very little K in the K_{nex} form compared to micaceous soils which contain copious amounts of K in the K_{nex} form. Since the ability of the plants to take up K from these forms (i.e., K_{nex} supplying
power) is well documented (section 2.7.1), methods which assess K_{ex} release frequently fail to predict the K supplying power in these types of soils.

The so-called "non-micaceous soils" (e.g., kaolinitic soils) frequently contain either small amounts of K selective material (e.g., illite or interstratified minerals) in the clay fraction (Poss et al., 1991) or varying amounts of K bearing minerals in the coarser fractions thus contributing to K_{ext} supply which may be insignificant compared to K_{ex} supply.

Thus in soils with either micaceous or non-micaceous minerals, a chemical method that measures K_{ex} plus K_{ext} forms, or methods that individually assess K_{ex} and K_{ext} releasing powers might better predict the K supplying power of soils than the methods of K_{ex} release alone.

The NH$_4$OAc method of K_{ex} determination has been found to be a poor indicator of the K supplying power for many New Zealand soils because a significant proportion of K extracted by pasture plants and crops is derived from K_{ext} sources (Haylock, 1956b; Williams et al., 1986; Jackson, 1985). Thus the pot trial data of Campkin (1972), Hay et al. (1976), and Jackson (1985) indicated that the methods of K release that measure both K_{ex} plus K_{ext} forms better predict the K supply than the NH$_4$OAc method alone.

The methods available for K_{ext} determination (step K, K$_c$, or the resin K method) appear to adequately predict the K_{ext} supplying power of New Zealand soils according to Campkin (1972), and Hay et al. (1976). This evidence was based on pot trial studies using soils of several genetic groups which varied widely in K_e with ryegrass as the test plant. Lee and Gibson (1974), however, reported that the step K method is superior to K_e and resin K methods for the prediction of K uptake by ryegrass in separate pot trial study. Furthermore, the K_e test has been shown to be poorly correlated with plant uptake of soil K (Jackson, 1985).

Since the K_e method was designed principally as a tool to understand and interpret the weatherability and the clay mineral suites of soil groups it may not be justifiable to use
this method as an index of short or medium term K_{ex} supplying power.

From the above discussion it is possible that the chemical methods of assessing K_{ex} release (e.g., NH_4OAc), short term K_{ex} release (K_e), and long term K_{ex} release (K_c) may give a first approximation of immediate, short to medium term, and long term K supplying power, respectively.

2.8 CONCEPTS FOR MAKING K FERTILIZER RECOMMENDATIONS

From the previous sections (sections 2.6 and 2.7) it is evident that the methods of evaluating K release aim to better predict the K supplying power (K uptake) of New Zealand soils. Any method that gives a satisfactory prediction therefore has potential as a soil test (an index of soil K supply) for making K fertilizer recommendations. Hence, when referring to fertilizer strategies in this section, K release and K supply are one and the same.

Soil testing procedures should be calibrated against plant growth trials using different rates of K to assess the extent of K responsiveness. Soil testing, however, is not the only essential consideration in estimating nutrient requirements for maximum yields of crops or pastures.

The methods for making K fertilizer recommendations make use of either (a) soil K gains to the system (a component of K input that can be quantified by release/supply), (b) soil K loss from the system (output), (c) both of these, or (d) neither of these. The major K losses (crop or animal product removal, leaching, and fixation) and K gains (soil K supply either by added K fertilizers or by release of K from K reserves) have been dealt with in detail by Campkin (1985), Williams (1988), Williams et al. (1990), and Spiess and Besson (1992).
2.8.1 Method that does not directly quantify either soil K gains (release/supply) or soil K losses

This method was the basis of K fertilizer requirements in New Zealand before the introduction of the existing method (sections 2.8.4 and 2.9) and is based on the responsiveness of pasture yield to fertilizer K in field trials for a specific soil. A typical response curve is presented in Fig. 2.4 where dry matter yields at varying rates of K fertilizer are compared with a control where no K is applied and relative yield (a measure of responsiveness) obtained. The rate of K fertilizer corresponding to 90% maximum yield in the curve is taken as the amount of K fertilizer to be added to attain that level of production. Hence it may be called a "yield maintenance model".

Using this method varying levels of K fertilizer rates have been recommended for various New Zealand soil types in the past. For example, O'Connor et al. (1973) and Scott (1977) found no necessity for K fertilizer to achieve 90% maximum pasture yields in the trials studied. In contrast 50-100 kg K ha⁻¹ was required to attain 90% maximum yield (Smith et al., 1978; Weeda, 1979; Morton, 1981; O'Connor and Feyter, 1980) in the pastures they studied.

A major disadvantage of this method is that a separate response curve must be established for each soil type and farming system and over a period of years. Moreover, this method does not directly accommodate either the soil K supply (gains) or the soil K losses. As a result, changes in the soil K levels (release) could not be monitored and consequently the response curve could become less and less valid in subsequent years.

2.8.2 Method that directly quantifies only the soil K gains (release/supply)

This method of making K fertilizer recommendations make use of soil K gains in terms of K released by soil and hence may be referred to as the "soil K supply model".

A typical example is that of McLean et al. (1982) and McLean and Watson (1985)
Fig. 2.4 Dry matter response to K fertiliser (Smith et al., 1978)
which is based on the sufficiency (desirable) level \(\left(K_{SL} \right) \) and existing level \(\left(K_{EL} \right) \) of soil nutrient (Fig. 2.5). A sufficiency level is the amount of K in soil (usually measured as \(K_{x0} \)) that is required for production of 100% maximum possible yield. This is obtained from a response curve similar to Fig. 2.4, with the exception that the ordinate on the x-axis is a measure of K supply to the system (measured by \(K_{x} \) releasing power). Moreover, unlike the previous method (section 2.8.1) the response curve in this method was established for a wide range of soils (with varying K levels) and can be valid for a number of years.

Yet another example of the methods that make use of soil K gains is the "K number calculation method" that is being used in the Netherlands (Novozamsky and Houba, 1987). This method involves measuring \(K_{x} \) plus \(K_{nx} \) release (using 0.1 M HCl), and using different empirical formulae to calculate the K number. Fertilizer K requirements are calculated for different soil types and farming systems.

The above examples of estimating K fertilizer requirements also necessitate additional measurements and modifying factors such as CEC, organic matter, pH, fixation factors, correction factors thus indicating the importance of factors other than soil testing methods for accurately estimating soil K gains. For example, McLean’s method adjusts the fertilizer K recommendation by taking into account the CEC and fixation factors specific to various groups of soils (McLean et al., 1982; McLean and Watson, 1985).

2.8.3 Method that directly quantifies only the K losses

This method does not take account of the soil K gains for estimating K fertilizer requirements, but only the K losses from the system. Thus a quantity of K is added to replace the amount lost (by crop removal, leaching loss, fixation, loss from animal products, etc.). Commercial laboratories in the US use this approach in conjunction with soil information (cation ratios) to estimate K fertilizer requirements (Olson et al., 1982). It may also be referred to as the "sustainable model" or "soil K maintenance model" or "non-depletive model" or even "K loss model" because the soil K gains (K release) are not calculated to offset the K losses, thus enabling maintenance of the soil
Fig. 2.5 Schematics of computation of fertilizer K to reach near-maximum yields on individual soils (McLean and Watson, 1985)

\[\text{K fertiliser required} = K_{SL} - K_{EL} + (2.5 \times \text{CEC}) \]

\(K_{SL} = \text{Sufficiency level} \)
\(K_{EL} = \text{Existing level} \)

% yield

Exchangeable K (mg kg\(^{-1}\))

0 25 50 75 100 125 150

0 25 50 75 100
K levels in the system.

The major disadvantage of this method is that it does not take into account economics. Where the K supplying power of soils is adequate for near maximum yields (Olson et al., 1982), unnecessary expenditure on high K reserve soils will be incurred. Olson et al. (1982), pointed out that a system is said to be truly sustainable only if it is non-depletive and therefore this approach has merit.

2.8.4 Method that directly quantifies both soil K supply (gains) and soil K losses

This method makes use of a balance sheet of the inputs and outputs of the K cycle in a farming system. The difference between the two is used as an estimate of K fertilizer requirement for that particular system (Adams and McAllister, 1975; Middleton and Smith, 1978; Campkin, 1985; Villemin, 1987). For example, fertilizer advice in France (Villemin, 1987) takes into account the K losses (crop removal, leaching, and fixation) and K gains (difference between the existing determined level and the established sufficiency level).

Theoretically this appears to be the best method available for making K fertilizer recommendations from a planning point of view because it considers both K gains and K losses from the system - hence the name "mass balance model". The success of the method, however, depends on the efficacy of the methods of evaluating soil K release (soil testing methods) as a means for predicting the K supplying power (to quantify K gain), and on the efficacy of predicting K losses from the system.

Since the soil K supply is used to offset the K losses, this model overall is also depletive in nature, ultimately tending to deplete soil K reserves. It is not as depletive as the "soil K supply model" (section 2.8.2) since it takes into account the soil K losses. On the other hand it is not as sustainable (non-depletive) as the "K loss model" (section 2.8.3) since it considers the soil K supply as well and is therefore depletive.
Campkin (1985) developed this concept to calculate maintenance K requirements for grazed pastures in New Zealand. A slightly modified version of the Campkin model is currently being used in New Zealand by AgResearch as the Computerized Fertilizer Advisory Services (CFAS) for K fertilizer recommendations (Cornforth and Sinclair, 1984). The following section reviews this method of recommending K fertilizers for New Zealand pastures.

2.9 THE CFAS MODEL FOR CALCULATING K FERTILIZER REQUIREMENTS

Basically the model assumes that the flow of potassium through the plant available pool is steady state and plant/animal K requirements can be sustained if K losses from the system are replenished (Campkin, 1985). The fertilizer K requirement is the difference between losses of K (leaching and harvested produce) and gains of K to the cycling pool from the weathering of soil minerals. The inputs of K (K gains) from rainfall and irrigation water are considered negligible.

A detailed explanation of the mass balance model and the derivation of the equation is provided by Campkin (1985). The original equation developed by Campkin is:

\[
\text{K fertilizer requirement (kg ha}^{-1} \text{ yr}^{-1}) = \text{K losses} - \text{soil K supply (K gains)}
\]

\[
\text{K losses} = \text{SR} \times \text{ALF} + [(\text{R} + \text{I} - \text{PE}) \times (\text{LF})]
\]

\[
\text{Soil K supply} = 10 (\text{QTK} - 3) + 100 (K_c)
\]

where
- \(\text{SR}\) = Stocking rate (stock unit ha\(^{-1}\))
- \(\text{ALF}\) = Animal K loss factor (kg K stock unit\(^{-1}\)) which includes K lost in meat/milk and K lost through transfer of excreta to unproductive areas
- \(\text{R}\) = Rainfall (mm)
- \(\text{I}\) = Irrigation (mm)
- \(\text{PE}\) = Potential evapotranspiration
Leaching factor (SR divided by 1250)

Drainage water K concentration and includes conversion from ppm to kg K ha⁻¹

Exchangeable K as measured as quick test K (QTK). This K is extracted by shaking for two minutes with 1 M ammonium acetate at a soil:solution ratio of 1:4 (Mountier et al., 1966), expressed as parts per 250,000 of extracting solution.

K extracted by boiling with 1 M HNO₃ for 10 min at a soil:solution ratio of 1:12.5, expressed as meq % (Metson et al., 1956; Blakemore et al., 1987).

The animal and leaching losses of K in the mass balance equation have been dealt with in depth and tested under different situations by Williams (1988) and Williams et al. (1990). The accuracy of the K losses predicted by the model was appraised and refinements for the "K loss" component of the model have been suggested by Williams et al. (1990). It was concluded that the CFAS model tends to underestimate the K losses from the grazed dairy pastures via leaching by not allowing for the loss that occurs during preferential flow of urine through the soil profile (Williams et al., 1990) and overestimates the losses of K through transfer to unproductive areas (Williams and Roberts, 1988; Williams et al., 1990).

The K gains in the model are estimated empirically from the immediate (exchangeable K as measured by the quick test K (QTK), and long term (reserve K pool as measured by Kₑ) K supplying capacity of the soil. Despite the widespread use of this model no information has been published on the accuracy of the predicted K gains to the system. The main reason for this is the scarcity of suitable information about K responsiveness in grazed pastures against which the soil K supply component of the model (K gains) can be validated. There is evidence, however, that the model underestimates the soil K supply in soils showing low QTK values but which contain medium or high amounts of K reserves (Williams et al., 1986; Williams et al., 1990). In these types of soils the release of K from non-exchangeable sources in the soil is often sufficient to meet the
K losses. Despite this the CFAS model predicts that K is required by these soils. In this situation a measure of K_{max} release that will become plant available in the short term might be useful. The NaTPB test is currently used in the CFAS model on Recent soils to predict soil K supply (Cornforth and Sinclair, 1984).

Furthermore, the soil K supply parameter $[10 \times (QTK - 3) + 100 \times K_c]$ lacks precision because of the problems associated with the accurate measurement of QTK and K_c. Variability in QTK values can have large effect on the K fertilizer requirement (White and Gregg, 1991). For a site with a true QTK value of 5, the range of measured QTK values was between 3 and 7. The fertilizer requirement for this site varied from 26-66 kg K ha$^{-1}$ and to be completely sure that sufficient K is applied, 66 kg K ha$^{-1}$ should be the requirement.

The reserve K (K_c) is determined by sequential HNO$_3$ extraction (Blakemore et al., 1987) and its magnitude and variability largely reflect the mineralogy of the soil. The CFAS model attempts to reduce this difficulty by using a range of values within low, medium or high K_c categories determined for different soil groups by HNO$_3$ extraction of undeveloped soils.

Thus all New Zealand genetic soil groups are categorised as having either low (0.1 meq %), medium (0.3 meq %), or high (0.7 meq %) K_c values (Campkin, 1985) despite mineralogical variability and variable development of the soils under pastoral farming. Therefore, for a specific soil type in a soil group, the assigned K_c may be quite different to the actual K_c. For example, while the measured K_c values for 5 soils belonging to the YGE group in the South Island ranged from 0.30 to 0.76 meq % (Jackson, 1985), the assigned K_c for the soil group is 0.7 meq % (Campkin, 1985). Similarly, while the assigned K_c of the yellow-brown earth (YBE) soil group is 0.30 meq %, the measured K_c values of some soils in this group (Jackson, 1985) ranged from 0.17 to 0.76 meq %. Other examples of this variability are not uncommon in the New Zealand literature (Campkin, 1972; Lee and Gibson, 1974; Hay et al., 1976; Jackson and During, 1979).
It is uncertain whether K_c values remain essentially constant despite declining K supply after several years of intensive agriculture, as no studies have been reported. Short term studies (less than 15 months) provided evidence to demonstrate that K_c values did not change as a result of cropping the soils with ryegrass (Haylock, 1956a; Lee and Gibson, 1974).

The soil K supply parameter of the mass balance equation includes two constants. The constant value 10 is 75 % of the approximate factor (13.6) used to convert QTK values to kg K ha$^{-1}$, and the constant value of 100 is approximately 40 % of the conversion factor (265) used to convert K_c (HNO$_3$-extractable K) from meq % to kg K ha$^{-1}$ assuming a bulk density of 0.91 Mg m$^{-3}$ (Campkin, 1985). Thus 75 % of QTK above a value of 3 and 40 % of K_c (0.10, 0.30, or 0.70 meq %) are used in the equation.

These percentages (constants) viz, 75 % and 40 % represent pasture utilisation efficiency of K from QTK and K_c, respectively, and were supposedly (Campkin, 1985) derived from the first year results of a series of "rate of K trials" conducted throughout New Zealand (Campkin, 1983) on 38 sites representing a wide range of soil groups. Unfortunately Campkin (1983) did not present detailed information on the percent utilisation of K by plants from either QTK or K_c and no subsequent evidence is presented in the literature. It appeared, however, that the following two step procedure might have been adopted by Campkin (1983) to arrive at the above percentages.

1. Responses in pasture yield (measured as relative yield) to increasing rates of fertilizer K were fitted to Mitscherlich growth curves for 38 sites i.e., response curves similar to Fig. 2.4 were obtained for 38 sites. Fertilizer K required to achieve 90 % maximum yield for all the 38 sites were thus obtained from these curves.

2. The values of the fertilizer K required (kg ha$^{-1}$) to achieve 90 % maximum yield for all the sites were plotted against their respective K_c and QTK values (kg ha$^{-1}$) and inverse linear relationships similar to Fig. 2.6 were obtained. The slopes of the regression line for QTK and K_c (-0.75 and -0.40, respectively) give the
Fig. 2.6 Theoretical relationship between fertilizer K required for 90% maximum yields and both QTK and K_c values
equivalent reductions in the amount of K required to maintain the 90 % maximum yields per unit increase in QTK and Kc values.

The constraints on the K supply parameter of the mass balance equation are thus three-fold.

1. Soil QTK values have a high degree of variability (coefficient of variation is commonly 30 % or more (Edmeades et al., 1985) due mainly to the spatial variability of exchangeable K levels in pasture soils. A recent urine spot may have a QTK value greater than 22 in a paddock where the average QTK is 4 (M.J. Hedley, pers. comm.). Thus one-urine affected soil core in a bulked sample of 10 cores will raise the QTK by 1.6 units. A 1, 2, or 4 unit change in the QTK value changes the fertilizer recommendation by 10, 20, or 40 kg ha⁻¹.

2. The use of three values (low 0.1, medium 0.3, or high 0.7 meq %) for all New Zealand soils, while permitting simplification of the model, nevertheless may be well-removed from actual Kc values for a particular situation. A difference in Kc of 0.1 meq %, which equates to a change in predicted annual K supply of 10 kg K ha⁻¹, is not uncommon.

3. The two constants (10 and 100) in the mass balance equation were derived using the results of only one year of field trials. Therefore the validity of these constants for all soils and for all pasture and cropping systems in New Zealand has yet to be confirmed in the published literature.
CHAPTER 3

GENERAL MATERIALS AND METHODS

3.1 INTRODUCTION

In this chapter the materials and methods common to Chapters 4 to 9 are described. Methodology specific to each chapter is described in that chapter.

3.2 SOILS

Nineteen soils were chosen to represent a range of yellow-grey earth and related soils from developed pasture and virgin (undeveloped) sites in the North Island and the South Island. These soils (Table 3.1) were sampled to a depth of 75 mm, air dried, and sieved (< 2 mm).

Detailed descriptions of these soils have been presented by New Zealand Soil Bureau (1968), Pollok (1975), Rijkse (1977), Cowie (1978), Campbell (1979), Bruce (1984), and A.S. Palmer (pers. comm.). A brief description of the soils chosen, together with the location of the sampling sites follows. Soils that are not YGE are noted (Table 3.1).

S1 Tokorangi sandy loam

<table>
<thead>
<tr>
<th>Top soil (0-240 mm)</th>
<th>Dark greyish brown fine sandy loam; nut and crumb structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of sampling</td>
<td>Porewa Road, road side cutting, Grid reference NZMS 260; R23, S23; 274213</td>
</tr>
<tr>
<td>Drainage</td>
<td>Moderately well drained</td>
</tr>
<tr>
<td>Site vegetation</td>
<td>Undeveloped pasture site</td>
</tr>
<tr>
<td>Mean annual rainfall</td>
<td>1000 mm</td>
</tr>
<tr>
<td>Parent material</td>
<td>Wind-blown sand</td>
</tr>
<tr>
<td>Sampling date</td>
<td>20-12-89</td>
</tr>
</tbody>
</table>
Table 3.1 USDA, New Zealand Genetic (NZ genetic), and new New Zealand (New NZ) classification of soils used for the study

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil series</th>
<th>Region</th>
<th>Classification</th>
<th>USDA</th>
<th>NZ Genetic</th>
<th>New NZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Tokorangi</td>
<td>Rangitikei</td>
<td>Aquic Dystric Eutrochrept*</td>
<td>Central YGE</td>
<td>Typic perch-gley Pallic**</td>
<td></td>
</tr>
<tr>
<td>S2 & S3</td>
<td>Tokomaru</td>
<td>Manawatu</td>
<td>Typic Fragiaqualf</td>
<td>Central YGE</td>
<td>Argilllic fragic perch-gley Pallic</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>Milson</td>
<td>Manawatu</td>
<td>Typic Fragiaqualf</td>
<td>Central YGE</td>
<td>Argilllic fragic perch-gley Pallic</td>
<td></td>
</tr>
<tr>
<td>S5 & S6</td>
<td>Marton</td>
<td>Rangitikei</td>
<td>Aeric Ochraqualf</td>
<td>Central YGE</td>
<td>Argilllic perch-gley Pallic</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe</td>
<td>Manawatu</td>
<td>Aeric Haplaquept or Aquic Dystric Eutrochrept*</td>
<td>Central YGE</td>
<td>Motled argilllic Pallic</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea</td>
<td>Manawatu</td>
<td>Typic Ochraqualf</td>
<td>Central YGE</td>
<td>Typic perch-gley Pallic</td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>Pohangina</td>
<td>Aquic Usochromept*</td>
<td>Central YGE-YBE intergrade</td>
<td>Motled sandy Brown Soil***</td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>Te Arakura</td>
<td>Manawatu</td>
<td>Aeric Haplaquept</td>
<td>Gley soil***</td>
<td>Typic orthic Gley</td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>Hawke’s Bay</td>
<td>Typic Durustalf</td>
<td>Central YGE</td>
<td>Motled duric Pallic</td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>Wairarapa</td>
<td>Typic Fragiaqualf</td>
<td>Central YGE</td>
<td>Argilllic fragic perch-gley Pallic</td>
<td></td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>Wairarapa</td>
<td>Aeric Ochraqualf*</td>
<td>Central YGE-YBE intergrade</td>
<td>Argilllic perch-gley Pallic or Typic perch-gley Pallic</td>
<td></td>
</tr>
<tr>
<td>S14 & S15</td>
<td>Timaru</td>
<td>South Canterbury</td>
<td>Ultic Fragiochrept</td>
<td>Southern YGE</td>
<td>Motled fragic Pallic</td>
<td></td>
</tr>
<tr>
<td>S16 & S17</td>
<td>Claremont</td>
<td>South Canterbury</td>
<td>Aquic Fragiochrept</td>
<td>Southern YGE</td>
<td>Motled fragic Pallic</td>
<td></td>
</tr>
<tr>
<td>S18 & S19</td>
<td>Opuha</td>
<td>South Canterbury</td>
<td>Aquic Fragiochrept</td>
<td>Southern YGE</td>
<td>Fragic perch-gley Pallic</td>
<td></td>
</tr>
</tbody>
</table>

* Insufficient chemical data therefore USDA classification is uncertain
** Insufficient chemical and physical data therefore new New Zealand classification is uncertain
*** Transition between gley recent soil and gleyed YGE
<table>
<thead>
<tr>
<th></th>
<th>Tokomaru silt loam</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>Top soil (0-210 mm)</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>Dark greyish brown silt loam; weakly to moderately developed nut structure; some fine brown mottles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location of sampling</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Clifton Terrace, Massey University, Grid reference NZMS 260; T24; 329883</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drainage</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site vegetation</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Undeveloped pasture site</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean annual rainfall</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>1020 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parent material</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Quartzo-feldspathic loess</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sampling date</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>7-11-89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tokomaru silt loam</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>Top soil (0-210 mm)</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>Dark greyish brown silt loam; weakly to moderately developed nut structure; some fine brown mottles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location of sampling</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Paddock No. 5, No. 4 dairy farm, Massey University, Grid reference NZMS 260; T24; 317828</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drainage</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site vegetation</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Developed pasture site</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean annual rainfall</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>1020 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parent material</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Quartzo-feldspathic loess</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sampling date</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>8-11-89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Milson silt loam</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>Top soil (0-150 mm)</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>Dark greyish brown silt loam. Richardson's Line, road side cutting, Grid reference NZMS 260; T24; 364956</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location of sampling</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Poorly to imperfectly drained</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drainage</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Undeveloped pasture site</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site vegetation</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean annual rainfall</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>950 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parent material</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>Quartzo-feldspathic loess</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sampling date</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>8-11-89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>Marton silt loam</td>
<td>Top soil (0-240 mm): Very dark grey silt loam; some hard concretions; nut and crumb structure. Location of sampling: Kelvin Grove Road, road side cutting, Grid reference NZMS 260; T24; 364956 Drainage: Poorly to imperfectly drained Site vegetation: Undeveloped pasture site Mean annual rainfall: 1020 mm Parent material: Quartzo-feldspathic loess Sampling date: 8-11-89</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>Marton silt loam</td>
<td>Top soil (0-240 mm): Very dark grey silt loam; some hard concretions; nut and crumb structure. Location of sampling: Tony Heywood's property, Grid reference NZMS 260; R23, S23; 154187 Drainage: Poorly to imperfectly drained Site vegetation: Cropped with malting barley (summer) and ryegrass (winter) Mean annual rainfall: 1020 mm Parent material: Quartzo-feldspathic loess Sampling date: November 1989</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe silt loam</td>
<td>Top soil (0-170 mm): Very dark grey silt loam; nut and crumb structure Location of sampling: Tuapaka Beef Unit, Grid reference NZMS 260; T24; 422929 Drainage: Poorly to imperfectly drained Site vegetation: Developed pasture site Mean annual rainfall: 1000 mm Parent material: Quartzo-feldspathic loess and colluvium Sampling date: 7-11-89</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea silt loam</td>
<td>Top soil (0-320 mm): Very dark grey silt loam; fine nut and blocky structure; few concretions Location of sampling: Massey University, Grid reference</td>
<td></td>
</tr>
</tbody>
</table>
Drainage : Poorly to imperfectly drained
Site vegetation : Developed pasture site
Mean annual rainfall : 1000 mm
Parent material : Quartzo-feldspathic colluvium
Sampling date : 7-11-89

S9 Raumai hill soil

Top soil (0-150 mm) : Dark greyish brown sandy loam; friable; moderately developed fine and medium nut structure
Location of sampling : Zig Zag Road, road side cutting,
Grid reference NZMS 260; T24; 324873
Drainage : Moderately well and well drained
Site vegetation : Undeveloped pasture site
Mean annual rainfall : 1070 mm
Parent material : Loose sandstone and greywacke gravels
Sampling date : 20-12-89

S10 Te Arakura silt loam

Top soil (0-200 mm) : Very dark grey brown silt loam; nut and crumb structure
Location of sampling : Grid reference NZMS 260; S23; 157077
Drainage : Imperfectly to poorly drained
Site vegetation : Cropped with barley
Mean annual rainfall : 920 mm
Parent material : Quartzo-feldspathic alluvium
Sampling date : 1-11-89

S11 Matapiro silt loam

Top soil (0-180 mm) : Very dark greyish brown friable silt loam; fine granular to nutty structure
Location of sampling : Grid reference NZMS 260; U23; 083247
Drainage : Poor
Site vegetation : Developed pasture site
Mean annual rainfall : 800 mm
Parent material : Quartzo-feldspathic loess and tephra
Sampling date : November 1989
<table>
<thead>
<tr>
<th>Site Code</th>
<th>Soil Type</th>
<th>Top Soil (0-150 mm) Description</th>
<th>Location of Sampling</th>
<th>Drainage</th>
<th>Site Vegetation</th>
<th>Mean Annual Rainfall</th>
<th>Parent Material</th>
<th>Sampling Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>S12</td>
<td>Wharekaka silt loam</td>
<td>Greyish brown silt loam when dry and very dark greyish brown when wet</td>
<td>Type section, road side cutting between Greytown and Martinborough, Grid reference NZMS 260; S27; 162038</td>
<td>Poor</td>
<td>Developed pasture site</td>
<td>800 mm</td>
<td>Quartzo-feldspathic loess</td>
<td>10-1-90</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa silt loam</td>
<td>Dark greyish brown friable silt loam.</td>
<td>Road side cutting, Grid reference NZMS 260; S27;</td>
<td>Imperfect</td>
<td>Undeveloped pasture site</td>
<td>1100 mm</td>
<td>Quartzo-feldspathic loess</td>
<td>10-1-90</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru silt loam</td>
<td>Very dark greyish brown silt loam; friable; moderately developed medium and fine nutty structure</td>
<td>Grid reference NZMS 260; J39; 485635</td>
<td>Poor</td>
<td>Undeveloped virgin (forest)</td>
<td>615 mm</td>
<td>Quartzo-feldspathic loess</td>
<td>November 1989</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru silt loam</td>
<td>Very dark greyish brown silt loam; friable; moderately developed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Location of sampling : Grid reference NZMS 260; J39; 485635
Drainage : Poor
Site vegetation : Developed pasture
Mean annual rainfall : 615 mm
Parent material : Quartzo-feldspathic loess
Sampling date : November 1989

S16 Claremont silt loam

Top soil (0-150 mm) : Dark greyish brown silt loam; friable; moderately developed crumb structure
Location of sampling : Grid reference NZMS 260; J38; 782665
Drainage : Poor
Site vegetation : Undeveloped virgin (forest)
Mean annual rainfall : 835 mm
Parent material : Quartzo-feldspathic loess
Sampling date : November 1989

S17 Claremont silt loam

Top soil (0-150 mm) : Dark greyish brown silt loam; friable; moderately developed crumb structure
Location of sampling : Grid reference NZMS 260; J38; 782665
Drainage : Poor
Site vegetation : Developed pasture
Mean annual rainfall : 835 mm
Parent material : Quartzo-feldspathic loess
Sampling date : November 1989

S18 Opuha silt loam

Top soil (0-250 mm) : Very dark greyish brown silt loam; firm; moderately developed cast granular and nutty structure
Location of sampling : Grid reference NZMS 260; J37; 825655
Drainage : Poor
Site vegetation : Undeveloped virgin (forest)
Mean annual rainfall : 1125 mm
Parent material : Quartzo-feldspathic loess
S19 Opuha silt loam

<table>
<thead>
<tr>
<th>Sampling date</th>
<th>November 1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top soil (0-250 mm)</td>
<td>Very dark greyish brown silt loam; firm; moderately developed cast granular and nutty structure</td>
</tr>
<tr>
<td>Location of sampling</td>
<td>Grid reference NZMS260; J37; 825655</td>
</tr>
<tr>
<td>Drainage</td>
<td>Poor</td>
</tr>
<tr>
<td>Site vegetation</td>
<td>Developed pasture</td>
</tr>
<tr>
<td>Mean annual rainfall</td>
<td>1125 mm</td>
</tr>
<tr>
<td>Parent material</td>
<td>Quartzo-feldspathic loess</td>
</tr>
<tr>
<td>Sampling date</td>
<td>November 1989</td>
</tr>
</tbody>
</table>

3.3 SOIL PROPERTIES

Mechanical analyses and subsequent separation of soil separates (sand, silt, and clay) were performed by the sedimentation method of Jackson (1956) after peroxidation of the soils. Calgon was used as the dispersing agent. The results of particle size analysis are given in Table 3.2.

Soil pH values were measured in water (1:2.5 soil:water ratio), after equilibration for 16 h. Exchangeable cations were determined after leaching the soil with 1 M NH₄OAc at pH 7 (1:50 soil:solution ratio) in semi-microleaching tubes. Potassium (K) and sodium (Na) in the extract were measured using atomic emission spectrophotometry (AES), and calcium (Ca) and magnesium (Mg) by atomic absorption spectrophotometry (AAS). The organic carbon content of the soils was determined using a Leco Gravimetric Carbon Determinator (Tabatabai and Bremner, 1970). The results of these analyses are presented in Table 3.3.

Total K (Table 3.3) was determined after caustic soda (NaOH) fusion in a nickel crucible. 100 mg of soil were fused at red heat with 1.5 g of NaOH for 5 min, the melt taken up in deionised water and K determined by AES.
Table 3.2 Particle size analyses of the soils

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>% Sand (63-2000 μm)</th>
<th>% Silt (2-63 μm)</th>
<th>% Clay (< 2 μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Tokorangi</td>
<td>21.5</td>
<td>51.6</td>
<td>26.9</td>
</tr>
<tr>
<td>S2</td>
<td>Tokomaru (a)</td>
<td>9.7</td>
<td>66.4</td>
<td>24.0</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru (b)</td>
<td>6.7</td>
<td>68.4</td>
<td>24.9</td>
</tr>
<tr>
<td>S4</td>
<td>Milson</td>
<td>8.8</td>
<td>66.7</td>
<td>24.9</td>
</tr>
<tr>
<td>S5</td>
<td>Marton (a)</td>
<td>9.0</td>
<td>67.6</td>
<td>23.4</td>
</tr>
<tr>
<td>S6</td>
<td>Marton (b)</td>
<td>16.4</td>
<td>57.5</td>
<td>26.1</td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe</td>
<td>10.5</td>
<td>68.3</td>
<td>21.2</td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea</td>
<td>9.5</td>
<td>64.0</td>
<td>26.5</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>67.2</td>
<td>23.8</td>
<td>9.0</td>
</tr>
<tr>
<td>S10</td>
<td>Te Arakura</td>
<td>27.2</td>
<td>49.8</td>
<td>22.5</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>32.1</td>
<td>43.8</td>
<td>24.2</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>11.0</td>
<td>59.9</td>
<td>29.1</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>16.1</td>
<td>51.4</td>
<td>32.6</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>5.5</td>
<td>73.5</td>
<td>21.0</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>7.3</td>
<td>72.5</td>
<td>20.2</td>
</tr>
<tr>
<td>S16</td>
<td>Claremont (a)</td>
<td>8.6</td>
<td>68.8</td>
<td>22.6</td>
</tr>
<tr>
<td>S17</td>
<td>Claremont (b)</td>
<td>10.1</td>
<td>59.0</td>
<td>31.0</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha (a)</td>
<td>18.0</td>
<td>37.8</td>
<td>44.2</td>
</tr>
<tr>
<td>S19</td>
<td>Opuha (b)</td>
<td>4.5</td>
<td>71.5</td>
<td>24.0</td>
</tr>
</tbody>
</table>

(a) Undeveloped site
(b) Developed site
Table 3.3 Some selected soil properties

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Total K (%)</th>
<th>pH</th>
<th>Organic carbon (%)</th>
<th>Exchangeable cations (mg 100 g soil<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>S1</td>
<td>Tokorangi</td>
<td>1.02</td>
<td>6.0</td>
<td>4.86</td>
<td>43.9</td>
</tr>
<tr>
<td>S2</td>
<td>Tokomaru (a)</td>
<td>0.97</td>
<td>5.6</td>
<td>5.58</td>
<td>25.7</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru (b)</td>
<td>1.00</td>
<td>5.5</td>
<td>4.20</td>
<td>13.6</td>
</tr>
<tr>
<td>S4</td>
<td>Milson</td>
<td>1.01</td>
<td>5.3</td>
<td>4.19</td>
<td>55.4</td>
</tr>
<tr>
<td>S5</td>
<td>Marton (a)</td>
<td>1.31</td>
<td>5.7</td>
<td>3.63</td>
<td>9.7</td>
</tr>
<tr>
<td>S6</td>
<td>Marton (b)</td>
<td>1.00</td>
<td>5.8</td>
<td>3.06</td>
<td>8.9</td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe</td>
<td>0.93</td>
<td>5.6</td>
<td>5.23</td>
<td>24.5</td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea</td>
<td>1.08</td>
<td>5.6</td>
<td>4.45</td>
<td>21.4</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>1.49</td>
<td>5.3</td>
<td>1.14</td>
<td>6.4</td>
</tr>
<tr>
<td>S10</td>
<td>Te Arakura</td>
<td>1.00</td>
<td>6.1</td>
<td>4.68</td>
<td>8.2</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>1.26</td>
<td>5.8</td>
<td>4.40</td>
<td>22.2</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>1.06</td>
<td>5.7</td>
<td>3.92</td>
<td>8.8</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>1.41</td>
<td>5.8</td>
<td>3.13</td>
<td>18.1</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>1.13</td>
<td>6.2</td>
<td>4.59</td>
<td>71.3</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>1.11</td>
<td>7.1</td>
<td>3.22</td>
<td>12.1</td>
</tr>
<tr>
<td>S16</td>
<td>Claremont (a)</td>
<td>1.05</td>
<td>4.5</td>
<td>4.51</td>
<td>34.4</td>
</tr>
<tr>
<td>S17</td>
<td>Claremont (b)</td>
<td>1.04</td>
<td>5.8</td>
<td>4.06</td>
<td>10.1</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha (a)</td>
<td>1.15</td>
<td>5.3</td>
<td>5.54</td>
<td>31.7</td>
</tr>
<tr>
<td>S19</td>
<td>Opuha (b)</td>
<td>1.06</td>
<td>6.1</td>
<td>3.94</td>
<td>20.9</td>
</tr>
</tbody>
</table>

(a) Undeveloped site
(b) Developed site
CHAPTER 4

CHARACTERIZATION OF YGE SOILS BASED ON NON-EXCHANGEABLE K RELEASING AND SUPPLYING POWER

4.1 BACKGROUND

From Chapter 2 (sections 2.7.2.3 and 2.9) it is evident that K_c values have been used to categorise New Zealand soils into low, medium, and high K_{nex} supplying groups for two distinct reasons: (a) for field classification purposes (Metson, 1980) and (b) for K fertilizer recommendation purposes (Campkin, 1985). The numerical limits used to define the categories (low, medium, and high) are different for each purpose (Table 4.1).

It was also mentioned that all the yellow-grey earth (YGE) soils of the North Island are formed on more weathered parent materials. They are more strongly weathered than their southern counterparts, and are considered to have a medium reserve (K_{nex} release assessed by K_c method) of K (Table 4.2). YGE soils in the South Island, being less weathered, are considered to have high K_{nex} reserves. In the CFAS model, no consideration is given to any variation of K_{nex} release (K_r) of the soils within each region. Any variation of K_{nex} release, apart from known differences between the YGE soils of North and South Island groups, would mean a variation in K_{nex} supply.

The K_{nex} supply can be measured by growing plants until K_{ex} is exhausted using any standard method of pot culture in conjunction with the method of assessing K_{ex} release. Alternatively it can be measured by growing plants in already K_{ex} depleted soils.

Any significant variation in K_{nex} supplying power within the soils of either the North or South Island regions would not only question the validity of the K_c method as a
Table 4.1 Ranges of values used for K_{rx} and K_c to classify the K status of New Zealand soils for field classification (Metson, 1980) and fertilizer recommendation (Campkin, 1985) purposes

<table>
<thead>
<tr>
<th>Classification (Ranking)</th>
<th>K_{rx} (mg 100 g$^{-1}$)</th>
<th>K_c (mg 100 g$^{-1}$)</th>
<th>K_c (mg 100 g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High (VH)</td>
<td>>46.8</td>
<td>>19.5</td>
<td>-</td>
</tr>
<tr>
<td>High (H)</td>
<td>31.2 - 46.7</td>
<td>13.7 - 19.4</td>
<td>>17.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Mean 27.3)</td>
</tr>
<tr>
<td>Medium (M)</td>
<td>19.5 - 31.1</td>
<td>7.8 - 13.6</td>
<td>8.19 - 17.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Mean 11.7)</td>
</tr>
<tr>
<td>Low (L)</td>
<td>11.7 - 19.4</td>
<td>3.9 - 7.7</td>
<td><8.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Mean 3.9)</td>
</tr>
<tr>
<td>Very Low (VL)</td>
<td><11.7</td>
<td><3.9</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4.2 \(K_c \) values for the soils, and field classification (Metson, 1980) and classification for fertilizer recommendations (Campkin, 1985) based on the ranges given in Table 4.1

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name (see section 3.2)</th>
<th>AgResearch grouping(^*)</th>
<th>Measured (K_c) (mg 100 g(^{-1}))</th>
<th>Classification using Metson rating</th>
<th>Classification using Campkin rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Tokorangi</td>
<td>M</td>
<td>13.30</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S2</td>
<td>Tokomaru (a)</td>
<td>M</td>
<td>8.89</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru (b)</td>
<td>M</td>
<td>9.42</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S4</td>
<td>Milson</td>
<td>M</td>
<td>7.88</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>S5</td>
<td>Marton (a)</td>
<td>M</td>
<td>7.84</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>S6</td>
<td>Marton (b)</td>
<td>M</td>
<td>8.18</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe</td>
<td>M</td>
<td>9.50</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea</td>
<td>M</td>
<td>10.11</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>M</td>
<td>17.33</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>S10</td>
<td>Te Arakura</td>
<td>M</td>
<td>15.65</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>M</td>
<td>9.03</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>M</td>
<td>14.71</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>M</td>
<td>18.59</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>H</td>
<td>16.79</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>H</td>
<td>14.50</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>S16</td>
<td>Claremont (a)</td>
<td>H</td>
<td>13.30</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S17</td>
<td>Claremont (b)</td>
<td>H</td>
<td>12.27</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha (a)</td>
<td>H</td>
<td>17.50</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>S19</td>
<td>Opuha (b)</td>
<td>H</td>
<td>13.48</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

(a) Undeveloped site
(b) Developed site

\(^* \) Based on grouping of YGE and intergrade soils in the North Island as medium \(K_c \) soils and the South Island YGE soils as high \(K_c \) soils. S10 has some features associated with YGE soils and hence is considered a medium \(K_c \) soil
measure of K_{ex} release, but also its place in the CFAS model as a measure of K_{ex} supply. Since K_c values were obtained for the undeveloped sites (section 2.7.2.3) it would be curious if the K_{ex} supply varies markedly between developed and undeveloped sites on the same soil type.

Furthermore, the variations of K_c values within soils of each region, if any, will have implications to formulating K fertilizer recommendations, where currently a standard K_c value is used. This implies that K fertilizer requirements could either be under or over estimated for a particular soil. For example, a change in a K_c value of 3.9 mg 100 g$^{-1}$ is equivalent to a change in annual soil K_{ex} supply of 10 kg ha$^{-1}$ (Campkin, 1985). This might lead to significant error in the CFAS model.

It should be noted, however, that K_c (measure of K_{ex} release) and plant K_{ex} uptake (measure of K_{ex} supply) are two different indices measuring soil K_{ex} (section 2.7). K_c is a chemical index, the estimation procedure, which ignores readily soluble K_{ex} and the more soluble portion of soil K_{ex}. Plant K_{ex} uptake is a biological index of soil K_{ex} that is obtained by subtracting the fall in soil K_{ex} level due to plant uptake.

The objectives of the study described in this chapter are:

1. To determine K_{ex} supplying power of a range of North and South Island YGE soils.
2. To relate K_{ex} supply with the K_c method of assessing K_{ex} release and evaluate K_c as a parameter in the CFAS model.
3. To evaluate K fertility status of a developed and an undeveloped site on the same soil type.

4.2 MATERIALS AND METHODS

4.2.1 Soils and chemical measurements

The soils used in this chapter were described in Chapter 3.
Exchangeable K was measured using the method described in Chapter 3. K_e was measured using the method of Blakemore et al. (1987).

4.2.2 Artificial leaching technique

The objective of this treatment was to remove the soluble and exchangeable K from the soil samples and allow plants to use only K from the non-exchangeable pool. A 0.1 M calcium chloride solution was mixed with a 0.1 M magnesium chloride solution to obtain a Ca:Mg at an equivalent ratio of 4:1. The choice of this ratio of Ca and Mg was based on the approximate ratio of exchangeable Ca:Mg in these soils (Table 3.3). This solution was used to remove K_e by leaching and the filtrate was discarded. The soil: solution ratio used was 1:25. The pH of the leaching solution was lowered to the mean pH of the soils (5.7) with 1 M HCl prior to leaching through the soils to prevent any major changes in original pH of soils. After leaching, the soils were washed free of excess chloride and air dried prior to the glasshouse experiment. Exchangeable K in the leached soils was measured on air dry samples to determine if the artificial leaching procedure had removed all of the native K_e.

4.2.3 Glasshouse experiment

The K supplying power of the unleached (UL) soils and the artificially leached (L) soils was determined in a pot experiment using a modified Stanford and DeMent (1957) procedure. This technique was designed to be highly exploitive for the nutrient under study. A 250 ml plastic container with the bottom removed was placed in a second intact plastic container and filled with 400 g of water-washed silica sand. Perennial ryegrass (Lolium perenne L; Grasslands "Nuit") was used as a test crop and 30 seeds were sown and later thinned to 20 seedlings per pot. On the basis of preliminary work one mg K as KCl in solution was added initially to all the pots to assist germination. A K-free nutrient solution (modified Middleton and Toxopeaus, 1973) was then applied regularly and moisture was maintained at field capacity daily.

After 45 days, the roots of the ryegrass had grown throughout the sand medium and had formed a dense mat at the base of the pot. The plants were then cut to a level 20-30
mm above the sand surface. The inner pot (with roots) was then transferred into another intact pot containing 20 g of soil which had previously been moistened to field capacity. As a control treatment, the inner container was transferred onto 20 g of water-washed silica sand. The addition of K-free nutrient solution was continued until the completion of the experiment and the pots were watered daily with distilled water based on weight loss.

As well as the 19 unleached soils used in the study additional pots of 8 soils were duplicated and received complete (including K) nutrient solution for monitoring K deficiency symptoms in treated pots. The experiment thus involved two treatments viz, unleached (UL) and leached (L), with four replicates giving a total of 156 pots including the four control pots and an additional 32 (8x4) pots that received nutrient solution containing K. The pots were completely randomised and repositioned twice a week in the glasshouse to minimise any effects of uneven environmental factors, such as light, temperature and air movement. The plants were harvested four times. After each harvest, the plant material was dried at 60°C for 48 h, weighed, and analyzed for K by nitric acid digestion. After the final harvest, the soil was separated from the sand, and roots separated from the soil. The soils were air dried and analyzed for exchangeable K. The total K uptake of shoots from unleached and leached soils was obtained from the sum of the uptakes of the four individual harvests and expressed as mg K 100 g⁻¹ air dry soil.

Potassium taken up by plants from non-exchangeable sources (K_{non}) i.e., the K_{non} supplying power was calculated as described in section 2.7.1.

\[
K_{\text{non}} \text{ supply} = \text{Total K uptake - } d \ K_{\text{ex}}, \text{ where}
\]

\[
\text{Total K uptake} = \text{Total amount of K removed by ryegrass from soils over the four harvests}
\]

\[
d \ K_{\text{ex}} = \text{Change in } K_{\text{ex}} \text{ releasing power (} K_{\text{ex}} \text{ method using } NH_4OAc \text{ as an extractant) of the soil over the experiment}
\]
i.e., K_{ex} before cropping - K_{ex} after cropping

4.2.4 Statistical analyses

Differences among the soils for each treatment were tested for significance using analysis of variance test (SAS, 1985).

4.3 RESULTS AND DISCUSSION

4.3.1 Exchangeable K release before cropping in the unleached and in the leached soils

The 19 unleached soils can be grouped into low (9 soils), medium (5 soils) and high (5 soils) categories of K_{ex} release. This is based on the K_{ex} rating procedure of Metson (1980) given in Table 4.1. The K_{ex} of low K category soils ranged from 6.5 to 18.2 mg 100 g$^{-1}$, for medium soils from 20.9 to 25.8, and for high soils from 31.7 to 71.4 (Fig. 4.1).

After leaching with 0.05 M chloride solution of Ca and Mg the commensurate K_{ex} levels were 3.0 to 9.9, 9.2 to 11.6, and 8.6 to 12.7 (Fig. 4.2). The average proportion of K_{ex} removed by leaching was 33 % (0 to 54 % range), 55 % (48 to 65 % range), and 75 % (68 to 82 % range), respectively. Thus those soils with highest initial K_{ex} levels lost the highest proportion of K_{ex} by leaching. All the leached soils therefore released K_{ex} to very low levels, despite the artificial leaching technique. The dynamics of the $K_{res} \sim K_{ex}$ equilibrium are such that K_{ex} is always present.

4.3.2 Dry matter yield

The dry matter yields of each harvest for each soil and treatment are given in Appendix 4.1.
4.3.2.1 Total dry matter yields from unleached soils

The undeveloped Opuha (S18) and Timaru (S14) soils recorded significantly higher dry matter yields than all other soils and the lowest dry matter was recorded in Marton soils (S5 and S6).

There were large differences in total dry matter yields (average of four replicates) among unleached soils of different regions (Fig. 4.3). Raumai (S9) and Tokorangi (S1) recorded significantly higher dry matter than the remaining soils of the Manawatu and Rangitikei regions. The higher dry matter yield recorded by Milson was expected because of the initial high K_{ex} but that of Raumai (S9) was unexpected given the low K_{ex} content.

In the Hawke’s Bay and Wairarapa regions, the Pirinoa (S13) soil recorded significantly higher dry matter yield than Matapiro (S11) and Wharekaka (S12) soils.

The undeveloped Claremont soil (S16) of the South Canterbury region recorded a significantly lower dry matter yield than the undeveloped Timaru (S14) and Opuha (S18) soils. In their developed counterparts, however, Timaru (S15) and Claremont (S17) soils recorded lower dry matter yields than did the Opuha soil (S19).

There were marked differences in dry matter yields of developed and undeveloped sites on the same soil (Fig. 4.3) the exception being the Marton soil sites (S5 and S6), due to the initial low exchangeable K of S5 and S6. The higher dry matter recorded for undeveloped sites as compared to developed sites on the same soil is largely due to a higher initial K_{ex} of the undeveloped sites (Fig. 4.1).

From the above comparisons it can be concluded that differences in dry matter yields amongst the soils resulted not only from K_{ex} release but also from K_{meq} release assessed by the K_{e} status (Table 4.2). For example, the higher dry matter yield recorded by the Raumai (S9) soil as compared to the Milson (S4) soil (Fig. 4.3) despite higher K_{ex} release of the latter (Fig. 4.1) may be due to the higher K_{e} value of the former soil (Table 4.2). Similarly the Pirinoa soil (S13) that recorded significantly higher dry
Fig. 4.1 K_{ex} of unleached soils before and after cropping
Fig. 4.2 K_{eq} of leached soils before and after cropping.
matter yield than Matapiro soil (S11) had a higher K_c value despite varying K_{ex} values.

Dry matter yields in the additional pots of 8 soils that received complete (including K) nutrient solution (section 4.2.3) increased considerably (data not presented).

4.3.2.2 Total dry matter yields from leached soils

As expected, the dry matter yields from the leached soils (Fig. 4.3) were considerably lower compared with their unleached counterparts. The exceptions to this trend, however, are the Marton (S5 and S6), Raumai (S9), Te Arakura (S10), Wharekaka (S12), and developed Timaru (S15) soils which showed no significant reduction in dry matter yields due to leaching. The trend in the leached soils may be explained due to their initial low K_{ex} levels.

Interestingly, the Raumai (S9) soil, which registered a lower dry matter yield than that of the undeveloped Canterbury soils (S18 and S14) in the unleached treatment, recorded highest for the leached treatment.

Although there were differences in the dry matter yields among the leached soils, they appeared to be of a lesser extent when compared to that observed in dry matter yield from unleached soils. The differences result mostly from K_{nex} release rather than K_{ex}.

As for unleached soils, differences in dry matter yields between undeveloped and developed sites on the same soil also occurred in leached soils (Fig. 4.3), but to a lesser extent (except in the Claremont and Marton soils) which is because of little difference in K_s of these leached soils (Fig. 4.2). For example, the differences in dry matter yield between undeveloped (virgin) and developed (pasture) sites of Tokomaru (S2 and S3), Timaru (S14 and S15), and Opuha (S18 and S19) soils were 0.68, 1.69, and 1.10 g pot$^{-1}$ in unleached soils and 0.35, 0.41, and 0.74 in leached soils, respectively.

4.3.3 Potassium content of herbage

The herbage K contents of each harvest for each soil and each treatment (expressed in
Fig. 4.3 Total dry matter of ryegrass grown on unleached and leached soils
percent) are given in Appendix 4.2. The K concentration in the herbage for all soils was highest at the first harvest and then declined to very low values by the fourth harvest.

There were significant differences in herbage K concentration among various soils for both treatments. Furthermore, wider differences that occurred in the first harvest reduced to a narrow range in the final harvest, which suggests that the plants gradually depleted plant available K from the soils. For example, K contents of tops from undeveloped Timaru soil (S14) were at least 6 and 1.6 times that of herbage from the Marton soil (S5) in the first and fourth harvest, respectively.

Over the four harvests, the mean K concentration in the tops for the unleached soils ranged from 0.19 % in Marton soils (S5 and S6) to 0.59 % for the undeveloped Timaru soil (S14). Even at the first harvest herbage K levels were well below the accepted level considered sufficient for optimum growth of ryegrass (2-2.5 % by Cornforth and Sinclair, 1984). The low values could be due to the small quantity of soil (20 g) used in the Stanford and DeMent method compared to the large volume of soil tapped by plant roots in the field.

Low values for herbage K were also observed by Jackson (1985) for the Marton (0.46 %) and Timaru (1.01 %) soils, while growing 12 ryegrass plants in a pot containing 100 g soil with a harvesting interval of 6-8 weeks. By comparison, herbage K after the first harvest (3 weeks growth) in this study for the undeveloped Marton (S5) and Timaru (S14) soils was 0.19 and 1.19 % and for their developed counterparts (S6 and S15) was 0.21 and 0.32, respectively. Similarly, in an exhaustive pot experiment, Portela (1993) found that for 6 out of 20 soils, the K concentration in ryegrass plants at the first harvest was lower than the optimal level.

The mean K concentration in the tops over the four harvests for all the leached soils ranged from 0.17 % to 0.41 %. Despite these values being similar to those for the unleached soils, the visual plant symptoms of K deficiency were more marked.

As with the trends for the dry matter yields from unleached and leached soils described in section 4.3.2, significant variation existed in the herbage K concentration between
developed and undeveloped soils e.g., Tokomaru (comparing S2 and S3), Timaru (S14 and S15), Claremont (S16 and S17), and Opuha (S18 and S19). Thus pastoral development can markedly affect the cation composition of herbage as a result of soil exploitation.

The mean K concentrations in the tops over the four harvests from the 8 unleached soils that received additional K, ranged from 1.06 to 1.21 % and gave large increases in both K uptake and dry matter yield when compared with the minus K treatment. These herbage K values are low, but the plants did not show K deficiency symptoms. This indicates that field values for herbage K optimum concentrations may not necessarily relate to glasshouse conditions. These results confirm K deficiency as the major limiting factor for dry matter yields in the pots that did not receive additional K.

4.3.4 Potassium uptake

Potassium data of each harvest for each soil and treatment are given in Appendix 4.3.

4.3.4.1 Potassium uptake from control pots

The ryegrass plants that were grown in control pots (sand only) extracted 3.83 mg K pot$^{-1}$ (400 g sand) over the four harvests (Appendix 4.3). This is attributed to K in the sand. For the purpose of undertaking valid statistical analysis, this background value has not been subtracted from the K uptake results for the treatments (Fig. 4.4 and Appendix 3) but has been subtracted to obtain the actual total K uptake i.e., the actual K supplying power of the soils (Fig. 4.5 and Fig. 4.6). This is used to calculate comparative contributions of K_{ex} and K_{nex} i.e., K_{ex} supply and K_{nex} supply in section 4.3.6.

4.3.4.2 Potassium uptake from unleached soils

Considerable differences in total K uptake were observed for the 19 soils. The range was from 22.3 mg K 100 g$^{-1}$ for the Marton soil (S5) to 112.5 mg for the undeveloped Timaru (S14) soil (Fig. 4.4). Most of the variation could be explained by the K_{ex} levels
Fig. 4.4 Total K uptake by ryegrass grown on unleached and leached soils

\[\text{LSD (0.05)} \]
Fig. 4.5 Actual K_{ex} and K_{nex} contribution from the unleached soils
Fig. 4.6 Actual K_{ex} and K_{nex} contribution from the leached soils
of the unleached soils.

For the soils of the North Island the range of total K uptake for the undeveloped soils was 22.3 to 64.9 and for the developed analogues it was 23.1 to 63.9 mg 100 g\(^{-1}\). The range for the undeveloped soils was presumed to reflect different mineralogies and for the developed soils it probably reflects the extent of cropping and grazing systems involved over a period of many years.

There were also large differences in the amount of K extracted by ryegrass from soils which had similar initial \(K_{ex}\) status. For example, \(K_{ex}\) levels before cropping were similar for undeveloped sites of Timaru (S15) and Tokomaru (S3), but K supply over four harvests was significantly higher for the former soil. Similarly, the undeveloped site of Claremont soil (S16) had a K supply level significantly lower than the undeveloped site of Opuha (S18), despite similar \(K_{ex}\) levels. The pot trial results of Wood and Schroeder (1992) also indicated that the K used by a sorghum crop grown on a range of soils with similar \(K_{ex}\) values was not constant.

The contrast between undeveloped and developed soils of the same type is especially evident for the South Island YGE soils e.g., S14 and S15, S16 and S17, S18 and S19. The undeveloped sites supplied more K to ryegrass than did their developed counterparts. The drop in K uptake from the developed site was 69 % in Timaru (S14 and S15), 56 % in Claremont (S16 and S17), and 44 % in Opuha (S18 and S19) soils. The reduced total K uptake from developed sites reflects exploitation of K reserves over many years.

4.3.4.3 Potassium uptake from leached soils

As expected, the total K uptake by herbage harvested from leached soils was less than that from unleached soils (Fig. 4.4). The one exception was Raumai soil (S9) for which there was a statistically significant increase despite the removal of \(K_{ex}\) by leaching. It appears that for reasons not fully understood, leaching with Ca and Mg increased the rate of supply of K from \(K_{res}\) sources.
The exception to the above trend was observed in Marton (S5 and S6), Te Arakura (S10), Wharekaka (S12), and developed Timaru (S15) soils for which leaching treatment did not markedly change K uptake. This is likely to be related to low \(K_{ex} \) status of these soils.

As is the case with unleached soils considerable differences in K uptake by ryegrass were also observed in the leached soils, the range being from 20.1 mg 100 g\(^{-1}\) for the developed Tokomaru silt loam (S3) to 74.6 mg 100 g\(^{-1}\) for the Raumai sandy loam (S9). Compared with the unleached treatment, most of these differences cannot be accounted for by \(K_{ex} \) because of very little difference in \(K_{ex} \) levels (low) of the leached soils (Fig. 4.2). Within the North Island soils Raumai (S9), Pirinoa (S13), and Tokorangi (S1) showed significantly higher K uptake.

There were marked differences in the K uptake of the leached group of soils between the developed and undeveloped sites (Fig. 4.4). For example, K uptake over four harvests for the Claremont undeveloped site (S16) was 46.5 mg 100 g\(^{-1}\) and for the developed site (S17) it was 22.7. For the Opuha soil the values were 51.2 (S18) and 32.5 (S19), respectively.

4.3.5 Exchangeable K release after cropping the unleached and the leached soils

On completion of the pot trial the \(K_{ex} \) of the unleached and the leached soils ranged from 1.63 mg 100 g\(^{-1}\) in the Raumai soil (S9) to 7.20 in the Milson soil (S4) and from 1.36 in the Raumai (S9) to 7.10 in the Ohakea (S8), respectively (Fig. 4.1 and Fig. 4.2). Thus for all soils, unleached and leached, \(K_{ex} \) decreased to a more or less constant level below 7.20 mg 100 g\(^{-1}\), irrespective of large differences in the initial \(K_{ex} \) contents. This may be due either to the soils tending to maintain a minimal levels of \(K_{ex} \) regardless of \(K_{ex} \) removed by artificial leaching and/or cropping or to an artefact of the displacement of \(K_{ex} \) by \(NH_4^+ \) ions when \(K_{ex} \) is determined by \(NH_4OAc \) leaching. The latter option is more likely, combined with the tendency of micaceous materials to leak \(K^+ \) into the bathing (leaching) solution along a \(K^+ \) concentration gradient. Such possible leakage is likely always to confound interpretation of extractable K values.
4.3.6 Comparative contribution of \(K_{ex} \) and \(K_{nex} \) to total K uptake from unleached and leached soils

Of the total K removed by ryegrass after four harvests, the \(K_{ex} \) contribution to uptake from unleached soils i.e., the \(K_{ex} \) supply, ranged from 4.08 mg for Te Arakura (S10) to 66.67 mg 100 g\(^{-1}\) for undeveloped Timaru (S14) soil (Fig. 4.5). For the leached soils (Fig. 4.6) the range was 1.59 for Raumai (S9) to 8.92 for Milson (S4). The uptake over and above \(K_{ex} \) supply is assumed to have come from the non-exchangeable K pool.

The \(K_{nex} \) supply varied greatly between soils, the range being from 0 to 40.93 mg 100 g\(^{-1}\) for unleached soils and from 0 to 53.81 for the leached soils.

There were consistent differences between developed and undeveloped sites on South Island YGE soils in the amounts of \(K_{nex} \) taken up by plants from both unleached (Fig. 4.5) and leached (Fig. 4.6) soils.

4.3.6.1 Unleached soils

Figure 4.5 shows that of the 13 soils in the North Island, 7 YGE soils contributed no \(K_{nex} \) to plant uptake because the difference between the \(K_{ex} \) release before and after cropping is higher than the actual total K uptake value. This indicates an efficient mechanism for fixation (retention) of NH\(_4\)OAc extractable K by partially expanded 2:1 layered clays i.e., there was a shift in the K fixation/release equilibrium towards stronger K retention. The results of During (1973) showed that K retention was related to the type of clay mineral present. The mineralogy of the above 7 soils in comparison with the soils that supplied \(K_{nex} \) to plant uptake is addressed in Chapter 8.

The Raumai soil (S9) had the lowest \(K_{ex} \) (6.45 mg 100 g\(^{-1}\)) and the highest \(K_{nex} \) contribution whereas the Milson soil (S4) had the highest \(K_{ex} \) (55.40 mg 100 g\(^{-1}\)) and zero \(K_{nex} \) contribution. The \(K_{ex} \) content of the 7 soils that contributed no \(K_{nex} \) to plants ranged from 8.95 to 55.40 mg 100 g\(^{-1}\). Thus the level of \(K_{ex} \) appears not to influence the uptake of \(K_{nex} \).
There were also large differences in the K_{nex} supply from soils which had similar initial K_{ex} release. For example, ryegrass grown on developed Tokomaru (S3) soil did not supply non-exchangeable K, whereas 7.84 mg 100 g\(^{-1}\) were taken from Timaru (S15) soil. Similarly, the undeveloped Opuha (S18) soil contributed twice as much as its Claremont counterpart (S16) to K_{nex}. These results support the findings of Richard et al. (1988) who explained the differences in total K uptake by alfalfa, from southern Ontario soils with similar initial K_{ex}, entirely in terms of the greater uptake of non-exchangeable K.

All the South Island YGE soils, developed and undeveloped (S14 to S19), contributed K_{nex}. The range of contributions was 3.38 to 35.39 mg 100 g\(^{-1}\). Again, the extent of K_{nex} uptake was independent of soil K_{ex} (cf. S2 to S8).

4.3.6.2 Leached soils

As observed above, artificial leaching greatly reduced (to very low levels) K_{ex} of all soils (section 4.3.1), and the total K taken up by ryegrass (section 4.3.4.3). Artificial leaching did not result in considerable change of K_{nex} supply. It is interesting to note that of the 7 un-leached YGE soils that did not supply K_{nex}, 2 (S6 and S8) supplied K_{nex} after leaching. Variability in the K_{nex} supply of the 19 leached was as wide as for the un-leached treatment.

4.3.6.3 K_{nex} supply versus K_{nex} release

In this section K_{ex} values of the leached soils were assumed to be similar to those measured for the un-leached soils.

While the K_{nex} supplied by the soils of the South Island (mean of 6 soils) was 16.6 mg 100 g\(^{-1}\) and 14.4 mg in the un-leached and leached treatment respectively, that of the North Island soils (mean of 13 soils) was 6.0 and 7.5 mg K. This difference between the North Island and South Island YGE soils is to be expected considering the K_{ex} status of the two groups as recognised by AgResearch; the South Island soils fall in the high category (high K reserve soils) and the North Island soils in the medium category.
What is unexpected is the wide range of K_{nex} supply and release within the soils of both the Islands. For example, even though the North Island YGE soils are considered to have medium K reserves (Table 4.2), the measured K_{nex} supply and the measured K_c values varied widely. The actual K_c values ranged from 7.8 to 18.6 mg 100 g$^{-1}$ (Table 4.2). This indicates a potential problem in determining K fertilizer requirements because in the CFAS model a constant value of K_c i.e., 11.7 mg 100 g$^{-1}$ is used to assess K_{nex} supply of these soils (section 2.9). A change in K_c of 3.9 mg 100 g$^{-1}$ is moreover equivalent to a change in annual soil K supply of 10 kg ha$^{-1}$ using the CFAS model (section 2.9).

The K_c values of the YGE soils in the South Island on the other hand ranged from 12.3 to 16.8 mg 100 g$^{-1}$ and overlapped with the range of their northern counterparts (Table 4.2).

In general, only those soils with a K_c value greater than 10 mg 100 g$^{-1}$ contributed K_{nex} to total K uptake by ryegrass. Thus the YGE and related soils in the present study can be broadly grouped into two categories (i) soils with a K_c range of 8-10 and (ii) with a K_c range of 12-19 mg 100 g$^{-1}$.

The existing measure of K_{nex} release in New Zealand i.e., the K_c method, could not differentiate developed from undeveloped counterparts on the same soil as did the measure of K_{nex} supply. This has implications to the use of the soil group concept to estimate reserve K, because even though the measured K_c was more or less the same for both developed and undeveloped sites, the actual K_{nex} taken up by plants that were grown to K exhaustion in the glasshouse varied markedly between developed and undeveloped sites.

The K_{nex} supplies are generally more consistent with the classification (ranking) of the soils using the Metson criteria rather than using Campkin criteria both of which are based on measured K_c values (Tables 4.1 and 4.2). Thus those soils ranked high according to the Metson scale (S9, S10, S12, S14, S15, S18) contributed variable
amounts of K_{nex} to total K uptake by ryegrass. These soils, however, are all ranked medium according to the Campkin (AgResearch) scale. Thus calculations of K fertilizer requirements based on the CFAS model would result in over-estimates.

Similarly, over-estimates would occur for S4 and S5 which are ranked low by Campkin and medium by Metson (Table 4.2). The difficulty is compounded by AgResearch use, for convenience, of mean K_c values (3.9, 11.7, 27.3, Table 4.1) for low, medium, and high rankings, respectively.

This study confirms the recommendation of Campkin (1985) that when possible the actual K_c value (Metson, 1968a), if available for the site, should be used if the K_c method continues to be basis for the K_{nex} supply parameter in the CFAS model.

Since K_c is only a chemical index of K_{nex} release in the long run, the actual K_{nex} taken up by growing plants in this pot trial might be a more reliable index for placing these soils into different K fertility groups and also for reflecting the changes in K supplying power that result from continuous cropping and grazing.

4.4 GENERAL DISCUSSION ON ARTIFICIAL LEACHING TECHNIQUE

The artificial leaching technique (section 4.2.2) was intended to saturate all the exchange sites with Ca$^{++}$ and Mg$^{++}$ so that K uptake by ryegrass plants could be equated solely to K_{nex} supply. This seemed to be a reasonable assumption because plants were forced to grow on the K_{ex} exhausted soils.

Artificially leaching, however, not only incompletely removed the NH$_4$OAc-extractable K_{ex} but also enabled those soils with high initial K_{ex} levels to loose K in high proportions (section 4.3.1). If it is assumed that all the K on exchange sites was displaced by Ca$^{++}$ or Mg$^{++}$ ions during the artificial leaching process the presence of K_{ex} after subsequent extraction with NH$_4$OAc may be due to K_{nex} moving into the K_{ex} pool along a potential gradient created by the low level of K_{ex} and/or to the removal of non-exchangeable NH$_4$OAc extractable K. Thus to some degree the appearance of K_{ex} after presumed replacement by Ca$^{++}$ or Mg$^{++}$ may be an artefact of the NH$_4$OAc
extraction procedure. This is a possible explanation of the anomalous result for soil S12 (comparing Fig. 4.1 and Fig. 4.2)

On the other hand, even if NH₄OAc were used as a leaching solution zero levels of Kₑₓ after leaching would not be expected because during the later subsequent measurement for Kₑₓ on air dried soils, even by the same extractant, a new equilibrium is established based on the release of Kₑₓ from Kₑₓ sources. Moreover, a preliminary study on leaching the soils and their separates continuously, with either the leaching solution or the NH₄OAc solution, resulted in near total depletion of Kₑₓ release after the second successive leaching (data not presented). Nash (1971) showed that 90% of the Kₑₓ was extracted by the first 25 ml of 0.01 M NH₄OAc.

Furthermore, removal of Kₑₓ by leaching is extractant-specific in quantitative terms and any Kₑₓ remaining after artificial leaching is a reflection of Kₑₓ measured by a different extractant other than that used for Kₑₓ removal.

Potassium uptake from the leached soils thus cannot be equated solely to Kₑₓ supply. In addition, Kₑₓ supply of the 'leached' soils was not of much higher magnitude than the Kₑₓ supply of the original (unleached) soils which was contrary to expectations. Thus the artificial leaching technique was not as helpful as intended. The variations of Kₑₓ supply observed in the unleached treatment, however, were test verified in the leached treatment.

4.5 CONCLUSIONS

1. There was considerable variation in the availability of K to ryegrass from Kₑₓ sources for the 19 soils examined. This is illustrated by the extent of Kₑₓ supply that ranged from 0 to 41 and from 0 to 54 mg 100 g⁻¹ for unleached and leached soils, respectively.

2. According to the AgResearch categorisation (Cornforth and Sinclair, 1984) all the North Island YGE soils occur in the medium Kₑ group and the South Island soils in the high Kₑ group. This study delineates the selected soils of both these
Islands on the basis of actual K_c values and also on the K taken up by ryegrass plants from K_{nex} pool.

The results therefore imply that K_{nex} supply in the CFAS model could be better assessed if actual K_c for the site is determined. This is more so for the North Island soils where four out of 13 soils studied appeared to have abundant reserves of K as reflected in high K_{nex} release (K_c, Metson scale) and high K_{nex} supply (K_{nex} uptake), contrary to the AgResearch categorisation. Moreover, the variation in K_{nex} contribution to plant uptake is considerably greater in soils of the North Island compared to the South Island soils.

3. The lower levels of K_{nex} uptake by ryegrass from developed sites in the South Island as compared to their undeveloped counterparts have implications for the use of the soil group concept to estimate reserves of K (K_c) in determining K fertilizer requirements by the CFAS method. For example, undeveloped unleached sites contributed 3 to 5 times more K_{nex} to total uptake of K by ryegrass than their developed counterparts.
Chapter 5

Potassium Threshold Levels of Yge Soils in Relation to K Releasing Power, Supplying Power, and Specificity

5.1 Background

Release of K_{net} from clay interlayers and from K bearing primary minerals occurs when K_{ex} and K, levels are depleted by plant uptake (Doll and Lucas, 1973; McLean and Watson, 1985). The main sources of this K_{net} are the interlayer spaces of micas, illites, and interstratified 2:1 layer silicates (Sparks and Huang, 1985; Quemener, 1986; Goulding, 1987). The release of K from K_{net} in soil systems can be represented by the following combination of processes (Wiklander, 1954; Arnold, 1962):

\[
\begin{align*}
K \text{ in mineral lattice (} K_{\text{net}} \text{)} & \\
\downarrow & \\
\text{Dissolution} & \\
\downarrow & \\
K \text{ at exchange sites (} K_{\text{ex}} \text{)} & \\
\downarrow & \\
\text{Exchange} & \\
\downarrow & \\
K \text{ in soil solution (} K_s \text{)}
\end{align*}
\]

According to Tucker (1964), however, there is no reason to suppose that K must pass through exchange sites before it is released into the soil solution. The K_{net} can therefore be in direct equilibrium with K$^+$ ions in the soil solution as suggested by Mortland (1958).

If crop removal is assumed to be a single large sink for K depletion (cf. the exhaustive cropping trial, Chapter 4) the plant availability of K_{net} to ryegrass could be influenced by the rate of K release together with the K concentration (activity) in the soil solution. The rate of release is not only dependent on the degree of utilization of K by continuous crop uptake acting as a sink, but also on the nature of K bearing minerals in soils. In
addition to the K content of the minerals, the type of bonding within crystals, the extent of fracture surfaces and dislocations, the proportion of vacant sites, and the partial opening of interlayer space and the warping of the silicate layers will determine the rate of K release (Rich, 1968).

Working with "pure" clay minerals, Bassett (1959) and Scott and Smith (1966) showed that K release began below a particular Kₜ concentration termed the critical K concentration. This was in agreement with Rausell-Colom et al. (1965) who reported that Kₜ concentration influences the release of K from Kₑₓ. Furthermore, these authors demonstrated that for biotites and phlogopites suspended in a strong salt solution e.g., 1 M CaCl₂, the critical K concentration ranged from 8 to 66 mg l⁻¹ below which K was continuously released. Newman (1969) suspended a range of micas in 1 M NaCl and showed that the solution concentration ratio, Cₖ/Cₙa, at equilibrium ranged from 1x10⁻⁵ for muscovite to 1.2x10⁻³ for a very reactive biotite, thus confirming the higher critical K concentration of biotite compared to muscovite.

Recent work of Datta and Sastry (1991) using Indian soils led to the introduction of the term "threshold K level" to denote the critical K concentration as distinguished from the critical K level of Mengel and Busch (1982), which is associated with the level of K in soil solution below which a yield increase is obtained when fertilizer K is applied. The theory behind the threshold K level (Datta and Sastry, 1991) is relatively simple.

The soil is equilibrated with weak CaCl₂ solution at a series of soil:solution ratios followed by filtration and further extraction of the residual Kₑₓ with NH₄OAc. As the soil:solution ratio is widened the total amount of K extracted i.e., K desorbed in CaCl₂ solution plus K extracted with NH₄OAc (termed Kₜ) remains more or less constant until a critical value of K concentration (a measure of intensity of K release) is reached. This critical value of K concentration in the equilibrated solution is termed the threshold K level because lowering the K concentration below this value will initiate K release from Kₑₓ sources resulting in sharp increase in Kₜ.

The following seems to be the mechanism of Kₑₓ release. Datta and Sastry (1991)
suggested that during initial extraction of the soil by CaCl₂, Ca⁺⁺ replaces K⁺ at planar sites (p-positions). In the subsequent extraction with NH₄OAc, NH₄⁺ (ionic diameter 0.29 nm) replaces K⁺ (ionic diameter 0.27 nm) in the wedge zones of layered clay minerals. Eventually, at reduced K concentrations in the equilibrating solution that is achieved by wider soil:solution ratios, K moves from the wedge sites and the layers are then forced further apart due to net negative charges. The larger hydrated Ca⁺⁺ ions then enter the wedge zone thus allowing release of more interlayer K into the equilibrated soil solution and therefore resulting in increased K⁺. The value of the threshold K level was believed to be dependent on the ease with which K⁺ is released. Thus higher threshold K values should indicate weaker binding of K in the wedge zones of micaceous minerals and further indicate higher levels of K⁺ in the wedge zones available to plants.

Thus when K⁺ at different soil:solution ratios is plotted against K concentrations corresponding to the respective ratios, the line runs parallel to the x-axis with decreasing K concentrations (or increasing soil:solution ratios) up to the threshold K level and thereafter tends to become parallel to the y-axis (Fig. 5.1). The point on the x-axis at which K⁺ begins to rise steeply is identified as the threshold K level.

Alternatively, K⁺ is plotted against (i) K-Ca activity ratio (ARK) in the equilibrated solution (another measure of K intensity) that is determined by Q/I relationship, and (ii) exchangeable K (a measure of quantity that is extractable with NH₄OAc after K removal by CaCl₂ equilibration) to obtain threshold K levels expressed in terms of these indices of K releasing power. Thus threshold K level can be obtained in terms of (i) K concentration in the equilibrated soil solution, (ii) ARK, and (iii) Kₑₑₑₑ.

Higher threshold K levels in terms of Kₑₑₑₑ also indicate higher amounts of specifically held K (Datta and Sastry, 1991). As discussed in Chapter 2 (section 2.2.2) a number of exchange sites are present on the planar surfaces, and around the edges and wedges of the silicate layers. The planar exchange sites may be called non-selective (non-specific) sites and those around edges and wedges selective (specific) sites. The Gapon constant (Kₒ) gives a measure of the relative tightness of binding of K⁺ in relation to
Fig. 5.1 Theoretical relationship between K concentration in the equilibrium soil solution and K_T.
other cations (Mengel and Kirkby, 1987). The higher the K_0 the greater is the specificity of the binding site for K^+. For example, the K_0 values for the three different K^+ binding sites of illite as reported by Schuffelen (1972) were 2.21 (p-position), 102 (e-position), and infinite (i-position). The units for K_0 were ($M m^{-3}$)$^{1/2}$.

Thus when K_0 values for different soil:solution ratios are plotted (y-axis) against the K_{ex} values at the respective ratios (x-axis), a graph similar to Fig. 5.1 is obtained. The point on the x-axis at which the curve begins to rise is the amount of specifically held K in wedge zones because at this point most of the K_{ex} is strongly held. The corresponding point on the y-axis gives a measure of K_0 for the planar sites. Thus a higher value of specifically held K means more specific sites in the clay minerals that can release K when K concentration (or activity) in the equilibrated solution is reduced.

In Chapter 4 it was evident that there is considerable variation in the availability of K to ryegrass in the 19 soils examined and that K_{nex}, which is not ordinarily extractable with NH_4OAc is an important, but variable, source of K for ryegrass. For example, while the K_{nex} contribution to plant uptake (K_{nex} supplying power) for the unleached Raumai soil (S9) was 40.9 mg 100 g$^{-1}$ (Table 5.1), 7 YGE soils in the North Island contributed no K_{nex} (in fact negative K_{nex} uptake suggesting K fixation) to plant K uptake (Fig. 4.5). Similarly, the Timaru soil (S14) which is undeveloped and unexploited had a K_{nex} contribution to plant uptake 3 to 4 times greater than its developed counterpart (S15).

Since K_{nex} uptake by plants is dependent on the K release from K_{nex} sources, the threshold K level in terms of the above indices (K concentration, K-Ca activity ratio, and K_{ex}), and the amount of specifically held K would be expected to be higher for the soils that have contributed maximum K_{nex} to plant uptake. This K release from K_{nex} sources may be analogous to a saturated solution in equilibrium with its solid phase. It is hypothesised therefore, that the Raumai soil (S9) has a higher threshold K level and also higher amounts of specifically held K than all other soils in the North Island. Similarly, the undeveloped Timaru soil (S14) should theoretically have a higher value of threshold K level than the developed Timaru soil (S15). The differences in the
threshold K levels and the amounts of specifically held K among the soils should therefore ideally be in the same ranking order as that obtained by K_{ex} uptake by ryegrass (Chapter 4) and K extracted by HNO$_3$ (step K, and K_c).

The objective of the study reported in this chapter is to establish the threshold K levels in terms of the K concentration and the activity ratio in the equilibrated soil solution, K_{ex}, and the amount of specifically held K, and hence provide an explanation for the variations in the K_{ex} uptake by ryegrass. The concept of threshold K levels is also important because it potentially facilitates differentiation of soils based on their K_{ex} supplying power to growing plants.

5.2 MATERIALS AND METHODS

5.2.1 Soils - S3, S6, S9, S12, S14 and S15.

These six soils were selected from the 19 soils, as they have differing levels of plant K_{ex} uptake (Chapter 4). A detailed description of these soils is given in Chapter 3. Table 5.1 shows the features used for selecting soils for this study.

5.2.2 Determination of the threshold K level

The method of Datta and Sastry (1991) was modified as follows for determining the threshold K levels. The K concentrations (or K-Ca activity ratios in the soil solution) were lowered to different levels by shaking duplicate soil samples with 0.01 M CaCl$_2$ at different soil:solution ratios (Table 5.2) for 1 h in a 200 ml centrifuge bottle and then allowing them to equilibrate for 24 h. The bottles were then centrifuged at 2000 rpm for 2 min and the concentrations of K, Ca, and Mg in the filtrate for each soil:solution ratio measured. K, Ca, and Mg present in the exchangeable phase in the soil after the equilibration were determined for each soil:solution ratio, by shaking the residual soil in the centrifuge bottle with neutral 1 M NH$_4$OAc (soil:solution ratio of 1:10) for 30 min, followed by centrifuging and filtering. Since a portion of the CaCl$_2$ solution was entrapped in the soil after filtering, the amount of exchangeable cations extracted by
Table 5.1 Some features used for selecting soils to determine threshold K levels

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Region</th>
<th>* Ranking of (K_r)</th>
<th>(K_c)</th>
<th>Step K** (Chapter 6)</th>
<th>(K_{net}) uptake (Chapter 4 data)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(K_r)</td>
<td>(K_c)</td>
<td></td>
<td>Unleached soils</td>
</tr>
<tr>
<td>S6</td>
<td>Marton</td>
<td>Rangitikei</td>
<td>L (8.95)</td>
<td>M (8.18)</td>
<td>31</td>
<td>2.21</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru</td>
<td>Manawatu</td>
<td>L (13.65)</td>
<td>M (9.42)</td>
<td>30</td>
<td>-0.72</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>Wairarapa</td>
<td>L (8.80)</td>
<td>H (14.71)</td>
<td>49</td>
<td>1.88</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>South Canterbury</td>
<td>L (12.10)</td>
<td>H (14.50)</td>
<td>62</td>
<td>7.84</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>South Canterbury</td>
<td>H (71.35)</td>
<td>H (16.79)</td>
<td>75</td>
<td>26.63</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>Pohangina</td>
<td>L (6.45)</td>
<td>H (17.33)</td>
<td>106</td>
<td>40.90</td>
</tr>
</tbody>
</table>

(a) Undeveloped site
(b) Developed site

Values in brackets are the measured values (Table 3.3, Table 4.2)

* Refer Table 4.2

** Step K = a method to assess \(K_{net} \) releasing power (Chapter 6)
Table 5.2 Soil:solution ratios used for determining threshold K levels

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Soil:solution ratio</th>
<th>Soil weight (g)</th>
<th>Volume of 0.01 M CaCl₂ (ml)</th>
<th>Volume of 1 M NH₄OAc (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:2</td>
<td>10</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1:4</td>
<td>5</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>1:5</td>
<td>5</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>1:10</td>
<td>2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>1:15</td>
<td>2</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>1:25</td>
<td>2</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>1:50</td>
<td>2</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>1:100</td>
<td>2</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>1:150</td>
<td>1</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>1:200</td>
<td>1</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>1:400</td>
<td>0.5</td>
<td>200</td>
<td>5</td>
</tr>
</tbody>
</table>
NH₄OAc was corrected by subtracting the amount present in the entrapped solution. The quantity of entrapped solution was calculated from the difference between the weight of the wet soil that contained entrapped solution and the weight of the air dry soil.

The K-Ca activity ratio (ARₖ) for each soil:solution ratio was calculated using the following formula (Ganeshamurthy and Biswas, 1984).

\[AR^k = \frac{a_k}{a_{(Ca+Mg)}} \]

(5.1)

The activity of K is given by

\[a_k = C_k f^+ \]

(5.2)

Where \(C_k \) is the concentration of K expressed in mole l⁻¹ and \(f^+ \) is the activity coefficient for K.

The activity of Ca+Mg is given by

\[a^{1/2}_{(Ca+Mg)} = C^{1/2}_{(Ca+Mg)} f^{2+} \]

(5.3)

Where,

\(C^{1/2}_{(Ca+Mg)} \) is the square root of concentration of Ca+Mg expressed in mole l⁻¹.

\(f^{2+} \) is the activity coefficient for Ca+Mg where \(f^+ \) and \(f^{2+} \) are given by

\[-\log f^+ = \frac{0.509 Z^2 \mu^{1/2}}{1 + 1.5 \mu^{1/2}} \]

(5.4)

giving
\[f = 10 \cdot 0.3092 \cdot \mu^{1/2} \left(\frac{1}{1 + 1.5\mu^{1/2}} \right) \]
\[(5.4) \]

\(Z \) is the valency of the ion and

\(\mu \) is the ionic strength given by

\[\mu = \frac{1}{2} \left(\sum M Z^2 \right) \]
\[(5.5) \]

Where \(M \) is the Molar concentration of cations (K, Ca and Mg) and anion (Cl).

The Gapon constant, \(K_G \), for each soil:solution ratio, was calculated using the following equation:

\[K_G = \left(\frac{K_{ex}}{\text{Exchangeable Ca+Mg}} \right) \left(\frac{a^{1/2}(\text{Ca+Mg})}{a_X} \right) \]
\[(5.6) \]

\[= \left(\frac{K_{ex}}{\text{Exchangeable Ca+Mg}} \right) \left(\frac{1}{AR^K} \right) \]

The units for \(K_G \) are (mole l\(^{-1}\))\(^{1/2}\).

\(K_T \) (total extractable K = solution K + K\(_{ex}\)) was plotted against the K concentration in CaCl\(_2\) soil solution, AR\(^K\), and K\(_{ex}\) corresponding to each soil:solution ratio and the curves were drawn free-hand. The threshold K levels for K release in terms of K
concentration in the soil solution, AR^K, and K_x were determined from these curves as mentioned earlier.

Specifically held K and K_0 for the soils can be obtained from a graph that shows the values of Gapon constant of K-Ca exchange (y-axis) as a function of K_x (x-axis) at each soil:solution ratio.

5.3 RESULTS AND DISCUSSION

5.3.1 Threshold K levels expressed in terms of K concentration in the equilibrating soil solution

Figures 5.2, 5.3, and 5.4 show the curves of K_T versus the K concentration in equilibrium CaCl_2 solution, AR^K, and K_x, respectively. Each of these expressions of threshold K level describe the K releasing power of soils and are related to each other. Threshold K levels in terms of K concentration (mM l^1) in the equilibrated soil solution were mainly used to characterize soils in the present study with respect to K_x availability to plants. This was because studies of Datta and Sastry (1988) indicated that threshold K levels in the equilibrated solution in terms of K concentration remained unchanged whereas that in terms of K_x and AR^K changed with decrease in the CaCl_2 concentration (from 0.01 to 0.002 M).

The curves for all the soils except the undeveloped Timaru soil (S14) are more or less similar, i.e., the line running almost parallel to the x-axis with decreasing solution K concentration (or with increasing soil:solution ratio) up to a certain value where K_T increases more or less sharply and then the line tending to become more or less parallel to y-axis indicating release from K_{nex}. The value of equilibrium K concentration in the soil solution where the K_T begins to increase sharply is termed the threshold K level (Datta and Sastry, 1991) because lowering the K concentration below this level initiated K release from K_{nex} sources.

The threshold K level in terms of K concentration in the equilibrating soil solution,
Fig. 5.2 Relationship between total K extracted (K_T) and exchangeable K of soils

(a)

(b)

(c)

K_T (c mole kg$^{-1}$)

K_{ex} (c mole kg$^{-1}$)

Tokomaru (S3)

Marton (S6)

Timaru pasture (S15)

Wharekaka (S12)

Raumai (S9)

Timaru virgin (S14)
Fig. 5.3 Relationship between total K extracted (K_T) with K concentration in an equilibrated solution of 0.01 M CaCl$_2$ (K_s)
Fig. 5.4 Relationship between total K extracted \((K_T)_{90} \) and K-Ca activity ratio \((AR^K) \) of soils

(a) 0.6 0.4 0.2 0.0

(b) 0.6 0.4 0.2 0.0

(c) 2.5 2.0 1.5 1.0 0.5 0.0

\(K_T \) (c mole kg\(^{-1}\))

\(AR^K \) (mole l\(^{-1}\))\(^{1/2} \times 10^{-3}\)
AR^K, and \(K_{ex} \) could not be determined for the undeveloped Timaru soil (S14) from the curves (Fig. 5.2, 5.3, and 5.4) despite its high K releasing/supplying power (Table 5.1). This indicated that a concentration of 0.041 mM l\(^{-1}\) in the equilibrated soil solution even at the widest soil:solution ratio (1:400) was insufficient to initiate release of \(K_{ex} \) to soil solution.

Attempts to reduce the K concentration to minimum levels in the undeveloped Timaru soil (S14) by widening the soil:solution ratios (1:800, 1:1000, and 1:2000) still further only lowered the K concentrations to 0.022, 0.018, and 0.009 mM l\(^{-1}\), respectively, with no appreciable increase in \(K_T \). This indicated that the K concentration in the equilibrating soil solution was still too high to allow release of K from \(K_{ex} \) sources. This was peculiar because the remainder of the soils had threshold K levels more or less in the range of the above levels of K concentration in the equilibrating solution.

The threshold K levels in terms of equilibrium K concentration in CaCl\(_2\) solution for the 6 soils are presented in Table 5.3. These values are in the lower range of the threshold K levels of some Indian soils (0.025 to 0.300 mM l\(^{-1}\)) reported by Datta and Sastry (1988 and 1991). For the 6 soils in this chapter which contain variable reserves of micaceous minerals, however, the threshold K levels varied widely from soil to soil. Of interest is that, this variation is not in accordance with the variation of \(K_{ex} \) availability to ryegrass grown to K exhaustion in the glasshouse (Chapter 4) or with the variation of measures of \(K_{ex} \) releasing power (Chapters 4 and 6), as was hypothesised. For example, the Raumai soil (S9) which had contributed the maximum \(K_{ex} \) to plant uptake (Table 5.1) has a threshold K level 7.7 times less than the Marton soil (S6) which did not contribute any \(K_{ex} \) to plant uptake. Similarly, there is an unexpected trend for the threshold K levels of other soils. The threshold K level of Wharekaka soil (S12) is lower than that of Marton (S6), and developed Timaru soil (S15).

The threshold K levels in terms of equilibrium K concentration in CaCl\(_2\) solution seemed to be analogous to the \(C_o \) measurement (the concentration of K in the soil solution at the point of zero change of non-exchangeable K) of Jackson and During (1979). Across a range of New Zealand soils \(C_o \) values, however, were not related to
Table 5.3 Threshold K levels (mean of duplicates) in terms of K concentration in equilibrium soil solution, K_{eq}, and ARK, and the amount of specifically held K

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Solution K concentration (mM l$^{-1}$)</th>
<th>K_{eq} (c mole kg$^{-1}$)</th>
<th>ARK (mole l$^{-1}$)$^{1/2}$</th>
<th>Specifically held K (c mole kg$^{-1}$)</th>
<th>K_{eq} (mole l$^{-1}$)$^{-1/4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>Marton</td>
<td>0.115</td>
<td>0.095</td>
<td>0.0018</td>
<td>0.135</td>
<td>4</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru</td>
<td>0.025</td>
<td>0.090</td>
<td>0.00035</td>
<td>0.220</td>
<td>4</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>0.020</td>
<td>0.110</td>
<td>0.0002</td>
<td>0.220</td>
<td>6</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>0.060</td>
<td>0.165</td>
<td>0.0011</td>
<td>0.390</td>
<td>6</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.245</td>
<td>4</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>0.015</td>
<td>0.045</td>
<td>0.0001</td>
<td>0.105</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: 1. Threshold K levels are expressed in terms of equilibrium K concentration, K_{eq}, ARK, or specifically held K
2. K_{eq} value corresponds to the point where the curve of K_{eq} versus K_{eq} rises in Fig. 5.5
the K_{ex} fraction of the uptake by ryegrass. No explanation was given to this effect.

From Table 5.3 it can be seen that threshold K levels in terms of AR^K and K_{ex} also did not follow the expected trend.

5.3.2 Relationship between Gapon constant (K_G) and K_{ex}

The curves of K_G versus K_{ex} (Fig. 5.5) for most of the soils seemed to have a continuous gentle curve unlike the curves in Fig. 5.2, 5.3, and 5.4. Below a certain level of K_{ex}, K_G rises. The level of K_{ex} at this increase in K_G value corresponds to the amount of specifically held K in the wedge zones. The corresponding values of K_G on the y-axis gives a measure of the strength of binding of K$^+$ relative to Ca$^{++}$ on the planar (p-) positions of the clay surface.

From Fig. 5.5 and Table 5.3 it can be seen that the levels of K_{ex} below which the value of K_G increases are 0.135, 0.220, 0.220, 0.390, 1.245, and 0.105 c mole kg$^{-1}$ for S6, S3, S12, S15, S14, and S9, respectively. These amounts of K_{ex} are specifically held and are present in the wedge zones. As expected, the sequence for specifically held K followed more or less the same order as threshold K levels in terms of K_{ex} (Table 5.3). This is because of the mechanism for K_{ex} release described in section 5.1. As was the case for solution K concentration, the amount of specifically held K did not predict differences in K_{ex} uptake by ryegrass.

5.3.3 Variation of threshold K levels

As suggested by Datta and Sastry (1991) the variation of threshold K levels may be attributed to a number of factors. These include the type of K bearing minerals, the predominance of tri- or di-octahedral components, structural irregularities, specific sites (development of wedge zones and the amount of specifically held K), cleavage planes and the amount of K_{ex} (reserve K) as measured by chemical methods. The amount of specifically held K in relation to threshold K level (in terms of K_{ex}) is discussed in the earlier section.
Fig. 5.5 Relationship between Gapon constant (K_G) and exchangeable K (K_{ex}) of soils

(a) K_G (c mole kg$^{-1}$) vs. K_{ex} (c mole kg$^{-1}$) for Tokomaru (S3) and Marton (S6) soils.

(b) K_G (mole l$^{-1}$)$^{1/2}$ vs. K_{ex} (c mole kg$^{-1}$) for Timaru pasture (S15), Wharekaka (S12), and Raumai (S9) soils.

(c) K_{ex} (c mole kg$^{-1}$) vs. K_G (c mole l$^{-1}$)$^{1/2}$ for Timaru virgin (S14) soil.
An attempt to relate measures for K_{ex} releasing power viz, step K and K_c with the threshold K levels indicated that the Raumai soil (S9), had the lowest threshold K level (Table 5.3), but had relatively high amounts of K_{ex} measured by step K (106 mg 100 g$^{-1}$) and K_c (17.33 mg 100 g$^{-1}$) methods, when compared with the Tokomaru (S3) and Marton (S6) soils (Table 5.1). Similarly, the developed Timaru soil (S15) has twice the amount of soil K_{ex} as the Marton (S6), but had a threshold K level (in terms of K concentration) only half that of the latter. Nevertheless, one would expect that both the threshold K level and the amount of the plant available K_{ex} (measure of K supplying power), would be dependent on the clay structure and the degree of expansion and hence follow a similar trend.

It can be argued that rather than the threshold K level which is the concentration of the equilibrating soil solution below which K_{ex} release into the soil solution occurs, the increase in K_T beyond the threshold K level i.e., K_T at the widest soil:solution ratio minus K_T at threshold K level may be a better parameter than the threshold K concentration itself, for comparing plant K_{ex} uptake in the pot trial. This is because both the total plant K_{ex} uptake and the increase in K_T beyond threshold K level are quantity factors that can be related to each other. The higher plant K_{ex} uptake of the Raumai soil (S9) than, for example, the Marton soil (S6), may not necessarily result in a higher threshold K level (in terms of equilibrium K concentration in soil solution) because over a period of time this level (K_e) may be constantly replenished resulting in greater release of K_{ex}. The equilibrium K concentration at the threshold K level for S6, on the other hand, may have been only maintained for a short period of time, which indicates these soils are highly selective for K at wedge sites at very low K saturation. Inspection of Table 5.4, however, indicated that there was no relationship between K_{ex} uptake and any increase in K_T beyond the threshold K level. For example, the increase in K_T beyond the threshold K level is much higher for the Marton soil (S6) than for the Raumai soil (S9).

It appears therefore that there was a different trend of threshold K level in this experiment compared to that expected from the K_{ex} availability to plants in the pot trial (Chapter 4). This is in addition to the difficulty in determining the threshold K level
Table 5.4 Increase in K_T beyond threshold K level in relation to K_{sat} uptake

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>K_T at widest soil:solution ratio (1:400)</th>
<th>K_T at threshold K level *</th>
<th>Increase in K_T beyond threshold level</th>
<th>K_{sat} uptake from unleached soils (Table 5.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>Marton</td>
<td>0.43</td>
<td>0.17</td>
<td>9.47</td>
<td>-</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru</td>
<td>0.51</td>
<td>0.31</td>
<td>0.20</td>
<td>-</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>0.34</td>
<td>0.27</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>0.59</td>
<td>0.50</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>1.96</td>
<td>-</td>
<td>-</td>
<td>0.68</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>0.21</td>
<td>0.18</td>
<td>0.02</td>
<td>1.05</td>
</tr>
</tbody>
</table>

* Identified from solution K versus K_T graphs (Fig. 5.3)
for S14 (undeveloped Timaru soil). These inconsistencies may be attributed to the differences in the mechanism of K_{rem} release in the method of determining the threshold K level in the laboratory, and in growing plants to K exhaustion in the glasshouse. Both involved reduction of K concentration in the soil solution which is a prerequisite for K_{rem} release. But there were two important differences.

In the pot experiment, the lowering of K concentration in the soil solution was achieved by continuous uptake of K by roots, but in the threshold K level experiment, it was effected by increasing the soil:solution ratio. The constant uptake of K by plants may place greater drain on the soil. This, however, may not be a major criticism because in the present experiment K concentrations were sufficiently lowered to induce K_{rem} release. Given this the rhizosphere effects are a major possibility.

While the pH of 0.01 M CaCl$_2$ varied over the period of the threshold K level experiment (6.7 to 8.3) that of the rhizosphere pH is expected to be lower due to NH$_4^+$ used in the pot experiment (in the minus K nutrient solution) and also due to net proton extrusion by roots. Net proton extrusion by plant roots was regarded as a strategy by which K_{rem} is released to soil solution (Jungk and Classen, 1986; Tributh et al., 1987). NH$_4$ is not only likely to replace interlayer K at the edges of the particles, but it may also cause the layers to collapse at the edges, entrapping K at sites in the interlayer position (van Diest, 1978).

It was thought therefore that the shaking time (1 h) used by Datta and Sastry (1991) may be too short to bring about the expected trend in the threshold K levels. The study on the changes in solution and exchangeable K with increasing shaking times (1, 24, 72, and 144 h) at 1:400 soil:solution ratio, however, indicates (Table 5.5) that shaking time is not a limiting factor for obtaining the expected trend of threshold K levels. Interestingly, K concentration of the Marton soil (S6) dropped to about 50% after 144 h of shaking time which indicates possible fixation of K at reduced K concentrations.
Table 5.5 Changes in Solution and Exchangeable K (mean of duplicates) with increasing shaking time (h) at 1:400 Soil:CaCl₂ solution ratio

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>K concentration in equilibrium soil solution K (mg l⁻¹)</th>
<th>Exchangeable K (c mole kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 h</td>
<td>24 h</td>
</tr>
<tr>
<td>S5</td>
<td>Marton</td>
<td>0.29</td>
<td>0.23</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru</td>
<td>0.30</td>
<td>0.29</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>0.29</td>
<td>0.30</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>0.45</td>
<td>0.42</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>1.70</td>
<td>1.75</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>0.44</td>
<td>0.29</td>
</tr>
</tbody>
</table>
CONCLUSIONS

1. The threshold K level method of Datta and Sastry (1991) is not suitable for characterising the soils in this study on the basis of K_{nex} supply/release. It is concluded that the threshold K levels (in terms of equilibrium K concentration, K_{ex}, and AR^K) and the amount of specifically held K determined in this experiment do not concur with K_{nex} uptake.

2. Measurement of the equilibrium K concentration in the CaCl$_2$ soil solution below which K_{nex} release is initiated may not be representative of the situation in the rhizosphere. The discord between the threshold K levels and crop performance possibly results from and underscores the role of H^+ and NH$_4^+$ in the release of K in the rhizosphere during crop growth.
CHAPTER 6

ASSESSMENT OF THE K RELEASING POWER OF YGE SOILS IN RELATION TO PLANT AVAILABLE K USING SELECTIVE SOIL TESTING PROCEDURES

6.1 BACKGROUND

There is an increasing awareness of the need to apply K fertilizers at rates which are adequate to maintain high pasture production levels. Soil testing procedures (methods of assessing K releasing power that give an index of soil K supply, section 2.8) therefore must provide reliable data to ensure that plant K demand is matched by optimum application rates. The usefulness of a soil test depends on the reliability of the measurement and other criteria relevant to a particular crop. The soil test should require a minimum of calibration, and once calibrated, it should reliably predict the extent of the response of plants to added K.

It has long been recognised that for some New Zealand soils the current soil test (quick test K measurement using NH₄OAc i.e., QTK) level does not necessarily represent the true plant available K status (Williams et al., 1986). A low QTK level may not always indicate a lack of plant available K in the soil. This problem is apparent for the YGE soil group (P.E.H. Gregg, pers. comm.) where accurate prediction of K responsiveness using QTK has long been difficult because of the variable amounts of micaceous minerals which seem to be a major source of available non-exchangeable K. For example, the less leached and less weathered YGE soils (e.g., Timaru silt loam) in the South Island appear to contain high K_{net}/reserve K (as assessed by K_a), whereas the more leached and more weathered YGE soils (e.g., Marton silt loam) in the North Island appear to have low K_{net} (section 2.7.2.3). Metson et al. (1956) pointed out that exchangeable K (NH₄OAc extractable) is often quite low in the YGE soils, although their K supplying power remains high.
As pointed out in Chapter 2 (section 2.7.2.3) K_r is considered as the long term rate of K_{nex} releasing power. Although it may be giving an indication of K releasing power, the fact that it does not measure K_{ex} and short term K_{nex} release makes it unsuitable as a soil test by itself.

The failure of these soil tests (QTK, and K_{ex}) to serve as a good predictor for K supplying power (plant available K) in the K fertilizer recommendation model led to the development of sodium tetrphenyl boron (NaTPB) extractable K (Jackson, 1985). In a pot trial that covered a wide range of soil types in New Zealand including some YGE soils, Jackson (1985) found that NaTPB K was highly correlated with K uptake by ryegrass. But for routine determination of plant available K status, the NaTPB reagent is not suitable owing to its high cost and lengthy procedure. Furthermore, R.G. Smith (pers. comm.) pointed out that there is little justification for using the NaTPB test on YGE soils in the Manawatu region because these soils contained a reasonably constant ratio of exchangeable K to NaTPB K.

It seems reasonable to conclude that there is no method to assess K releasing power, which gives an extensive understanding of the plant available K status of New Zealand soils. The present study seeks to identify a method to assess K releasing power for predicting plant available K so as to enable accurate fertilizer K requirements. In this chapter a range of soil testing procedures is described with a view to assessing the plant available K status of YGE and related soils using the dry matter yield and the K uptake data from Chapter 4. The soil testing procedures chosen are QTK, K_{ex}, resin K, K_r, NaTPB K, and an acid extraction procedure.

There are indications that sand and silt fractions of some New Zealand soils can account for appreciable proportions of non-exchangeable K (Metson et al., 1956; Lee and Gibson, 1974). This study also aims to assist in understanding the K releasing power of the soil separates (sand, silt, and clay) and thus the contribution of K bearing primary minerals to the plant available K pool. The primary objectives of this study are therefore:
1. To assess the effectiveness of several soil testing procedures to predict dry matter yield and K uptake by ryegrass in the pot trial.
2. To assess the acid-extractable K levels in the soil separates.

6.2 MATERIALS AND METHODS

6.2.1 Soils

The 19 soils used in this study have been described in Chapter 3. The artificially leached soils (Chapter 4) were also used in this study.

6.2.2 Plant growth studies

The dry matter yields and the K uptake data from the unleached and leached soils in Chapter 4 were used in this study.

6.2.3 Chemical extraction methods for assessing K releasing power

6.2.3.1 Conventional methods

Quick test K, resin K, \(K_r \), and NaTPB K for the unleached soils were determined using the methods of Mountier et al. (1966), Saggar et al. (1990), Blakemore et al. (1987), and Jackson (1985), respectively. The \(K_{ve} \) data for unleached and leached soils were obtained from Chapter 4. Acid-extractable K of unleached and leached soils was determined using the method described in section 6.2.3.3.

Since \(K_e \) is expected to be unaffected by short term cropping (Haylock, 1956a; Lee and Gibson, 1974; Metson, 1980) no attempt was made to measure \(K_e \) in the unleached soils after cropping and in the leached soils. QTK, resin K, \(K_{ve} \), and NaTPB K were not determined for the leached soils.
6.2.3.2 Standardisation of an acid extraction procedure

The first extract of the K_c method, obtained by treating the soil with boiling 1 M HNO$_3$ at a wide soil:solution ratio includes K_{ext}, plus the more soluble portion of K_{nex} (Metson, 1980). This is referred to as the acid extraction procedure (acid-extractable K) in this study.

To standardise the methodology of the acid extraction procedure the soils were treated with boiling 1 M HNO$_3$ at a wide soil:solution ratio (1:100) over two time periods and the K extracted was compared with the K uptake by ryegrass from the unleached soils. The correlation coefficient (r) of the acid-extractable K with plant K uptake by ryegrass from the unleached soils decreased from 0.96 to 0.88 as the boiling time was increased from 20 min to 200 min using a reflux condenser. Nevertheless, the longer boiling time extracted greater amounts of K, the range after 200 min being 74-219 mg 100 g$^{-1}$ compared with 34-147 mg 100 g$^{-1}$ extracted by 20 min boiling from the Marton (S5) and the undeveloped Timaru (S14) soils, respectively. The 20 min boiling time was therefore preferred because of its higher predictive value ($R^2 = 92\%$) and was chosen as a practical extraction time. The "step K" computed from the 200 min boiling acid-extractable K and the K_{nex} (NH_4OAc extractable) of the unleached soils were also well correlated with K_{nex} uptake by ryegrass from the unleached soils ($R^2 = 82\%$).

6.2.3.3 Acid extraction procedure

To 2 g soil in a 400 ml wide-mouthed conical flask were added 200 ml 1 M HNO$_3$. The suspension was boiled for 20 min with a small conical flask inverted in the neck to act as a reflux condenser. The water lost by boiling was measured by the difference in the weight of the flask before and after boiling. This amount of distilled water was used for transferring the contents of the flask into a 250 ml centrifuge bottle, which was centrifuged for 5 min at 2000 rpm. An aliquot was taken and diluted with distilled water by a factor of two. Potassium in the diluted aliquot was measured against K standards in 0.5 M HNO$_3$ matrix.
The use of a small conical flask as a reflux condenser, the inconsistency in the weight differences of the HNO₃ solution before and after boiling for different extractions, and the use of distilled water to make up the weight loss due to boiling presumably altered the concentration of the acid. Nevertheless, when the final aliquot was measured against the background concentration of 0.3, 0.4, and 0.6 M HNO₃, the differences in the acid-extractable K were negligible (data not presented). This indicated that the concentration of the acid in the boiled solution did not affect the extractable K levels at the levels of matrix solution concentrations examined.

6.2.3.4 Step K

Since the acid-extractable K includes K_{ex} and a portion of K_{ocx}, a single measurement of K_{ocx} releasing power was obtained by subtracting K_{ex} (NH_4OAc-extractable) from the acid-extractable K. This was called "step K" (section 2.7.2.3).

Alternatively, step K was computed using the QTK method of assessing K_{ex} releasing power. This was entitled as "quick step K" (QSK).

6.2.4 Sand and silt separation

On completion of the particle size analysis (Chapter 3), the silt fraction (2-63 µm) was separated from the silt plus clay suspension by repeated centrifugations (1000 rpm for the appropriate period of time based on the temperature of the suspension) and washings until the suspension was clear (Kirkman and Pullar, 1978). The sand fraction was separated by wet sieving using a 63 µm sieve. No attempt was made in this study to obtain a clay separate from the clay suspension.

6.2.5 Relative contribution of the soil separates to whole soil acid-extractable K

The acid-extractable K in the peroxidised soil, sand, and silt was determined by the method described in section 6.2.3.3. Any acid-extractable K lost due to the peroxidation treatment was obtained by the difference between the acid-extractable K
before and after peroxidation. The percent contributions of the acid-extractable K from sand, and silt, on a whole soil basis were calculated using the following formula.

$$Y = \left(\frac{A}{C} \cdot B\right)$$

Where,

Y = Percent contribution of the acid-extractable K from sand or silt calculated on a whole soil basis

A = Percent sand, or silt in the soil (Table 3.2)

B = Acid-extractable K of the soil separate (mg 100 g$^{-1}$)

C = Acid-extractable K of the peroxidised soil (mg 100 g$^{-1}$)

Since no attempt was made in this study to separate the clay fraction for determination of acid-extractable K, the percent contribution of acid-extractable K from the clay fraction (Z) was calculated indirectly by difference as suggested by Lee and Gibson (1974) and Lee and Widdowson (1977). The acid-extractable K of the clay was then computed using the following equation.

$$\text{Acid-extractable } K \text{ of clay } = \left(\frac{Z}{A} \cdot C\right)$$

Where,

C = Acid-extractable K of the peroxidised soil (mg 100 g$^{-1}$)

A = Percent clay in the soil (Table 3.2)
6.3 RESULTS AND DISCUSSION

6.3.1 Relationship between soil tests and dry matter yield of ryegrass grown on the unleached and the leached soils

Correlation and regression analyses between the six soil tests and the total dry matter of ryegrass tops (shoots) grown on the unleached soils are shown in Fig. 6.1 and in Table 6.1. Except for Kc, which was correlated at the 5 % level, all other K extraction procedures were correlated at the 1 % level. The acid extraction method and the NaTPB K gave the highest r values reported (Fig. 6.1), signifying their superiority over the other procedures.

While the exchangeable fraction of the unleached soils measured partly or wholly by QTK, resin K, and Kex explained 50 %, 50 %, and 45 % of the variation in dry matter yield of ryegrass, respectively, the acid extraction method and the NaTPB K accounted for 80 and 87 % of the variation, respectively (Table 6.1). Similar research in a pot experiment (Jackson, 1985) revealed K extracted by the NaTPB method to be more highly correlated to dry matter yield of ryegrass grown than QTK, Kex, and Kc in a range of New Zealand soils. The results contradict the field research of Williams et al. (1986), who reported that Kc levels of Recent South Island soils were better correlated with relative yield of pasture than NaTPB K.

When Kex and step K measurements were included in the step-wise regression analysis, an increase in R² value was observed for the unleached soils (Table 6.1). The increase in prediction was similar to that of the acid-extractable K as expected. A similar answer was obtained with a combination of QTK and step K as well as with QTK and "quick step K".

The findings conform to those reported by Barber and Matthews (1962) who found that the prediction of yield variation of wheat, oats, corn, and potatoes grown in the field was improved when both Kex and "moderately available Kmod" were taken into account. The "moderately available Kmod" of Barber and Matthews is speculated to be analogous
Fig. 6.1 Relationship between soil tests (mg K 100 g⁻¹) and dry matter yield (g pot⁻¹) of ryegrass grown on the unleached soils
Fig. 6.1 (contd.) Relationship between soil tests (mg K 100 g$^{-1}$) and dry matter yield (g pot$^{-1}$) of ryegrass grown on the unleached soils
Table 6.1 Regression analyses between dry matter (g pot\(^{-1}\)) and K releasing power (mg 100 g\(^{-1}\))

<table>
<thead>
<tr>
<th></th>
<th>Regression equation</th>
<th>(R^2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unleached soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Y = 2.89 + 0.034 \text{ QTK})</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(Y = 2.95 + 0.057 \text{ Resin K})</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(Y = 2.89 + 0.029 \text{ K}_{ex})</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>(Y = 2.73 + 0.018 \text{ NaTPB K})</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Y = 1.88 + 0.023 \text{ Acid-extractable K})</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>(Y = 1.96 + 0.030 \text{ QTK} + 0.020 \text{ Step K})</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>(Y = 1.90 + 0.026 \text{ K}_{ex} + 0.021 \text{ Step K})</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>(Y = 1.91 + 0.027 \text{ K}_{ex} + 0.020 \text{ QSK})</td>
<td>88</td>
</tr>
<tr>
<td>Leached soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Y = 2.96 + 0.005^{\text{NS}} \text{ K}_{ex})</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Y = 1.73 + 0.027 \text{ Step K})</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Y = 1.42 + 0.028 \text{ Acid-extractable K})</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>(Y = 1.26 + 0.045^{\text{NS}} \text{ K}_{ex} + 0.028 \text{ Step K})</td>
<td>84</td>
</tr>
</tbody>
</table>

\(Y\) = Dry matter (g pot\(^{-1}\))

\(\text{NS}\) = Non significant
to the "step K" in the present study.

There was no relationship between the K_{ex} and the total dry matter yield of ryegrass for the leached soil treatment (Fig. 6.2). The new acid extraction procedure, however, was highly correlated with the dry matter yield, thus mirroring the results for the unleached soils.

6.3.2 Relationship between soil tests and K uptake from the unleached and the leached soils

Figure 6.3 shows the correlation between soil tests for K, and K uptake by ryegrass from the unleached soils. All the K soil tests were significantly correlated with the K uptake. The highest r value of 0.96 was obtained with the acid-extractable K followed by NaTPB K (0.92).

The regression analysis (Table 6.2) also revealed that about 92 % of the variation in the K uptake can be explained by the acid-extractable K while 85 % was explained by NaTPB K and about 60 % by the soil tests measuring only exchangeable K. Of the 19 YGE soils tested, 12 contributed K_{mex} to plant uptake (Chapter 4). This was revealed by acid extraction procedure but not by the K_{ex} measurements. Similarly a poor prediction of K uptake by ryegrass with K_{ex}, and a good prediction with NaTPB K was observed by Jackson (1985) in a pot trial covering a wide range of New Zealand soils.

The results of Liu and Bates (1990), Wood and Schroeder (1992), and Grzebisz and Oertli (1993) showed that 1 M boiling HNO$_3$ is the best predictor of plant available K. Furthermore, the results of Richards and Bates (1989) showed that K extracted by 0.1 M HNO$_3$ explained more variation in total K uptake by eight crops of alfalfa grown in glasshouse than did 1 M NH$_4$OAc.

The K_{c} values on the other hand were poorly correlated ($r = 0.58$) with K uptake from the unleached soils. This was because the readily exchangeable source (measured by the K_{ex} method) and the more soluble K_{mex} (measured by the step K method) were not
Fig. 6.2 Relationship between soil tests (mg K 100 g⁻¹) and dry matter yield (g pot⁻¹) of ryegrass grown on the leached soils
Fig. 6.3 Relationship between soil tests (mg K 100 g$^{-1}$) and K uptake by ryegrass (mg 100 g$^{-1}$) from the unleached soils
Fig. 6.3 (contd.) Relationship between soil tests (mg K 100 g⁻¹) and K uptake by ryegrass (mg 100 g⁻¹) from the unleached soils
Table 6.2 Regression analyses between K uptake and K releasing power (mg 100 g⁻¹)

<table>
<thead>
<tr>
<th></th>
<th>Regression equation</th>
<th>R² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unleached soils</td>
<td>Y = 3.49 + 1.19 QTK</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Y = 5.46 + 1.95 Resin K</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Y = 3.14 + 1.04 Kex</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Y = -19.3 + 3.75 Kc</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Y = -6.28 + 0.66 Step K</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Y = 0.68 + 0.59 NaTPB K</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Y = -26.7 + 0.73 Acid-extractable K</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Y = -35.1 + 1.11 QTK + 3.21 Kc</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Y = -39.7 + 1.00 Kex + 3.48 Kc</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Y = -22.8 + 1.07 QTK + 0.56 Step K</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Y = -24.5 + 0.98 QTK + 0.60 QSK</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Y = -25.5 + 0.10 Kex + 0.59 Step K</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Y = -26.5 + 0.10 Kex + 0.57 Step K +</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>0.18NSKc</td>
<td></td>
</tr>
<tr>
<td>Leached soils</td>
<td>Y = 19.7 - 0.57NSKex</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Y = -17.7 + 0.69 Step K</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Y = -24.6 + 0.70 Acid-extractable K</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Y = -22.0 + 0.42NSKex + 0.70 Step K</td>
<td>83</td>
</tr>
</tbody>
</table>

Y = K uptake (mg 100 g⁻¹)
NS = Non significant
included in the K_c measurement (Metson, 1980) and it is therefore unlikely to relate well to short term plant uptake (Jackson, 1985).

Step-wise regression analysis between the total K uptake and the soil tests (Table 6.2) showed a similar trend to that for the dry matter. It can be seen that a combination of the method used to assess K_{ex} release (QTK, or K_{ex}) and the method used to assess K_{max} release (step K, or quick step K) predicted K uptake better than the acid-extractable K alone. This might not be a satisfactory outcome considering the additional measurement (QTK, or K_{ex}) required for the former soil tests.

Furthermore, a combination of step K and either of the methods of assessing K_{ex} releasing power (K_{ex}, or QTK) proved to better predict the variations of K uptake among the soils than a combination of K_c and the methods of K_{ex} release. When K_c was included in the regression model along with K_{ex} and step K there was no further improvement of R^2. The combination thus might have potential in replacing the current soil tests (QTK, and K_c) used in New Zealand to predict soil K supply (gains). Liu and Bates (1990) also concluded that a combination of the NH_4OAc-extractable K and a measure of K_{max} best predicts the availability of K in Ontario soils.

The correlations of K_{ex}, the acid extraction procedure, and step K with K uptake from the leached soils (Fig. 6.4) clearly indicates that the variations in the K uptake among the leached soils cannot be accounted for by K_{ex}. As these soils have low levels of K_{ex}, the acid-extractable K might well give a measure of K_{max} releasing power.

6.3.3 Relationship between soil tests and K_{max} uptake

Of all the methods for determining K releasing power in this study the step K method was significantly correlated with the K_{max} uptake (a measure of K_{max} supplying power), the highest r value being 0.97 for the unleached soils (Fig. 6.5) and 0.92 for the leached soils (Fig.6.6).
Fig. 6.4 Correlation of soil tests (mg K 100 g⁻¹) with K uptake (mg 100 g⁻¹) from the leached soils
Fig. 6.5 Correlation of K_c, NaTPB K, acid-extractable K, and step K with K_{nex} uptake from the unleached soils (mg 100 g$^{-1}$).
Fig. 6.6 Correlation of soil tests (acid-extractable K, and step K) with $K_{n_{ex}}$ uptake from the leached soils (mg K 100 g$^{-1}$)
The closer relationship of K_{nex} uptake with step K than with the acid-extractable K and K_c confirms the finding of Hay (1971) who reported that the "step K" (K_{int}, section 2.7.2.3) values of A horizons of Canterbury loessial soils were well correlated with K_{nex} release to ryegrass plants grown to K exhaustion in the glasshouse.

The results of the present study are also in agreement with those reported by McLean (1961), and Richards and Bates (1988) who found that the "step K" of Canadian soils (whose clay mineralogy is dominated by illites with lesser amounts of vermiculites and chlorites) was more closely related to K_{nex} uptake by alfalfa than "constant rate K" (a measure of K_{nex} releasing power that is analogous to K_c).

The "step K" in all the previous studies (Chapter 2 e.g., Haylock, 1956a; Metson et al., 1956; Hay, 1971; Richards and Bates, 1988) was also a calculated value, as for the present study. But the important difference is that this study provides the simplest method of measuring step K. For example, Richards and Bates (1988) obtained "step K" by the difference between "Mactotal K" (which is the total amount of K_{nex} extracted in seven sequential extractions with boiling 1 M HNO$_3$) and the "constant rate K". This led them to conclude that if a simple method of measuring the more soluble fraction of K_{nex} i.e., "step K" can be found, soil tests for plant available K in Ontario soils may be greatly improved.

When K_c was included in the regression model along with step K (Table 6.3) there was no further increase in the percent prediction.

The step K in this study therefore seems to be a potential method for assessing plant available K_{nex}, which was not only an important but also a variable source of K to ryegrass grown to K exhaustion (Chapter 4).
Table 6.3 Regression analyses between \(\text{K}_{\text{net}} \) uptake and \(\text{K}_{\text{net}} \) releasing power for unleached soils (mg 100 g\(^{-1}\))

<table>
<thead>
<tr>
<th>Regression equation</th>
<th>R(^2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y = -34.4 + 3.40 \text{K}_c)</td>
<td>74</td>
</tr>
<tr>
<td>(Y = -21.3 + 0.58 \text{Step K})</td>
<td>93</td>
</tr>
<tr>
<td>(Y = -22.5 + 0.55 \text{Step K} + 0.20^{\text{NS}}\text{K}_c)</td>
<td>93</td>
</tr>
</tbody>
</table>

\(Y \quad = \quad \text{K}_{\text{net}} \) uptake (mg 100 g\(^{-1}\))

\(\text{NS} \quad = \quad \text{Non significant} \)

6.3.4 Characterization of YGE soils based on acid-extractable K and step K methods of assessing K releasing power

Since characterization of soils using \(\text{K}_c \) was inadequate for at least some of the YGE soils under examination (Chapter 4), this section aims to categorise the soils based on the acid extraction procedure and step K, which had better correlations with total plant uptake and \(\text{K}_{\text{net}} \) uptake, respectively. The amount of acid-extractable K in the unleached soils ranged from 34 mg 100 g\(^{-1}\) in the Marton soil (S5) to 147 mg 100 g\(^{-1}\) in the undeveloped Timaru soil (S14). After leaching, the corresponding acid-extractable K levels were 31 and 76 mg 100 g\(^{-1}\), respectively.

The average proportion of acid-extractable K removed by leaching was 23 % (the range being 0 to 82 %) as compared with 50 % (6 to 53 % range) for \(\text{K}_{\text{ex}} \) (NH\(_4\)OAc-extractable). As expected, artificial leaching had less effect on step K than on acid-extractable K. The average proportional drop of step K of the 19 soils due to artificial leaching was therefore only 7 % (0 to 16 % range).

Step K, which measures the more soluble fraction of soil \(\text{K}_{\text{net}} \), varied widely, the range being 24 to 106 mg 100 g\(^{-1}\) in the unleached Marton (S5) and Raumai (S9) soils and 24 to 93 mg 100 g\(^{-1}\), in the respective leached soils. Furthermore, the step K of Tokomaru (S2 and S3), Milson (S4), Marton (S5 and S6), Halcombe (S7),
Ohakea (S8), and Matapiro (S11) soils did not change due to leaching (Fig. 6.7). This indicates the relative tightness with which K is held in the wedge zones of these soils.

Step K differentiated the undeveloped YGE soils of the South Island from their developed counterparts better than \(K_c \). For example, the undeveloped and developed Claremont soils (S16 and S17) had similar \(K_c \) values (13.3 and 12.3 mg 100 g\(^{-1}\), respectively) but varied widely in step K (60.4 and 42.0 mg 100 g\(^{-1}\)) and \(K_{nex} \) uptake (15.6 and 3.4 mg 100 g\(^{-1}\)) values.

The results in this study, together with those of McLean (1961), Barber and Matthews (1962), and Richards and Bates (1988) show that soil \(K_{nex} \) assessed by the step K method is an important source of \(K_{nex} \) uptake of plants grown to K exhaustion in pot trials for the majority of the soils. For the 7 YGE soils of the North Island (S2 to S8), the contribution to uptake from \(K_{nex} \) sources i.e., the \(K_{nex} \) supplying power in both the unleached and the leached soils is nil. This is reflected by the constancy of the step K after cropping (Fig. 6.7). Presumably a heavy load was imposed on the K supplying power of these soils and the replenishment rate of solution K from \(K_{nex} \) sources was insufficient.

As mentioned in Chapter 2 (section 2.7.1), the \(K_{nex} \) supplying power of soils varies with the pot trial technique used. There is evidence to show that the K uptake by ryegrass from the Marton soil in earlier studies was 8 (Campkin, 1972) and 5 (Jackson, 1985) times greater than in the present study. Interestingly, while the K releasing power (assessed by \(K_{ex} \), acid-extractable K, step K, and \(K_c \)) of the Marton (S3) soil in this study and that of the pot trial study of Campkin (1972) was more or less the same, the \(K_{nex} \) supplying power varied widely (Table 6.4). Moreover, the soil to plant ratio used by the above workers was 66 (Campkin, 1972) and 8 (Jackson, 1985), respectively compared to 1 in this study (Chapter 4).

Thus S2, S3, S4, S5, S6, S7, and S8 can be designated as soils with low \(K_{nex} \) supplying capacities in comparison with all other soils in the study. The \(K_{nex} \)
Fig. 6.7 Changes in step K (mg 100 g\(^{-1}\)) of soils due to leaching and cropping
Table 6.4 K releasing and supplying power (mg 100 g\(^{-1}\)) of Marton soil used in this study compared to the pot trial of Campkin (1972)

<table>
<thead>
<tr>
<th></th>
<th>Campkin (1972)</th>
<th>Chapter 4 & 6 data for S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{ex})</td>
<td>12.09</td>
<td>9.75</td>
</tr>
<tr>
<td>Acid-extractable K</td>
<td>33.93</td>
<td>33.70</td>
</tr>
<tr>
<td>Step K</td>
<td>21.84</td>
<td>23.95</td>
</tr>
<tr>
<td>(K_e)</td>
<td>8.19</td>
<td>7.80</td>
</tr>
<tr>
<td>Dry matter (g pot(^{-1}))</td>
<td>6.03</td>
<td>2.49</td>
</tr>
<tr>
<td>Herbage K (%)</td>
<td>2.77 (cut 1) - 0.22 (cut 8)</td>
<td>0.23 (cut 1) - 0.16 (cut 4)</td>
</tr>
<tr>
<td>K uptake</td>
<td>24.57</td>
<td>3.10</td>
</tr>
<tr>
<td>(K_{neq}) uptake</td>
<td>15.99</td>
<td>-4.21</td>
</tr>
<tr>
<td>Weight of soil per pot</td>
<td>400 g</td>
<td>20 g</td>
</tr>
<tr>
<td>No. of plants per pot</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Duration of cropping</td>
<td>24 weeks</td>
<td>16 weeks</td>
</tr>
</tbody>
</table>
releasing power (assessed by step K) of these unleached soils is also lower, the range being 24 (S5) to 35 (S8) mg 100 g⁻¹. All this might be due to an intrinsic property of the soils and could probably be explained by the K-bearing mineral phases (see Chapter 8).

Thus after the uptake of K_{ex}, plants exhaust the easily available K_{ex} fraction (that can be assessed by step K) and might finally depend on the not easily available K_{ex} (that can be assessed by K_e) release. This pattern of K_{ex} release is in agreement with the work of Haylock (1956b), Arnold (1960), McLean (1961), Beckett (1970), and Hay (1971). Beckett (1970) stated that "by and large step K bears the brunt of the K demand by a years' cropping in the field or of exhaustive cropping in pot trials. Reserve K is usually too slow and where step K is exhausted the K uptake of test crops falls off sharply".

The results presented in this study indicate that soils with K_e values more than 10 mg 100 g⁻¹ (Chapter 4, section 4.3.6.3) and step K values more than 35 mg released K_{ex} to ryegrass plants grown to K exhaustion. This, however, does not mean that soils with K_e and step K lower than these values (some YGE soils in the North Island) do not release K_{ex} to plants in the field. This is because exploitation of K_{ex} in the field is higher due to the extension of the root system in an unlimited volume of soil when compared to the limited volume in a pot.

6.3.5 Contribution of acid-extractable K from soil separates

Even though clay is the single most important soil constituent that determines the plant availability of K (Tabatabai and Hanway, 1969; Bertsch and Thomas, 1985), there is evidence that primary minerals in the sand and silt separates might be quite an effective source for K release (Munn et al., 1976; Metson, 1980; Al-Kanani et al., 1984). Information on the K releasing power from the soil separates of New Zealand soils is limited (Haylock, 1956b; Metson et al., 1956; Lee and Gibson, 1974). This section reports on acid-extractable K levels in the different size fractions of the 19 soils.
6.3.5.1 Potassium extracted from the peroxidised soil and soil separates by the acid extraction procedure

Since treatment with \(\text{H}_2\text{O}_2 \) is a prerequisite for soil particle separation, it is possible that some K may be lost during the peroxidation procedure. Despite this, the ranking of the soils in terms of acid-extractable K after peroxidation was similar to that before peroxidation. This was substantiated by the high correlation \((r = 0.98^{**})\) between acid-extractable K before and after \(\text{H}_2\text{O}_2 \) treatment. The values ranged from 22.9 mg 100 g\(^{-1}\) for S5 to 108.3 mg 100 g\(^{-1}\) for S14 (Table 6.5). On an average 26 % of acid-extractable K was lost due to peroxidation, the range being 17-43 %.

Generally, when expressed as mg K 100 g\(^{-1}\) of separate the acid-extractable K of the clay fraction \((< 2 \mu\text{m})\) was the highest followed by the K in the coarser fractions (sand and silt). Lee and Gibson (1974) also found the clay fractions from selected New Zealand soils to have the highest \(K_{\text{mex}} \) as assessed by the resin K method. Lee and Widdowson (1977), however, reported higher \(K_{\text{mex}} \) values (step K) in the sands than in the clays (dominantly halloysite with no micaceous material) of some Tongan soils. It should be noted, however, that the K in the clay fraction in all the above studies was obtained by a simple calculation (section 6.2.5) not by chemical extraction.

Within a size fraction, there were differences among the soils in the amount of K extracted (Table 6.5). For example, of the soils of the North Island the Raumai soil (S13) clay fraction contained the highest amount of acid-extractable K (166 mg 100 g\(^{-1}\)) and the clays of the Marton soils (S5 and S6) the lowest (30 and 35 mg K 100 g\(^{-1}\), respectively). The wide differences in the acid-extractable K of the North Island clays may be a reflection of variations in the mineralogy of the clays that dictate the release of K.

In the South Canterbury region the acid-extractable K of the clay of the undeveloped Timaru soil (S14) was the highest (335 mg 100 g\(^{-1}\)). The lowest K (71 mg 100 g
Table 6.5 Acid-extractable K of peroxidised soil and its separates (mg 100 g⁻¹)

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Soil</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Tokorangi</td>
<td>70.2</td>
<td>32.2</td>
<td>48.7</td>
<td>134.8</td>
</tr>
<tr>
<td>S2</td>
<td>Tokomaru (a)</td>
<td>41.4</td>
<td>24.8</td>
<td>22.1</td>
<td>101.8</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru (b)</td>
<td>32.4</td>
<td>29.8</td>
<td>20.8</td>
<td>65.1</td>
</tr>
<tr>
<td>S4</td>
<td>Milson</td>
<td>51.5</td>
<td>23.4</td>
<td>23.5</td>
<td>138.7</td>
</tr>
<tr>
<td>S5</td>
<td>Marton (a)</td>
<td>22.9</td>
<td>24.6</td>
<td>18.3</td>
<td>35.2</td>
</tr>
<tr>
<td>S6</td>
<td>Marton (b)</td>
<td>25.3</td>
<td>23.5</td>
<td>23.7</td>
<td>30.0</td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe</td>
<td>44.4</td>
<td>25.4</td>
<td>20.8</td>
<td>129.6</td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea</td>
<td>43.2</td>
<td>30.0</td>
<td>25.9</td>
<td>89.7</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>87.7</td>
<td>82.1</td>
<td>74.3</td>
<td>165.6</td>
</tr>
<tr>
<td>S10</td>
<td>Te Arakura</td>
<td>46.4</td>
<td>36.2</td>
<td>33.4</td>
<td>86.6</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>48.3</td>
<td>36.6</td>
<td>46.6</td>
<td>67.8</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>46.6</td>
<td>35.8</td>
<td>26.8</td>
<td>91.3</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>68.3</td>
<td>62.9</td>
<td>44.8</td>
<td>106.8</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>108.3</td>
<td>42.8</td>
<td>48.3</td>
<td>335.2</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>61.7</td>
<td>39.6</td>
<td>36.4</td>
<td>152.7</td>
</tr>
<tr>
<td>S16</td>
<td>Claremont (a)</td>
<td>57.5</td>
<td>38.6</td>
<td>33.3</td>
<td>142.5</td>
</tr>
<tr>
<td>S17</td>
<td>Claremont (b)</td>
<td>38.4</td>
<td>31.8</td>
<td>22.6</td>
<td>70.6</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha (a)</td>
<td>96.1</td>
<td>59.0</td>
<td>53.0</td>
<td>147.8</td>
</tr>
<tr>
<td>S19</td>
<td>Opuha (b)</td>
<td>57.5</td>
<td>38.6</td>
<td>33.3</td>
<td>134.2</td>
</tr>
</tbody>
</table>

* Acid-extractable K in clay determined by computation (section 6.2.5)

(a) Undeveloped site
(b) Developed site
clay\(^{1}\)) was found in the developed Claremont soil (S17). The differences in the amounts of K extracted by boiling 1 M HNO\(_3\) in the sand (> 63 μm) and silt (2-63 μm) fractions of soils are not as great as for the clay fraction (Table 6.5).

The acid-extractable K values of the soil separates of the undeveloped soils were higher than those of the developed soils, though more markedly so for the South Canterbury soils. The calculated acid-extractable K in the clay fraction of the undeveloped Opuha soil (S18) did not differ much when compared to its developed (S19) counterpart (148 and 134 mg 100 g\(^{-1}\), respectively) because of a much higher clay content of the former (44 \%) compared to the latter (24 \%) soil (Table 3.2).

It is evident that variations exist among the YGE and related soils not only in the K uptake of ryegrass (Chapter 4), and step K (section 6.3.4), but also in the acid-extractable K within the soil separates.

Richards and Bates (1988) found that more "step K" was present in the clay fraction (coarse + fine clay) of the nine Ontario soils they investigated than in the silt fractions, the range being 57 to 177 and 4 to 65 mg 100 g\(^{-1}\) in the clay and in the silt fractions, respectively. They did not extract the sands with boiling HNO\(_3\). When recalculated using the formulae in the present study, the step K of the sands ranged from 4 to 21 mg 100 g\(^{-1}\). These values are in the range of the acid-extractable K of the soil separates of the soils considered here, but it should be noted that the measurement of the "step K" of Ontario soil separates (Richards and Bates, 1988) is different to the acid extraction method used in this study.

The K uptake by ryegrass grown on the unleached soils in the glasshouse experiment (Chapter 4) was significantly correlated with the amount of acid-extractable K in the soil separates (sand, silt, and clay) before cropping and with the acid-extractable K lost due to peroxidation. The respective r values were 0.512*, 0.652**, 0.874**, and 0.893**. The prediction of K uptake improved (R\(^2\) = 94 \%) when all the above were inserted into a multiple regression model (not presented). This indicates that acid-extractable K of all three soil separates might possibly be a source of K to
ryegrass plants grown in the glasshouse and their effect on K uptake by plants is complementary.

The quantity of acid-extractable K in the unleached whole soil was not correlated with the sand, silt, and clay content of the soils (data not presented). This indicates that the availability of K to plants cannot be deduced from the clay content of the soils and confirms the work of Richards and Bates (1988).

6.3.5.2 Relative contribution of the soil separates to whole soil acid-extractable potassium

The contribution of the acid-extractable K from the soil separates to the whole soil can be evaluated best when recalculated on a whole soil basis. Thus the ranges are 2-63 %, 20-55 %, and 17-68 % for the sand, silt, and clay fractions, respectively (Fig. 6.8). On average the clay fraction accounted for only 50 % of the acid-extractable K, the remainder was attributed to the sand and silt fractions.

With the exception of the Marton (S5 and S6), Raumai (S9), and Matapiro (S11) soils, the percent contribution of acid-extractable K from the clay fraction was more than 40 %. Thus much of the K released by nitric acid came from the sand and silt separates of the Marton, Raumai, and Matapiro soils. In a separate study (Lee and Gibson, 1974) the sand and silt fractions of Marton silt loam contributed more to whole soil resin K than the clay fraction. The sand and silt fractions of most of the Tongan soils involved in the study of Lee and Widdowson (1977) also accounted for a large proportion of the \(K_{\text{ex}} \) release.

Within the sand fraction, the percent contribution of acid-extractable K was the highest for the Raumai (S9) soil followed by the Mataproio soil (S11). This may be due to K bearing primary minerals (possibly micas) in the sand fraction of the Raumai soil and the presence of K-bearing volcanic glass in the Matapiro sand fraction (see chapter 8).
Fig. 6.8 Percent contribution of acid-extractable K from the soil separates
6.4 CONCLUSIONS

1. Methods of assessing K releasing power by measuring soil K_{ex} plus K_{bex} viz, acid extraction and NaTPB, provide better indices of K availability than the methods used to assess either of them separately (the K_{ex} method for measuring soil K_{ex}, and the step K method for assessing soil K_{bex} releasing power). Even though the NaTPB method successfully predicted the amount of soil K available to ryegrass ($R^2 = 85\%$) it may not be suitable for routine soil testing because of its cost and time requirements. Both acid-extractable K and NaTPB K tests were well correlated with each other ($r = 0.91^{**}$). Thus, like the NaTPB method (Jackson, 1985), the acid extraction procedure could possibly be used as a promising soil test to predict both K_{ex} and K_{bex} fractions available to plants in the short-medium term.

Perhaps K supply from the 19 YGE and related soils in the present study can best be estimated by a single soil test i.e., acid extraction method, rather than by a combination of a test for QTK and a crude estimate of K_e, which is currently used by AgResearch to predict soil K gains in the fertilizer model.

2. Step K, which is the difference between the acid-extractable K and K_{ex} and which is the easily available fraction of soil K_{bex}, was highly correlated with K_{bex} uptake by ryegrass. Step K gave a more reliable estimate of the variations in the K_{bex} release than did K_e.

3. Among the three soil separates, the clay fraction released the most acid-extractable K. Variations exist among the soils in the acid-extractable K of the soil separates. When expressed on a whole soil basis, the sand and the silt fractions contributed substantially (about 50 %) to the acid-extractable K. The exceptionally high percent contributions observed for the sand plus silt fractions of the Marton (64 % for S5 and 69 % for S6), Raumai (83 %), and Matapiro (66 %) soils indicates a likely important contribution of these fractions to the K nutrition of plants.
CHAPTER 7

POTASSIUM RELEASING POWER AND SUPPLYING POWER OF SOIL TEXTURAL SEPARATES

7.1 BACKGROUND

Several workers e.g., Merwin and Peech (1950), Pratt (1952), McLean and Brydon (1963), Smith et al. (1968), Talibudeen and Weir (1972), Lee and Gibson (1974), Lee and Widdowson (1977), Al-Kanani et al. (1984), Havlin et al. (1985), Comerford et al. (1990), and Simard et al. (1992) have demonstrated that the amounts of potassium that can be extracted from soils using a range of extractants such as resins, 1 M HNO₃, strong salt solutions, and sodium tetraphenyl boron (NaTPB) increased with decreasing particle size. Thus for many soils the clay and fine silt fractions released most K on a unit of material basis whereas fine and coarse sand fractions released relatively little K.

On the other hand fewer workers recalculated the K released on a whole soil basis. For example, James and Weaver (1975) found that of the total K released after 12 extractions to a strong salt solution by the Shano silt loam 31 % was contributed by the sand, silt (63 %) and clay (6 %). Munn et al. (1976) found that for 4 Ohio soils extracted with 0.01 M CaCl₂ the clays contributed 30-74 %, the silts 24-50 %, and the sands 3-21 % of the total K released. Lee and Widdowson (1977) worked on 6 selected soils of the Kingdom of Tonga and found that "step K" for the sands ranged from 4-54 % (mean 34.5 %) on a whole soil basis, for silts 9-87 % (mean 31.3 %), and for clays 9-84 % (mean 34.2 %). Despite the wide range of values the sand and silt fractions clearly contributed substantially to plant available K defined as step K. Al-Kanani et al. (1984) showed that for 5 Quebec soils the clays contributed 47-70 % of K extracted by 1 M HNO₃, the silts 12-26 %, and the fine to medium sands 9-28 %.
In Chapter 6 it was concluded that the acid extraction procedure was well correlated with the plant available K pool in soil. It was also found that for 19 YGE and associated soils the K released to 1 M HNO₃ increased with decreasing particle size on a unit basis, but that on a whole soil basis the contributions of the silt and sand fractions were appreciable for some soils. For example, it was shown (Chapter 6, section 6.3.5.2) that the silt fraction of the Marton soil (S6) and the sand fraction of the Raumai soil (S9) contributed most to whole soil acid-extractable K (Fig. 6.8 and Table 7.1). High percent contributions were observed for sand plus silt fractions of the Marton (64 %), Raumai (83 %), and Matapiro soils (66 %). Based on these results it was speculated that the sand and silt separates may be playing a role at least as important as that of the clay fractions in the K nutrition of plants.

It appears that despite many reports on the characterization of the K status of soils and textural fractions by chemical extraction procedures few attempts (e.g., Doll et al., 1965) have been made to grow a crop on textural fractions and to relate crop yield and crop K content to chemical extraction criteria.

It also appears that despite many reports on the relative contribution of soil separates to whole soil K release, very few attempts (e.g., McLean and Brydon, 1963; Al-Kanani et al., 1984) have been made to determine if the computed K release for the textural fractions on a whole soil basis (predicted) match the analytical K release value of the whole (peroxidised or unperoxidised) soil (actual). Obviously the assumption underlying the computation method of arriving at the relative contributions of the individual soil separates, is that they behaved in the whole soil in a manner similar to the behaviour exhibited, when they are investigated as discrete fractions. In this chapter an attempt to test the validity of this computation is described.

It should be noted that in Chapter 6, the acid-extractable K was measured on the peroxidised soil, and on the sand and the silt fractions. The contribution of the clay fraction was arrived at by difference. To check this the acid-extractable K analyses were repeated for 6 selected soils in this chapter, and measurements were made on peroxidised soil, sand, silt, and clay fractions.
The objectives of the study described in this chapter are:

1. To assess the relative contribution of sand, silt, and clay fractions to whole soil K releasing and supplying power using chemical extractions and an agar pot trial, respectively.
2. To evaluate the relationship between the contribution of acid-extractable K of the textural fractions and plant available K.

7.2 MATERIALS AND METHODS

7.2.1 Soils - S6, S9, S11, S12, S13 and S18

Six soils representing different regions (Chapter 3) and with varying levels of acid-extractable K contribution from soil separates (Chapter 6) were selected. Table 7.1 shows some characteristics of the soils selected for this study.

Table 7.1 Some details of the soils selected for the study based on Chapter 6 data

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Total K of soils (%) (Table 3.3)</th>
<th>Acid-extractable K (mg 100 g separate⁻¹)</th>
<th>Acid-extractable K as % contribution from</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
<td>Silt</td>
</tr>
<tr>
<td>S6</td>
<td>Marton</td>
<td>1.00</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>1.49</td>
<td>82</td>
<td>74</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>1.26</td>
<td>37</td>
<td>47</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>1.06</td>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>1.41</td>
<td>64</td>
<td>45</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha</td>
<td>1.15</td>
<td>59</td>
<td>53</td>
</tr>
</tbody>
</table>
7.2.2 Separation of textural fractions (soil separates)

Separation of textural fractions (sand, silt, and clay) was performed by the sedimentation method (Chapter 3). After separating the silt from the silt plus clay suspension (section 6.2.4) a concentrated clay suspension was obtained by repeated centrifugation of diluted clay suspension at 5000 rpm for 10-15 min and by subsequent freeze drying. The freeze dried samples were subjected to light crushing to reduce them to a homogeneous, fluffy, powdered clay suitable for chemical extractions.

7.2.3 Chemical extractions

The total K and K_{ex} of the soil separates were determined by the methods described in Chapter 3. The acid-extractable K and step K were determined by the methods described in Chapter 6 (sections 6.2.3.3 and 6.2.3.4, respectively). Chemical extractions were also carried out for the peroxidised whole soils.

7.2.4 Removal of K_{ex} from the soil separates

The objective of this treatment was similar to that in Chapter 4 (section 4.2.2) i.e., to remove soluble and exchangeable K from the calgon-treated soil separates so that plants could use K only from the non-exchangeable pool. In this study, however, a shaking technique (as compared to an artificial leaching technique in Chapter 4) was adopted, using a solution containing Ca and Mg at an equivalent ratio of 4:1 (Chapter 4). The soil:solution ratio used was 1:12. A 25 g soil sample in a 500 ml centrifuge bottle was shaken twice with 300 ml of the solution. After each shaking (1 h) the contents of the bottle were centrifuged at 5000 rpm for 10-15 min and the supernatant discarded. The residue was washed free of chloride and dried (sands and silts oven dried at 60°C overnight and clays freeze dried followed by oven drying at 60°C) prior to chemical extractions and the growth chamber experiment.

Unperoxidised whole soils and peroxidised whole soils were not treated to remove K_{ex}.
7.2.5 Percent contribution of K content (total K, K_{ex}, acid-extractable K, and step K) of the soil separates on a whole soil basis

The percent contribution of K content (as measured by total K, K_{ex}, acid-extractable K, and step K) of the soil separates on a whole soil basis was calculated using the following formula.

$$\gamma = \left(\frac{A}{D} \right) \frac{B}{D}$$

Where,

\[Y = \text{Percent contribution of K content from sand or silt or clay on a whole soil basis.} \]
\[A = \text{Percent sand or silt or clay in the soil (Table 3.2).} \]
\[B = \text{K content as measured by total K, } K_{ex}, \text{ acid-extractable K or step K of the soil separate (sand or silt or clay) expressed in mg 100 g}^{-1} \text{ of separate.} \]
\[D = \text{Total K release for the soil separates on a whole soil basis (mg 100 g}^{-1} \text{ of soil), which is a product of K release per g of soil separate and the percent of each fraction in the whole soil (Havlin et al., 1985).} \]

7.2.6 Growth chamber experiment

The plant availability of K in the soil separates that had been treated to remove K_{ex} was determined in a growth chamber experiment using an agar pot technique. Unperoxidised whole soils and peroxidised whole soils that have not been treated to remove K_{ex} were also included in the pot study.

7.2.6.1 Agar pot cylinder

The agar pot is composed of a PVC cylinder of 45 mm height and 50 mm internal diameter, with a cotton cloth and a polythene sheet fastened to one end with a rubber band (Fig. 7.1). A 1 % nutrient agar gel was prepared by boiling a K-free nutrient
Fig. 7.1 Agar Pot Cylinder
solution (Hinsinger and Jaillard, 1990; Hinsinger et al., 1992) with solid agar (Ionagar No. 2) at 90-95°C and allowing it to cool to a temperature just above gelification. A 15 ml portion was poured into the pot at a temperature as close as possible to its gelification point (39°C). The polythene sheet below the cloth prevented the loss of liquid agar through the cotton cloth. The nutrient agar gel was allowed to set and 5 g of either sand, silt, clay, or whole soil (unperoxidised, or unperoxidised) were spread on the surface of the gel. After 24 h another aliquot of K-free nutrient agar was prepared and a 25 ml portion was poured carefully down the sides of the cylinder and over the treatment material and then allowed to set as before. The treatment material was thus sandwiched between two layers of solidified nutrient agar. The pots were placed in petrie dishes containing the same nutrient solution to guard the agar against dehydration. The agar pot cylinder was then ready for use as a culture vessel to grow ryegrass plants.

7.2.6.2 Agar potting technique

Perennial ryegrass (B1 P14 Yatsyn ryegrass) was chosen because of its enhanced K absorption ability and its efficiency in using non-exchangeable K (Hinsinger et al., 1992). The seeds were sown on the surface of the agar gel at a rate of 50 seeds per pot to ensure rapid K uptake. The agar above and below the treatment material was kept moist with distilled water. While the cotton cloth functioned as a wick conducting water or K-free nutrient solution to the agar/root surface below the soil separate, the top portion of the agar was maintained moist by adding sufficient water uniformly to all pots with a pipette. After germination the K-free nutrient solution was applied regularly and the agar gel kept moist.

The experiment thus involved 6 soils with 5 treatments viz, sand, silt, clay, unperoxidised soil, and peroxidised soil and 4 replicates giving a total of 124 pots including 4 control pots in which plants were grown in the K-free nutrient agar with no treatment material. The pots were randomized in a growth chamber and 2 ml of Benlate (0.05 %) were added per pot at two week intervals to avoid fungal infection.
The plants (shoots) were harvested three times and at each harvest the shoots were cut to the level of the pot. After each harvest the plant material was dried, weighed, and analyzed for K as described in section 4.2.3. The dry matter of the four replicates was pooled for the three harvests to obtain sufficient material for the herbage K measurement. For the final cut (3 weeks growth) the cylinder was freed from the agar by removing the rubber band and the shoots were cut as close as possible to the root material. The dismantled agar pot was allowed to dry for 1-2 days and the top portion of the agar was peeled off by holding the cut portion of the roots and the cotton cloth. The exposed layer of treatment material was air dried and hence easily separated from the remainder of the pot. The bottom portion of the agar was also peeled off after removal of treatment material and wherever possible the bulk of the root material that had protruded through the cotton cloth obtained. The treatment material thus obtained was easily separated (by sieving) from the remnants of the root materials.

The total K content of the separated root material was measured after drying at 60°C. The total K uptake of shoots from the soil separates and from the whole soil was obtained from the sum of the uptake of the 3 individual harvests less the K uptake from the control pots and expressed as mg 100 g⁻¹. \(K_{\text{act}} \) uptake was calculated as described in section 4.2.3.

Since the dry matter of the replicates was pooled, statistical analyses could not be carried out for the total K uptake data but was carried for the total dry matter data using analysis of variance test (SAS, 1985).

7.2.7 Relative contribution of the soil separates to whole soil plant K uptake

The total K uptake and \(K_{\text{act}} \) uptake were expressed as the percentage contribution from the soil separates on a whole soil basis by replacing the K content in the formula in section 7.2.5 with the plant K uptake and \(K_{\text{act}} \) uptake, respectively.
7.3 RESULTS AND DISCUSSION

7.3.1 Potassium releasing power of soil separates

7.3.1.1 Total K in the soil separates

With respect to the total K content of the separates, that of the sand fractions decreased in the order of S11 > S9 > S13 > S6 > S18 > S12, that of the silts S9 > S11 > S13 = S6 > S18 = S12 and that of the clays S13 > S18 > S12 > S9 > S6 > S11 (Table 7.2). While the differences among the sand and silt separates of the different soils were marginal (the range being 0.96-1.52 % for sands and 1.00-1.72 % for silts), for the clay fractions the differences were somewhat greater (0.94-3.01 %).

The clays of S12 (Wharekaka), S13 (Pirinoa), and S18 (Opuha) contained 2-3 times more K than the clays of S6 (Marton), S9 (Raumai), and S11 (Matapiro). This could be due to relatively weaker weathering of the former group of soils than the latter (A.S. Palmer, pers. comm). The latter soils contain more weathered clay minerals that contain less K viz, smectite, halloysite, and/or kaolinite (Pollok, 1975 and Chapter 8). The higher total K content of silt and sand of S9 (Raumai) and S11 (Matapiro) can be attributed to the predominance of K bearing minerals (mica and volcanic glass) in these soils (Chapter 8).

Of the 6 soils in this study Raumai soil (S9) recorded the highest total K for the whole (unperoxidised) soil (1.49 %, Table 7.1), despite having the lowest clay content (9 % as against more than 24 % clay for the other soils). This underscores the predominance of K-containing minerals in the sand and silt fractions of this soil.

The relative contribution of soil separates to the whole soil total K content (calculated using the formula in section 7.2.5) for the 6 soils ranged from 7-65 %, 20-58 %, and 8-70 % for sand, silt, and clay fractions, respectively. Using the total K content and the particle size distribution (3-19 % sand, 46-73 % silt, and 8-70 % clay) data of Munn et al (1976), the weighted contributions of the total K content of 4 Ohio soils was
Table 7.2 Potassium contents of soil separates before artificial removal of K_{rx}

<table>
<thead>
<tr>
<th>Soil separate</th>
<th>Soil No.</th>
<th>Total K (%)</th>
<th>K_{rx}</th>
<th>Acid-extractable K</th>
<th>Step K (K_{nex})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand (T_1)</td>
<td>S6</td>
<td>1.12</td>
<td>0.8</td>
<td>13.8</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>S9</td>
<td>1.50</td>
<td>1.8</td>
<td>41.6</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>S11</td>
<td>1.52</td>
<td>1.9</td>
<td>26.2</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>0.96</td>
<td>1.5</td>
<td>21.6</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>S13</td>
<td>1.32</td>
<td>2.2</td>
<td>41.8</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
<td>S18</td>
<td>1.10</td>
<td>9.0</td>
<td>48.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Silt (T_2)</td>
<td>S6</td>
<td>1.12</td>
<td>0.3</td>
<td>21.0</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>S9</td>
<td>1.72</td>
<td>5.3</td>
<td>103.9</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>S11</td>
<td>1.33</td>
<td>3.3</td>
<td>42.4</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>1.00</td>
<td>0.9</td>
<td>25.4</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>S13</td>
<td>1.12</td>
<td>1.5</td>
<td>36.1</td>
<td>34.6</td>
</tr>
<tr>
<td></td>
<td>S18</td>
<td>1.00</td>
<td>2.8</td>
<td>52.3</td>
<td>49.5</td>
</tr>
<tr>
<td>Clay (T_3)</td>
<td>S6</td>
<td>1.24</td>
<td>14.0</td>
<td>69.1</td>
<td>55.1</td>
</tr>
<tr>
<td></td>
<td>S9</td>
<td>1.42</td>
<td>24.8</td>
<td>105.0</td>
<td>80.2</td>
</tr>
<tr>
<td></td>
<td>S11</td>
<td>0.94</td>
<td>39.3</td>
<td>113.6</td>
<td>74.3</td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>2.56</td>
<td>29.5</td>
<td>133.0</td>
<td>103.5</td>
</tr>
<tr>
<td></td>
<td>S13</td>
<td>3.01</td>
<td>41.0</td>
<td>131.2</td>
<td>90.2</td>
</tr>
<tr>
<td></td>
<td>S18</td>
<td>2.98</td>
<td>83.0</td>
<td>399.6</td>
<td>316.6</td>
</tr>
</tbody>
</table>
calculated to be 2-20 % for sands, 37-73 % for silts, and 15-61 % for clays.

7.3.1.2 Exchangeable K of the soil separates

When expressed as mg K 100 g separate$^{-1}$, the NH$_4$OAc-extractable K of the clay fractions was higher than the sand and silt in all the soils, that of the S18 (Opuha) being particularly high (Table 7.2). K_{ex} in the clays followed the order S6 < S9 < S12 < S11 < S13 < S18. Among the 6 soils, the Marton soil (S6) contained the lowest K_{ex} in all the separates.

When expressed as the percent contribution from the soil separate on a whole soil basis (calculated using the formula in section 7.2.5), more than 80 % of the NH$_4$OAc-extractable K was extracted from the clay separate, the only exception being the Raumai clay which contributed only 47 % to K_{ex}. This is because of the sandy nature of the soil (67 % sand) and hence the 26 % and 27 % contribution from the sand and the silt separates to the K_{ex}, respectively.

After extracting the soil separates with an 0.05 M chloride solution of Ca and Mg to remove K_{ex} (section 7.2.4), the NH$_4$OAc-extractable K_{ex} levels ranged from 0.84 mg 100 g$^{-1}$ (S9) to 3.24 (S18) for sands, 1.30 (S6) to 2.73 (S11) for silts, and 10.78 (S6) to 35.43 (S18) for clays (Table 7.3). Thus shaking did not completely remove all the NH$_4$OAc-extractable K_{ex} from the soil separates. This is similar to the results given in Chapter 4 (section 4.3.1) where a leaching technique was used. The percentage of K_{ex} removed was generally higher in the clay fractions, although exceptions occurred (S9, Raumai and S18, Opuha). The percent K_{ex} removed from Raumai clay (41 %) was less than that from the sand (53 %) and silt (49 %), and that of Opuha clay (54 %) was less than that of the sand (64 %). Interestingly, for the sand and silt fractions, there was an increase in the K_{ex} after the extraction procedure for some soils. This increase could be due to leakage from K minerals in the sand (S6) and the silts (S6 and S12), which contained low levels of K_{ex} even before extraction.
Table 7.3 Potassium contents (mg 100 g⁻¹) of soil separates after extraction of K_{ca} (before cropping)

<table>
<thead>
<tr>
<th>Soil separate</th>
<th>Soil No.</th>
<th>K_{ca}</th>
<th>Acid-extractable K</th>
<th>Step K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>S6</td>
<td>1.04</td>
<td>21.6</td>
<td>20.56</td>
</tr>
<tr>
<td></td>
<td>S9</td>
<td>0.84</td>
<td>42.2</td>
<td>41.36</td>
</tr>
<tr>
<td></td>
<td>S11</td>
<td>1.40</td>
<td>26.8</td>
<td>25.40</td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>1.63</td>
<td>23.0</td>
<td>21.37</td>
</tr>
<tr>
<td></td>
<td>S13</td>
<td>1.26</td>
<td>48.2</td>
<td>46.94</td>
</tr>
<tr>
<td></td>
<td>S18</td>
<td>3.24</td>
<td>55.8</td>
<td>52.56</td>
</tr>
<tr>
<td>Silt</td>
<td>S6</td>
<td>1.30</td>
<td>26.0</td>
<td>24.70</td>
</tr>
<tr>
<td></td>
<td>S9</td>
<td>2.71</td>
<td>103.8</td>
<td>101.09</td>
</tr>
<tr>
<td></td>
<td>S11</td>
<td>2.73</td>
<td>50.2</td>
<td>47.47</td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>1.45</td>
<td>27.0</td>
<td>25.55</td>
</tr>
<tr>
<td></td>
<td>S13</td>
<td>1.53</td>
<td>47.8</td>
<td>46.27</td>
</tr>
<tr>
<td></td>
<td>S18</td>
<td>1.68</td>
<td>59.4</td>
<td>57.72</td>
</tr>
<tr>
<td>Clay</td>
<td>S6</td>
<td>10.78</td>
<td>67.6</td>
<td>56.82</td>
</tr>
<tr>
<td></td>
<td>S9</td>
<td>14.65</td>
<td>115.9</td>
<td>101.25</td>
</tr>
<tr>
<td></td>
<td>S11</td>
<td>21.26</td>
<td>114.2</td>
<td>92.94</td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>18.66</td>
<td>113.9</td>
<td>95.24</td>
</tr>
<tr>
<td></td>
<td>S13</td>
<td>21.80</td>
<td>132.5</td>
<td>110.70</td>
</tr>
<tr>
<td></td>
<td>S18</td>
<td>35.43</td>
<td>346.0</td>
<td>310.57</td>
</tr>
</tbody>
</table>
7.3.1.3 Potassium releasing power of soil separates as assessed by the acid-extraction procedure

The results of extracting the peroxidised textural fractions with 1 M HNO₃ are shown in Table 7.2. As expected, the clays released more K (69-400 mg 100 g⁻¹) than the silts (21-104 mg 100 g⁻¹) and the sands (14-48 mg 100 g⁻¹). The mean values (158, 47, and 32, respectively) indicate that the K released by the silt and sand fractions is by no means insignificant. In this regard, the high level of K released by the silt fraction of the Raumai (S9) soil is of interest. When recalculated on a whole soil basis the silt plus sand fractions contributed 15-85% of the HNO₃ K (Table 7.4).

The acid-extractable K values for the peroxidised soil and its separates were different to those quoted in Chapter 6 (Table 6.5). Despite these differences the relative contribution of sand plus silt fraction to the whole soil acid-extractable K was substantial for S6 (45%), S9 (85%), and S11 (49%) thus confirming the potential K releasing power of the coarser separates in these soils (Table 7.4). The differences, however, are presumed to be due mainly to (i) better control of the peroxidation procedure adopted in this chapter and imperfect separation (allowing interparticular mixing) of clay, silt, and sand particles during the sedimentation procedure, and (ii) variable K release by freeze drying of clays.

Thus the data in Table 7.4 might be expected to be the best possible estimate of relative contribution of textural fractions to whole soil acid-extractable K.

7.3.1.4 Potassium releasing power of soil separates as assessed by step K

The values for step K for the sand and silt fractions were close to those for acid-extractable K (Table 7.2) but were lower for the clay fractions. This was not unexpected as step K was obtained by subtracting Kₜᵢₓ from acid-extractable K, and Kₜᵢₓ was higher for the clays than for the sands and silts.
Table 7.4 Relative contribution of soil separates to whole soil acid-extractable potassium

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Relative contribution of soil separates to whole soil acid-extractable K (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td>S6</td>
<td>Marton</td>
<td>7</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>45</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>15</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>4</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>6</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha</td>
<td>5</td>
</tr>
</tbody>
</table>
When the step K was expressed as the percent contribution from the textural fractions on a whole soil basis (calculated using the formula in section 7.2.5) the contribution from the clays among the 6 soils ranged from 13 % (S9) to 84 % (S18). In the majority of the soils (5 out of 6), however, more than 40 % (42 % for S11, 51 % for S6, 55 % for S13, 64 % for S12, and 84 % for S18) of the contribution was from the clay fraction. The remainder was accounted for by the sand and silt fractions. Of interest is the 87 % contribution of step K from the sand and silt fractions of the Raumai (S9) soil (sand, 46 % and silt, 41 %). Haylock (1956b) showed that the majority of HNO₃-soluble K was extracted from clay fractions. For loam and sandy soils of New Zealand the proportion of "step K" derived from the clay fractions varied from 44-95 % for the loams and 11-24 % for the sands (Haylock, 1956b).

There was no consistency in the amount of acid-extractable K and step K removed from the soil separates after removal of K_{ex} (Table 7.3). For example, while there was a drop for S12 and S18 clays (14 % and 13 % drop in acid-extractable K, and 8 % and 4 % drop in step K, respectively) there was an increase in step K for S9 (26 %), S11 (25 %), and S13 (23 %) clays. Furthermore, acid-extractable K of the sands and silts either remained unchanged or increased slightly. This contrasts with the trend observed for the corresponding soils in Chapter 6 (section 6.3.4), where the acid-extractable K and step K values decreased after K_{ex} removal. Thus it appeared that the leaching technique used to remove K_{ex} from the soils (Chapters 4 and 6) had an overall greater impact on the reduction of the K than the equilibration shaking technique used to achieve the same objective for their textural separates in this chapter.

7.3.2 Potassium supplying power of soil separates

7.3.2.1 Dry matter yields

Comparison of dry matter yield of ryegrass tops grown on the soil separates showed significant differences between the clays and the sands and silts (Table 7.5). The clays supported significantly higher dry matter yields than the sand and silt fractions for all the three harvests (Appendix 7.1), the total dry matter being 1.7 to 2.8 and 1.5 to 2.2
times greater than for the sands and silts, respectively. In most cases there were no significant differences in the total dry matter yields between the sand and the silt fractions of the soils. The exception to this trend was the Raumai soil (S9) for which the silt recorded significantly higher dry matter (0.316 g pot⁻¹) than the sand (0.245 g). This could be due to the high step K of the silt of S9 soil.

While there were differences in the total dry matter yields from the clay and the silt separates of the 6 soils, the dry matter yields of the sands were on par with one another. For example, the clay and the silt separates of the Raumai (S9) soil supported significantly higher dry matter yields than those of the Marton (S6) soil. Pirinoa (S13) clay produced a higher dry matter yield than Matapiro (S11) and Wharekaka (S12) clays. The S12 silt produced a statistically similar dry matter yield to that of S11 and S13. Furthermore, the Opuha (S18) clay recorded a significantly higher dry matter yield than the clays of S6, S11, and S12.

From the above comparisons it is evident that differences in dry matter yields recorded in Chapter 4 for the unleached soils (section 4.3.2) and in this chapter for the whole unperoxidised soils, were better reflected by the clay fractions than by sands and silts (Table 7.5).

The dry matter yield of roots grown in clays (Table 7.6) followed a similar trend to that of the shoots (Table 7.5) with the clays of S9, S13, and S18 supporting higher yields than S6, S11, and S12. The roots in the sand and silt separates and in the control pots grew so poorly that they could not be harvested.

7.3.2.2 Potassium content of herbage

The herbage K contents of each harvest for each soil and for each soil separate are assembled in Table 7.7. The K concentrations of herbage are highest for that grown in clays followed by the sand and silt separates.

There were considerable differences in the K concentration of the ryegrass tops among
Table 7.5 Total dry matter (g pot⁻¹) of ryegrass shoots grown on soil separates and on whole soils

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Unperoxidised soil</th>
<th>Chapter 4 data (Fig. 4.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>Marton</td>
<td>0.228</td>
<td>0.235</td>
<td>0.398</td>
<td>0.417</td>
<td>2.54</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>0.245</td>
<td>0.316</td>
<td>0.686</td>
<td>0.597</td>
<td>4.42</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>0.254</td>
<td>0.290</td>
<td>0.446</td>
<td>0.519</td>
<td>3.40</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>0.258</td>
<td>0.253</td>
<td>0.448</td>
<td>0.463</td>
<td>2.82</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>0.252</td>
<td>0.259</td>
<td>0.553</td>
<td>0.574</td>
<td>4.28</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha</td>
<td>0.277</td>
<td>0.275</td>
<td>0.549</td>
<td>0.683</td>
<td>4.84</td>
</tr>
<tr>
<td></td>
<td>LSD (0.05) SoilxTreatment</td>
<td>0.058</td>
<td></td>
<td></td>
<td>0.068</td>
<td>0.23</td>
</tr>
</tbody>
</table>

LSD = Least-squares difference

Table 7.6 Dry matter, herbage K, and K uptake of ryegrass roots in the clay separate

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Dry matter (g pot⁻¹)*</th>
<th>Herbage K (%)</th>
<th>K uptake (mg 100 g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>Marton</td>
<td>0.035</td>
<td>0.40</td>
<td>2.80</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>0.232</td>
<td>0.86</td>
<td>39.90</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>0.090</td>
<td>0.53</td>
<td>9.54</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>0.078</td>
<td>0.49</td>
<td>7.64</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>0.174</td>
<td>0.95</td>
<td>33.06</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha</td>
<td>0.117</td>
<td>0.84</td>
<td>19.66</td>
</tr>
</tbody>
</table>

* 5 g clay pot⁻¹
Table 7.7 Percent herbage K in ryegrass shoots for three harvests

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Harvest 1 (3 week growth)</th>
<th>Harvest 2 (2 week growth)</th>
<th>Harvest 3 (3 week growth)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sand</td>
<td>Silt</td>
<td>Clay</td>
</tr>
<tr>
<td>S6</td>
<td>0.19</td>
<td>0.18</td>
<td>0.21</td>
</tr>
<tr>
<td>S9</td>
<td>0.23</td>
<td>0.22</td>
<td>0.49</td>
</tr>
<tr>
<td>S11</td>
<td>0.20</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>S12</td>
<td>0.23</td>
<td>0.17</td>
<td>0.23</td>
</tr>
<tr>
<td>S13</td>
<td>0.19</td>
<td>0.18</td>
<td>0.41</td>
</tr>
<tr>
<td>S18</td>
<td>0.21</td>
<td>0.20</td>
<td>0.42</td>
</tr>
<tr>
<td>Control</td>
<td>0.18</td>
<td>0.17</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Note: Replicates pooled for the herbage K analysis
the soils for the three soil separates. For example, among the 6 soils, K contents of the
tops grown in the clays of S9, S13, and S18 were about double those from the
corresponding sand and silt separates for the 3 harvests.

The K concentration in the tops for the sands of all the soils was highest for the first
harvest (the range being from 0.19-0.23 %) and then declined to lower values at the
third harvest (0.14-0.18 %). It is interesting to note that there was no similar trend for
silts and clays. Moreover, the K concentration in the ryegrass tops grown on the clays
either increased or remained the same with progressive harvests, except for the Marton
clay (S6). This could be a reflection of the clay fraction replenishing more plant
available K than the sand and the silt separates. In Chapter 4 (section 4.3.3), however,
the wide differences that occurred in the first harvest reduced to a narrow range in the
final harvest.

Similar variation appeared in the K concentration of the roots among the 6 clays (Table
7.6) but the values were higher than for the shoot K.

7.3.2.3 Potassium uptake

The K uptake data for each harvest for each soil and its separates are given in Appendix
7.2.

7.3.2.3.1 Uptake of K from the control pots

Ryegrass plants that were grown in the control pots (agar only) extracted 0.035 mg K
pot¹ (Table 7.8) over the three harvests. This value has been subtracted from the K
uptake results for the treatments to obtain the actual K uptake from the soil separates
and to calculate the comparative contributions of Kcₓ and Kucₓ to plant uptake in section
7.3.2.3.4.
Table 7.8 Total K uptake (less control) by ryegrass shoots from soil separates and from whole unperoxidised soil (mg 100 g⁻¹)

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Whole soil</th>
<th>Chapter 4 data (Fig. 4.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>Marton</td>
<td>1.40</td>
<td>1.80</td>
<td>8.08</td>
<td>5.55</td>
<td>3.95</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>3.44</td>
<td>7.76</td>
<td>62.94</td>
<td>21.31</td>
<td>45.75</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>2.40</td>
<td>4.88</td>
<td>17.26</td>
<td>12.57</td>
<td>18.90</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>2.76</td>
<td>1.90</td>
<td>14.36</td>
<td>7.01</td>
<td>7.90</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>2.28</td>
<td>2.62</td>
<td>52.90</td>
<td>16.85</td>
<td>41.25</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha</td>
<td>4.34</td>
<td>4.78</td>
<td>45.48</td>
<td>33.22</td>
<td>62.35</td>
</tr>
</tbody>
</table>

control* | 0.305 mg K pot⁻¹

* K uptake by ryegrass from control pots (agar only)
7.3.2.3.2 Uptake of K from the soil separates

The total amounts of K taken up by ryegrass over 3 harvests from the soil separates are presented in Table 7.8. The range for sands was 1.40-4.34, silts 1.80-7.76, and clays 8.08-62.94 mg K 100 g⁻¹. The mean values were 2.77, 3.96, and 33.50, respectively.

Thus the total K uptake from the clays is 3.5 to 23 times greater than the K uptake from sands and silts. While the clays of S9, S13, and S18 removed 63, 53, and 45 mg K 100 g⁻¹, respectively, the remainder of the clays (S6, S11, and S12) provided less than 20 mg K 100 g⁻¹ to the ryegrass tops.

There were no major differences among the 6 soils in the K uptake of the sands and silts.

In general, the total uptake of K by the roots in the clay fractions was approximately half that of the shoots with similar differences between the soils (Table 7.6).

As in the case of dry matter yields the variations in the K uptake by ryegrass from the unperoxidised soils were better reflected by the clay fraction than sand and silt fractions (Table 7.8).

7.3.2.3.3 Exchangeable K after cropping

After the third harvest the K_{ex} in the soil separates ranged from 0.73 mg 100 g⁻¹ in S6 to 1.70 in S9 for sands, from 0.93 mg 100 g⁻¹ (S6) to 2.59 (S9) for silts, and from 5.02 mg 100 g⁻¹ (S6) to 21.52 (S18) for clays. Thus after cropping the K_{ex} levels had dropped except in the case of Raumai soil (S9) where the K_{ex} either increased (sand) or remained unchanged (silts and clays). This taken together with the higher K uptake from the separates of this soil (S9) highlights the rapidity at which K is being released to the bathing solution from the K bearing minerals.
7.3.2.3.4 Comparative contribution of K_{ex} and K_{net} uptakes to total K uptake from the soil separates

There were considerable differences within the soil separates in the amounts of K_{ex} and K_{net} contributed (Table 7.9). The wide differences in the K_{net} contribution among the 6 soil clays could be a reflection of the rapidity with which K from 2:1 clay minerals is being released into the plant available pool. For example, the clays of the Raumai (S9), Pirinoa (S13), and Opuha (S18) soils contributed more K_{net} to total plant K uptake than those of the Marton (S6), Matapiro (S11), and Wharekaka (S12) soils.

Thus the percent contributions of K_{net} to total K uptake of ryegrass for the clays of S9 (99 %), S13 (84 %), and S18 (69 %) are considerably greater than that of the remaining soil clays (Table 7.10). Indeed, from Table 7.10 K_{net} appeared to be the major contribution to total plant uptake for the sands and silts of all the soils and for the clays of the 3 soils mentioned above.

7.3.2.3.5 Predicted contribution of soil separates to K uptake of ryegrass grown in whole soil

As in the case of K releasing power it is possible to predict the expected contributions of the textural fractions to total plant K uptake if ryegrass were grown on the whole soil. The predicted values are shown in Table 7.11 together with the percent contribution of K_{net} by each fraction. Thus for the Marton soil (S6) it is predicted the sand would contribute 7 % of total K uptake but 11 % of the K_{net}, the silt 31 % and 52 %, and the clay 62 % and 37 %. For 4 soils (S6, S9, S11, and S12) the sand and silt fractions combined would contribute 38 %, 42 %, 41 %, and 25 %, respectively, of the total K uptake by ryegrass shoots.

Furthermore, the predicted sand plus silt contribution to the K_{net} uptake by these 4 soils would be 63 %, 46 %, 74 %, and 56 %, respectively. These fractions would therefore be expected to play an important role in the field with regard to K nutrition. The K_{net} contributed by the sand plus silt fractions of the Pirinoa (S13) and Opuha (S18) soils
Table 7.9 Actual contribution of K_{cx} and K_{nex} to total K uptake of ryegrass tops from the soil separates (mg 100 g$^{-1}$)

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{cx}</td>
<td>K_{nex}</td>
<td>K_{cx}</td>
</tr>
<tr>
<td>S6</td>
<td>0.31</td>
<td>1.09</td>
<td>0.37</td>
</tr>
<tr>
<td>S9</td>
<td>-0.86</td>
<td>4.30</td>
<td>0.12</td>
</tr>
<tr>
<td>S11</td>
<td>0.32</td>
<td>2.08</td>
<td>1.02</td>
</tr>
<tr>
<td>S12</td>
<td>0.66</td>
<td>2.10</td>
<td>0.42</td>
</tr>
<tr>
<td>S13</td>
<td>0.21</td>
<td>2.07</td>
<td>0.42</td>
</tr>
<tr>
<td>S18</td>
<td>2.28</td>
<td>2.06</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 7.10 Percent contribution of K_{cx} and K_{nex} to total K uptake of ryegrass tops from the soil separates

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{cx}</td>
<td>K_{nex}</td>
<td>K_{cx}</td>
</tr>
<tr>
<td>S6</td>
<td>22</td>
<td>78</td>
<td>21</td>
</tr>
<tr>
<td>S9</td>
<td>0</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>S11</td>
<td>13</td>
<td>87</td>
<td>21</td>
</tr>
<tr>
<td>S12</td>
<td>24</td>
<td>76</td>
<td>22</td>
</tr>
<tr>
<td>S13</td>
<td>9</td>
<td>91</td>
<td>13</td>
</tr>
<tr>
<td>S18</td>
<td>53</td>
<td>47</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 7.11 Percent contribution of total plant K uptake (shoots) from the soil separates on whole soil basis (calculated as described in section 7.2.7)

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6</td>
<td>Marton</td>
<td>7 (11)</td>
<td>31 (52)</td>
<td>62 (37)</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>23 (28)</td>
<td>19 (18)</td>
<td>58 (54)</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>11 (21)</td>
<td>30 (53)</td>
<td>59 (26)</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>5 (12)</td>
<td>20 (44)</td>
<td>74 (44)</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>1 (1)</td>
<td>8 (6)</td>
<td>91 (93)</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha</td>
<td>3 (2)</td>
<td>8 (10)</td>
<td>89 (88)</td>
</tr>
</tbody>
</table>

Note: Values in brackets indicate the percent contribution of K_{res} uptake from the soil separates after weighting according to sand, silt, and clay composition in the whole soil.
would be low (7% and 12%, respectively) despite these textural fractions together dominating the 2 soils (Table 3.2).

7.3.3 Validity of the computational method used to arrive at the relative contribution of soil separates to whole soil K releasing and supplying power

Figure 7.2 and 7.3 shows that the actual K release and supply data for the whole soil (unperoxidised soil for total K content; peroxidised soil for NH₄OAc-extractable K, acid-extractable K, and step K; and untreated peroxidised soil for K supply) do not consistently match with the predicted (computed) data of its separates on a whole soil basis. For example, the predicted values for Kₓ of S₁₈, and for acid-extractable K and step K of S₁₂, S₁₃, and S₁₈ were considerably higher than the actual values (Fig. 7.2). Hence the relative contributions of soil separates to whole soil K releasing power in these soils (section 7.3.1) were of little significance.

Of some interest is the proximity of the acid-extractable K value for soil separates on whole soil basis to that of peroxidised whole soil in S₆, S₉, and S₁₁. This confirms the potential K releasing power of sand plus silt fraction in these soils.

Similarly, the predicted K uptake values for the separates on whole soil basis for S₉, S₁₃, and S₁₈, and the predicted Kₜₐₚ values for almost all the soils were higher than that of the whole peroxidised (untreated) soils (Fig. 7.3) i.e., the performance of 3 fractions together in whole soil is different. This points to the difficulty of obtaining reliable estimates of relative contributions of textural fractions to whole soil K supply in these soils. The reason for these overestimates is most likely due to extra K release/supply from the clay fraction as a result of alterations during the separation procedure (e.g., freeze drying of clays).

Thus most of the data in section 7.3.2.3.5 (Table 7.11) seems to be 'purely theoretical' and therefore it remains to be determined if the overestimation is acceptable, at least for the soils investigated. The predicted values of K uptake for S₆, S₁₁, and S₁₂, however, remain valid and the data for the remainder of the soils can not be used to
Fig. 7.2 Relationship between K releasing power for the whole soil (Actual) and for the soil separates on a whole soil basis (Predicted)

- Total K (%)
- K_{ex} (mg K 100 g$^{-1}$)
- Acid-extractable K (mg K 100 g$^{-1}$)
- Step K (mg K 100 g$^{-1}$)
- 1 : 1 line
Fig. 7.3 Relationship between K supplying power for the whole soil (Actual) and for the soil separates on a whole soil basis (Predicted)
emphasize the importance of coarser separates in plant nutrition.

It also remains to be determined if the differences in the total K uptake and K_{ac} uptake by ryegrass from the clays (Table 7.8 and Table 7.9) and the relative contribution of the separates to plant K uptake for S6, S11, and S12 (Table 7.11) reflect the mineralogy and the degree of difficulty with which K is weathered out of the mineral lattices.

It would be interesting to discover how valid are the relative contributions of soil separates to the chemical extraction procedures cited in the literature. Because in all the earlier studies (section 7.1), no attempt was made to separate the clay fraction (e.g., Lee and Gibson, 1974; Lee and Widdowson, 1977), to measure the actual K release from the whole soil (e.g., Munn et al., 1976; Simard et al., 1992), or to match the K release value for the whole soil (actual) with that of the separates on a whole soil basis (computed) e.g., James and Weaver, 1975; Al-Kanani et al., 1984). McLean and Brydon (1963), however, reported that the computed amounts of K_{ac} of soil separates (measured by H-resin and boiling HNO_3) together as whole soil were in accord with actual amounts determined.

7.3.4 Relationship between acid-extractable K and plant K uptake

Figure 7.4 shows the correlation between acid-extractable K, and K uptake by ryegrass from the soil separates and from the whole (peroxidised and unperoxidised) soils.

If the K release to growing plants as measured by dry matter production and K uptake is a function of acid-extractable K (Chapter 6), there should be a significantly higher K uptake for Opuha (S18) clay when compared to Pirinoa (S13) clay because S18 clay released at least twice as much K as S13 to the acid extraction. Also, the K uptake from Raumai (S9) clay was about 4 times greater than that for Matapiro (S11) and Wharekaka (S12) clays (Table 7.8), even though all three had comparable levels of acid-extractable K (Table 7.3). This indicates that acid-extractable K release from the individual separates may not be a good indicator of plant available K. Nevertheless, the values of the acid-extractable K of the clay fraction arrived at by difference (Table 7.1)
Fig. 7.4 Relationship between acid-extractable K (mg 100 g⁻¹) and K uptake by ryegrass (mg 100 g⁻¹) from the soil separates and soils.
Fig. 7.4 (contd.) Relationship between acid-extractable K (mg 100 g⁻¹) and K uptake by ryegrass (mg 100 g⁻¹) from the soil separates and soils.
explained 77% of the variation in the K uptake. This indicates that it is very difficult to obtain reliable estimates for K releasing power of the separated clay fraction. It remains to determine the cause for the variable acid-extractable K release from the separated clays as a result of freeze drying. Probably the behaviour of hydrogen ions as a metal cation is more pronounced in the separated clays rather than in the whole unperoxidised soil.

A significant r value was obtained when the acid-extractable K values of all the three separates \((n=18)\) were correlated against their respective K uptake values. When, however, the clays of S9, S13, and S18 were excluded \((n=15)\), the r value increased from 0.70 to 0.92.

These results demonstrate that the acid-extractable K (a quantity factor) was only one factor affecting K release to plants. The rate factors may also be important in explaining the variations in K supply and in predicting K availability (Shaw et al., 1983). In a review on the non-exchangeable K in soils, Martin and Sparks (1985), stated that the most important aspect of soil \(K_{exa}\) is the rate at which it is released to the exchangeable and solution forms which are readily available for plant uptake. It appears that the rate of K supply to growing plants in this study is considerably higher for S9 and S13 than for the remainder of the clays.

7.4 CONCLUSIONS

1. Although on a unit weight basis the clay separates showed a much greater activity than the other fractions on a weighted basis, the contributions of the sand plus silt fraction to the total K uptake for the Marton (38%), Matapiro (41%), and Wharekaka (25%) soils is of considerable importance. This suggests a need to focus attention on the mineral composition of sand and silt separates in these three soils as an important factor in determining the K fertility level.

2. It is evident that the K supplying power varied for the different soils, the variation being more pronounced for the clay fractions presumably due to
differences in the clay mineralogy. Since intensive farming requires continual replenishment of depleted resources, K_{ex} present in the interlayer positions of 2:1 clay minerals of the Raumai (S9), Pirinoa (S13), and Opuha (S18) soils would be more important for such replenishment than K_{ex} present in the clay minerals of the Marton (S6), Matapiro (S11), and Wharekaka (S12) soils.

3. This study emphasizes the general difficulty of obtaining reliable estimates of the relative contribution of soil separates to whole soil K release and supply. Although this study confirmed the potential K releasing power of sand plus silt fractions of the Marton (S6), Raumai (S9), and Matapiro (S11) soils, it reconfirmed this only for S6 and S11 soils with respect to K supplying power.

4. Acid-extractable K of the soil separates was significantly correlated with plant K uptake. Acid-extractable K is not all that effective with the K uptake by ryegrass from soil separates when compared to that from whole (unperoxidised) soil.
CHAPTER 8

MINERALOGY OF YGE AND RELATED SOILS IN RELATION TO NON-EXCHANGEABLE K RELEASING AND SUPPLYING POWER

8.1 BACKGROUND

The mineralogy presented in this chapter is sequential upon information presented in previous chapters (2, 4, 6, and 7) which indicated that:

(a) The K_c method of measuring K_{ex} releasing power may reflect soil mineralogy (Chapter 2, section 2.7.2.3). Thus K_c levels are expected to be highest in soils containing large amounts of K bearing primary minerals in sands and silts and in secondary minerals (clays). Since a substantial part of the plant available K in many soils is present in K bearing minerals of the clay fraction, an understanding of the clay mineralogy should provide an insight into the K releasing and supplying power of the soils.

(b) Only soils with a K_c value greater than 10 mg 100 g$^{-1}$ contributed to K_{ex} supply (Chapter 4) thus permitting a grouping of the YGE and related soils in the present study into two categories (i) a K_c range of 8-10 and (ii) a K_c range of 12-19 mg 100 g$^{-1}$ (Table 8.1). The step K method of measuring K_{ex} releasing power on the other hand correlated well with K_{ex} supplying power (Chapter 6).

(c) The clay fractions released most acid-extractable K on a unit weight basis (Chapters 6 and 7) indicating that the K_{ex} and K_{tot} releasing power of clay is higher than that of the sand and silt separates. Thus the K_c of the whole soil may reflect the K_c of the clays rather than the K_c of the silts and sands.
Table 8.1
K_c, Step K, and K_{max} supply (mg 100 g^{-1}) of the unleached YGE soils of different regions (data from Chapters 4 and 6)

<table>
<thead>
<tr>
<th>Soils</th>
<th>K_c</th>
<th>Step K</th>
<th>K_{max} uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timaru (a)</td>
<td>S14</td>
<td>17</td>
<td>75</td>
</tr>
<tr>
<td>Timaru (b)</td>
<td>S15</td>
<td>15</td>
<td>62</td>
</tr>
<tr>
<td>Claremont (a)</td>
<td>S16</td>
<td>13</td>
<td>60</td>
</tr>
<tr>
<td>Claremont (b)</td>
<td>S17</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>Opuha (a)</td>
<td>S18</td>
<td>18</td>
<td>101</td>
</tr>
<tr>
<td>Opuha (b)</td>
<td>S19</td>
<td>14</td>
<td>60</td>
</tr>
<tr>
<td>North Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pirinoa</td>
<td>S13</td>
<td>19</td>
<td>70</td>
</tr>
<tr>
<td>Raumai</td>
<td>S9</td>
<td>17</td>
<td>106</td>
</tr>
<tr>
<td>Te Arakura</td>
<td>S10</td>
<td>16</td>
<td>50</td>
</tr>
<tr>
<td>Tokorangi</td>
<td>S1</td>
<td>13</td>
<td>53</td>
</tr>
<tr>
<td>Wharekaka</td>
<td>S12</td>
<td>15</td>
<td>49</td>
</tr>
<tr>
<td>Matapio</td>
<td>S11</td>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td>Ohakea</td>
<td>S8</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>Tokomaru (a)</td>
<td>S2</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>Tokomaru (b)</td>
<td>S3</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>Halcombe</td>
<td>S7</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Milson</td>
<td>S4</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>Marton (a)</td>
<td>S5</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Marton (b)</td>
<td>S6</td>
<td>8</td>
<td>31</td>
</tr>
</tbody>
</table>

(a) Undeveloped site
(b) Developed site
(d) The total uptake of K by ryegrass shoots (a measure of K supplying power) from the clay fraction was significantly higher than that from the sand and silt fractions, and variations occurred in the \(K_{\text{net}} \) supplying power of the clays (Chapter 7).

(e) The sand and silt fractions of only 2 soils, the Marton (S6) and Matapiro (S11), could be expected to play an important role in the field with regard to K nutrition (Chapter 7).

The overall objective of the study described in this chapter is to identify the clay minerals in the YGE and associated soils with a view to relating the K bearing mineral patterns to the \(K_{\text{net}} \) releasing and supplying power. Specifically, clay mineralogy was determined to ascertain if there are differences between the clays with the \(K_e \) ranges of 8-10 and 12-19 mg 100 g soil\(^{-1} \).

8.2 MATERIALS AND METHODS

8.2.1 Clay mineralogy

8.2.2.1 Procedure for identification of clay minerals by X-ray diffraction analysis

To enable valid comparisons to be made among the 19 YGE and related soils, it is important that the clay samples be treated in precisely the same manner. In the present study \(\text{NH}_4 \) saturated clays were used to obtain the XRD patterns based on the methodology of Kirkman and Pullar (1978). Whole soil was peroxidised to remove organic matter, suspended in water, raised to pH 10.0 by addition of 1:1 \(\text{NH}_4\text{OH} \), and dispersed ultrasonically at 20 kHz for 2 min. The clay fraction (\(< 2 \mu m\)) was decanted after centrifugation at 1000 rpm for the appropriate period of time based on the temperature of the suspension. Subsamples of \(\text{NH}_4 \) clay suspension were used to saturate the clay with (a) K (1 M KCl) and (b) Mg (1 M MgCl\(_2\)). In each instance 0.5 ml chloride solution was added to 2 ml of \(\text{NH}_4 \) clay suspension. Excess chloride was
removed by distilled water washing. The NH₄, K, and Mg suspensions were mounted on glass slides, dried overnight at 20°C, and 5% glycerol in ethanol was fine sprayed on to the dry Mg clay sample only after an initial XRD irradiation. The clay specimens were irradiated with Fe filtered X-rays (Co Kα) from 4° - 16° 2θ using a Phillips XRD diffractometer. The K saturated clay was sequentially heated at 200°C, 300°C, 400°C, and 500°C for 30 min to assist identification and characterization of vermiculite.

Thus, for each clay 8 XRD patterns were obtained viz, NH₄, Mg, Mg plus glycerol, K, (all at room temperature) and K plus heating to 4 temperatures.

8.2.2.2 Interpretation of XRD patterns for clay mineral identification

The XRD patterns were examined for a 1.00 nm mica peak, a 1.48 nm vermiculite or chlorite peak, a 1.80 nm smectite peak, and 0.70 nm peak that may be due to a second order reflection (002) of 1.48 nm material or to a first order reflection of a kaolin mineral (kaolinite/halloysite).

Weathering proceeds by a process of removal of interlayer K followed by the invasion of the interlayer space by a variety of cations including hydroxylated Al and hydrated Mg. This results in expansion of the lattice and modification of the chemical properties of the clay. The clay species undergoing this process display a continuum of hydroxy interlayered forms depending on the degree of in-filling of interlayer spaces with hydroxy polymers.

The 1.48 nm reflection in the XRD pattern of the NH₄ saturated clay could be due to vermiculite or chlorite. Smectite dried at room temperature gives a reflection in the 1.20-1.40 nm region. When vermiculite forms under weakly acid conditions, the interlayer space is most commonly occupied by hydrated Mg ions. Subsequent K saturation, with or without heat, causes the c-spacing to collapse from approximately 1.48 nm towards 1.0 nm as Mg is replaced by K. This vermiculite may be called "magnesium vermiculite".
When vermiculite forms under more acid conditions, the proportion of hydroxy-Al ions in the interlayer space increases at the expense of Mg, and the lattice collapses on K saturation only with difficulty. Heat treatment over the temperature range of 200°C to 500°C may be needed to bring about a collapse (to near 1.00 nm). This vermiculite may be termed "heat collapsible vermiculite".

When the in-filling of the interlayer space with hydroxy-Al material is complete, the mineral is regarded as chlorite. This mineral, if present, will not collapse on K saturation plus heat treatment and the c-spacing remains at approximately 1.48 nm.

Thus K saturation and sequential heating treatment causes lattice collapse in the region of 1.00 to 1.48 nm which reflects the completeness of the hydroxy-Al intercalating layer.

If after Mg saturation plus glycerol treatment, a reflection shifts from 1.20-1.40 nm to approximately 1.80 nm smectite is present.

A strengthening of the 0.70 nm reflection and concomitant weakening of the 1.48 nm reflection indicates chlorite. The 0.70 nm reflection disappears at 500°C if it is due to kaolin.

8.2.2.3 Transmission electron microscopy

Selected clays were investigated by transmission electron microscopy (TEM). Specimens were prepared after dilution of the original NH₄ < 2 µm suspension. One drop of the diluted suspension was dried at 60°C for 10 min after mounting on a carbon film supported by a copper grid 3 mm in diameter. The TEM investigation aimed to determine if halloysite was present. This material has a characteristic and easily recognized morphology in the soils of New Zealand (Kirkman, 1977).
8.2.2 Sand and silt mineralogy

Sands (> 63 μm) and silts (2-63 μm) from Chapter 6 (section 6.2.4) were used to obtain XRD patterns. A non-oriented powder sample of each of these separates was irradiated with X-rays from 4° - 74° 2θ. Oriented samples of silts were irradiated from 2° -16° 2θ to assist identification of the micaceous minerals.

Sands (> 63 μm) and coarse silts (20-63 μm) of selected soils (Raumai, Matapiro, and Pirinoa) were investigated for primary minerals using optical microscopy. The fine silts (2-20 μm) of these soils were irradiated with X-rays from 4° - 74° 2θ.

8.3 RESULTS AND DISCUSSION

8.3.1 Clay mineral identification

Smectite and chlorite minerals were found to be absent from all the clays investigated.

There was a general similarity of the XRD patterns in the 1.00 and 0.7 nm regions of Tokomaru, Marton, Wharekaka, and Timaru clays with the respective Ah horizon clay XRD patterns of Pollok (1975).

The reflection in the region of 1.03-1.17 nm indicated the presence of micas at different stages of weathering.

The 1.48 nm reflection that is indicative of vermiculite was found to be absent from most of the soils in this study. This is contrary to the results of clay mineral analyses conducted by Pollok (1975) and New Zealand Soil Bureau (New Zealand Soil Bureau National/Overseas Soil Databases) on selected YGE soils. Possibly the 1.48 nm material in this study collapsed due to NH₄ saturation, a treatment not used in the studies reported earlier.

Where a 1.48 nm reflection was present K saturation without heat treatment did not
result in a shift of the reflection towards 1.00 nm indicating absence of Mg vermiculites in the soils that contained 1.48 nm material (S17, S19, S13, and S12).

Sequential heating of K saturated clay samples on the other hand caused ongoing collapse of the lattice from 1.48 nm towards 1.00 nm and therefore vermiculite clays with a range of Al-hydroxy interlayering may be present.

The 0.70 nm peak could be due either to the second order reflection of hydroxy interlayered vermiculite or to halloysite or to both. The peak at 1.00 nm due to mica sharpened and tended to intensify after sequential heating of the samples.

8.3.2 XRD patterns of the clays with Kc ranges of 8-10 and 12-19 mg 100 g soil⁻¹

The profiles of the 1.00 nm and 0.70 nm reflections were different for the soil clays of the two Kc ranges (Table 8.2, and Figures 8.1 & 8.2).

The 1.00 nm reflections increased in sharpness with increasing Kc value. Increased sharpness of the reflection may imply increased crystallinity, decreased weathering, and thus increased K content and therefore could account for increased Kc. Typical central YGE soils fall in the 8-10 Kc range and their southern counterparts in the 12-19 range. The exceptions to this trend were Tokorangi (S1) and Wharekaka (S12) soils.

For clays of soils in the Kc range 8-10 heating of the K saturated clay to 200°C resulted in a sharpening of the 0.70 nm reflection. Since a 1.48 nm peak was absent, the sharpening of the 0.70 nm peak was probably due to dehydration of halloysite. The presence of halloysite was confirmed by TEM which showed curled flakes and tubular particles typical of this material. Further heating to 400°C caused no further sharpening of the reflection but at 500°C it disappeared presumably due to destruction (dehydroxylation) of the halloysite phase.

For clays of soils in the Kc range of 12-19, the 0.70 nm peak was smaller and did not sharpen with the heat treatment. This indicated the absence of halloysite in these soils.
Table 8.2 Differences in the clay mineralogy and the amounts (subjective assessment), and in K releasing/supplying power of the YGE and related soils in the two K_s ranges

<table>
<thead>
<tr>
<th></th>
<th>K$_s$ (8-10 mg 100 g soil$^{-1}$)</th>
<th>K$_s$ (12-19 mg 100 g soil$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Profile of 1.0 nm peak</td>
<td>Blunt and low</td>
</tr>
<tr>
<td></td>
<td>See peak (b) in Fig. 8.1 and 8.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Profile of 0.7 nm peak</td>
<td>Sharp and tall</td>
</tr>
<tr>
<td></td>
<td>See peak (c) in Fig. 8.1 and 8.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mica/illite/hydrous mica (2:1 minerals)</td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>Spectrum of vermiculite/interstratified clays (mixed clays) (2:1 minerals)</td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>Kaolinite/halloysite (1:1 minerals)</td>
<td>+++</td>
</tr>
<tr>
<td>6</td>
<td>Step K range (Table 8.1)</td>
<td>24-44</td>
</tr>
<tr>
<td>7</td>
<td>K_{ext} supply range (Table 8.1)</td>
<td>0-0.93</td>
</tr>
</tbody>
</table>

+++Large amount
++Moderate amount
+Small amount

* 0.7 nm peak intensifies after K Heat 200°C even though it was blunt after NH$_4$ and K saturation

** TEM studies revealed appreciable amounts of halloysite and kaolinite in S9 (Table 8.4)

** Possibly no halloysite in S10 (NZ Soil Bureau National/Overseas Soil Databases)
Fig. 8.1 X-ray diffractograms of soil clays (< 2 μm). K, range 8-10 mg 100 g soil⁻¹.
Fig. 8.1 contd.
Fig. 8.2 X-ray diffractograms of soil clays (< 2 μm), K range 12-19 mg 100 g soil⁻¹
Fig. 8.2 contd.
Fig. 8.2 contd.
Fig. 8.2 contd.
The exceptions were Rau mai (S9) and Pirinoa (S13). The presence of halloysite in S9 (dominant) and S13 (very few particles) was confirmed by the TEM study (Table 8.3).

In general, the 0.70 nm clay material of soils of K_c 8-10 was mostly halloysite, and hydroxy interlayered vermiculite was insignificant or absent. For clays of soils of K_c 12-19, hydroxy interlayered vermiculite was present together with mica and halloysite was, at best, a minor component.

8.3.3 Relationship between mineralogy and K_{nex} releasing and supplying power of soils

It appears that clays from soils in the K_c range 12-19 are dominated by mica and expanded micaceous material whereas those in the K_c range 8-10 contain expanded micaceous materials together with halloysite. Thus the K_c values reflect the soil mineralogy. On this basis it would be more appropriate to rank Tokorangi (S1), Wharekaka (S12), and the YGE intergrades (S9, S10, and S13) as "high" K_c soils rather than "medium" K_c soils as suggested by Cornforth and Sinclair (1984).

The K_c range 12-19 soils released more step K and gave a higher K_{nex} supply than soils with a K_c range of 8-10 (Table 8.2). The wide variations in the step K and K_{nex} supply of the soils in the K_c range of 12-19 (Table 8.1), however, could not be explained by the mineralogy. For example, the XRD patterns of clays from developed sites did not differ significantly from their undeveloped counterparts (see Fig. 8.2) even though their K_{nex} uptake varied considerably (Table 8.1).

The differences in the K_{nex} uptake by ryegrass between the developed and undeveloped YGE soils from the southern region, however, owe more to the step K values than the K_c values (see Table 8.1). Thus step K is a better measure of K_{nex} releasing power than K_c as already indicated in Chapter 6 (section 6.3.3).

Table 8.4 shows that the Wharekaka (S12) clay supplied little K_{nex} to plants compared to the clays of S9, S13, and S18 yet all fall in the K_c range of 12-19. Presumably the
Table 8.3 Summary of clay minerals of 3 soils identified using XRD patterns in conjunction with TEM

<table>
<thead>
<tr>
<th>Soil</th>
<th>K<sub>e</sub> range</th>
<th>Clay minerals identified</th>
<th>Dominant mineral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumai (S9)</td>
<td>12-19</td>
<td>(a) Unexpanded mica (1.03 nm)</td>
<td>Mica (but less than for Pirino)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Expanded mica weathering to vermiculite (1.28 nm) which collapses to 1.02 nm) on K + Heat 200°C</td>
<td>Halloysite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Vermiculite (1.33 nm)</td>
<td>Heat 300°C. (Fig. 8.2)</td>
</tr>
<tr>
<td>Pirinoa (S13)</td>
<td>12-19</td>
<td>(a) Expanded mica (1.06 nm)</td>
<td>Mica (Fig. 8.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Vermiculite (1.41 nm) which collapses to 1.03 nm on K + Heat 300°C. Therefore may vermiculite of S13 may contain slightly more Al than that of S9. Halloysite and kaolinite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Halloysite and kaolinite</td>
<td></td>
</tr>
<tr>
<td>Matapiro (S11)</td>
<td>8-10</td>
<td>(a) Expanded mica (1.06 nm)</td>
<td>Halloysite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Small amounts of vermiculite (1.33 nm) which collapses on K + Heat 200°C</td>
<td>Halloysite (Fig. 8.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Halloysite</td>
<td></td>
</tr>
</tbody>
</table>

Note: Vermiculite in Raumai > Pirinoa > Matapiro
Non-exchangeable K releasing power and supplying power (mg 100 g⁻¹) of clay fraction (Chapter 7 data)

<table>
<thead>
<tr>
<th>Kc range of soils</th>
<th>Soil</th>
<th>Step K of the clay fraction (Table 7.3)</th>
<th>Kccoli supply of the clay fraction (Table 7.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-19 mg 100 g⁻¹</td>
<td>Wharekaka (S12)</td>
<td>95</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Pirinoa (S13)</td>
<td>111</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td>Opuha undeveloped (S18)</td>
<td>311</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>Raumai (S9)</td>
<td>101</td>
<td>62.3</td>
</tr>
<tr>
<td>8-10 mg 100 g⁻¹</td>
<td>Marton developed (S6)</td>
<td>57</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Matapiro (S11)</td>
<td>93</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Note: Kc of clays was not measured
rate of recharge of K from interior lattice sites of the Wharekaka (S12) clay was insufficient, possibly due to low rate factors. More information is needed to characterize the expanded (1.12 nm) mica material of the S12 clay in relation to K supplying power. At another site, the Ah horizon of this soil contained large amounts of interstratified clays and mica/illite (Pollok, 1975).

Table 8.3 shows that the mica content is less in Raumai (S9) when compared to Pirinoa (S13). Despite this the K$_{nax}$ supply from the clay fraction of the former soil was considerably higher than that of the latter, indicating the importance of rate factors in governing K release from clay minerals.

8.3.4 Sand and silt mineralogy

XRD analyses showed that the sands and silts consisted of mainly quartz and feldspars. The XRD pattern of the oriented sample of Raumai silt (S9), however, showed a 1.02 nm reflection indicative of mica.

Table 8.5 shows some of the minerals in the sand and coarse silt fractions of Raumai (S9), Matapiro (S11), and Pirinoa (S13) soils as identified by optical microscopy. These minerals were expressed on weight basis as percentage of total sample. For example, 10.08 % (6.55 + 3.53) of the total sample is volcanic glass in the sand plus silt (coarse) fractions of Matapiro soil (S11). The remainder (89.92 %) constitutes the other minerals identified by optical microscopy viz, minerals in Table 8.5 as well as clear quartz, secondary quartz plus feldspars, volcanic quartz, and volcanic mafics; and minerals in fine silt and clay fractions.

The sand and coarse silt fractions of Matapiro (S11) thus had higher amounts of volcanic glass than those of Raumai (S9) and Pirinoa (S13). Micas were more abundant in the Raumai (S9) sand than in the sands of S11 and S13.

Quartz and feldspars were identified from the XRD patterns of fine silts of S9, S11, and S13. The fine silt of Raumai (S9), however, contained some mica.
Table 8.5 Primary minerals in sand and coarse silt fractions expressed as percentage of total sample (soil after removal of organic matter, amorphous materials, and water)

<table>
<thead>
<tr>
<th>Soil</th>
<th>SAND</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volcanic glass</td>
<td>Greywacke fragments</td>
<td>Micas</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Raumai (S9)</td>
<td>0.16</td>
<td>25.85</td>
<td>3.09</td>
<td>29.10</td>
<td></td>
</tr>
<tr>
<td>Pirinoa (S13)</td>
<td>0.52</td>
<td>3.87</td>
<td>0.05</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>Matapiro (S11)</td>
<td>6.55</td>
<td>9.01</td>
<td>0.04</td>
<td>15.60</td>
<td></td>
</tr>
</tbody>
</table>

Note: Greywacke is a type of sedimentary rock. It is not a mineral. It consists of sand and silt fragments held in micaceous matrix (illite-mica matrix) and hence may be a potential source of K
The probable sources of K from clay, and sand plus silt fractions of S9, S11, and S13 are presented in Table 8.6. Possibly other K bearing minerals (sericite and K feldspars) are present in the coarser fractions but only in small amounts.

Table 8.6 Probable sources of K from the clay and sand plus silt fractions

<table>
<thead>
<tr>
<th>Soil</th>
<th>Kc range of soil</th>
<th>Clay</th>
<th>Sand + Silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumai (S9)</td>
<td>12-19</td>
<td>Mica + Vermiculite</td>
<td>Micas</td>
</tr>
<tr>
<td>Pirinoa (S13)</td>
<td>12-19</td>
<td>Micas</td>
<td>Micas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible contribution from vermiculites</td>
<td>Volcanic glass</td>
</tr>
<tr>
<td>Matapiro (S11)</td>
<td>8-10</td>
<td>Mica</td>
<td>Mainly from volcanic glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possibly little or no contribution from vermiculites</td>
<td>Very little from micas</td>
</tr>
</tbody>
</table>

8.4 CONCLUSIONS

The soils in the 12-19 mg 100 g⁻¹ Kc range were distinct from those in 8-10 mg 100 g⁻¹ Kc range not only in the Kmax release and supply but also in the XRD patterns. The former group of clays appeared to contain more K bearing minerals than the case for the latter. The differences in the Kmax release and supply among the soils in either Kc range could not be explained by mineralogy.
CHAPTER 9

ASSESSMENT OF THE K SUPPLYING POWER OF YGE SOILS

9.1 BACKGROUND

As mentioned in Chapter 2 (section 2.9), the most widely used method for assessing the potassium fertilizer requirement of pasture farming systems in New Zealand is the Computerized Fertilizer Advisory Services (CFAS) mass balance model of Cornforth and Sinclair (1984) currently used by AgResearch. This is a simplified version of an earlier model by Campkin (1985).

The mass balance model is based on the assumption that the flow of K through the plant available pool of nutrients in the soil is in steady state and the plant and/or animal requirements can be maintained if K losses from the system are equalled by K gains (Campkin, 1985; Williams, 1988).

Potassium fertilizer requirements for a specific farming system are calculated as the difference between the "losses of K" from the system and the "gains of K" to the cycling K pool from the weathering of soil minerals. While the K losses are calculated by the "animal loss" and the "leaching loss" parameters of the CFAS model, the gains (contribution of soil K) are estimated empirically from the long term K supplying power of the soil or reserve K pool (based on K_r) and the immediate K supply from K_{ex} forms (based on QTK). The CFAS model is therefore a depletive model rather than a true maintenance model. This is because soil K_{ex} and K_r only help to offset the losses of K. Thus total soil K is gradually depleted.

A true maintenance (sustainable) model on the other hand would disregard the K supply from soil and all the K losses are "made good" by addition of K fertilizers. This approach would incur unnecessary expenditure on K fertilizers in high reserve K soils in the short term.
There is, however, evidence (Williams et al., 1986; Williams et al., 1990) that shows that the estimate of "soil K supply" using the CFAS model is not a good predictor of the K supplying power of the soils in which the plant available non-exchangeable K is a major component. This reflects the lack of appropriate methods (chemical measurements) to estimate reliably soil K supplies.

It is evident, from the equation for the fertilizer K requirement (section 2.9), that the soil QTK and K_e values are central to the calculation of fertilizer requirement. This chapter deals with the assumptions made as to the plant availability of exchangeable K (in terms of quick test units) and reserve K (K_r) on an annual basis. At present K_e values are assigned on the basis of soil group (0.70, 0.30, and 0.10 meq % for high, medium, and low K_e soils, respectively).

The present study is not intended to test the validity of the fertilizer equivalents of QTK and K_e, which are estimated to be 0.75 kg ha$^{-1}$ and 0.40 kg ha$^{-1}$ for each unit of QTK and K_e, respectively (Campkin, 1985). Rather it examines the limitations imposed by using an assigned K_e value instead of measuring the actual K_e for each soil. The study also aims to test the accuracy of the predicted soil K supply, using different soil K supply equations (section 9.2) against the K availability to ryegrass grown in the glasshouse trial (Chapter 4).

The overall objective of the study reported in this chapter is therefore to examine the practical implications of the measured differences in K supplying power of 19 YGE and related soils in the pot trial using the "soil K supply" parameter of the CFAS model.

9.2 THEORY

The "soil K supply" parameter of the original model (Campkin, 1985) and that of the current AgResearch model (Cornforth and Sinclair, 1984) assumes the following forms.

\[
\text{Soil K supply (kg ha}^{-1} \text{yr}^{-1}) = \{10 \ (\text{QTK-3}) + 100(\text{K}_r)\} \quad (9.1)
\]

(Campkin, 1985)

\[
\text{Soil K supply (kg ha}^{-1} \text{yr}^{-1}) = 10 \ (\text{QTK} - \text{D}) \quad (9.2)
\]
Where \(D = 0 \) for medium \(K_c \) soils
and \(D = 2 \) for low \(K_c \) soils

(Cornforth and Sinclair, 1984)

The QTK is expressed in quick test units (parts per 250,000 of extracting solution) and \(K_c \) is expressed in meq %. The constants 10 and 100 in Eq. 9.1 represent the estimates of the \(K \) supplied from QTK and \(K_c \) as kg K ha\(^{-1}\) yr\(^{-1}\) for one unit of QTK and for one meq % of \(K_c \), respectively.

Equation 9.2 is a simplified version of Eq. 9.1 and is intended to estimate soil \(K \) supplies for low and medium \(K_c \) soils only (section 2.9). To obtain estimates of soil \(K \) supply for high \(K_c \) soils Eq. 9.1 can be used by substituting an assigned value of 0.70 meq % for \(K_c \) (Campkin, 1985). A detailed explanation of the calculation involved in estimating the soil \(K \) supply in the format used in Eq. 9.1 is reported in Chapter 2 (section 2.9). Both Eq. 9.1 and Eq. 9.2 will be referred to as "AgResearch equations" in this chapter.

The \(K_c \) values for Eq. 9.1 can be obtained either by (a) assigning constant \(K_c \) values to the designated soil groups (0.30 meq % for the North Island YGE soils and 0.70 meq % for the South Island YGE soils) as presently followed by the AgResearch (Cornforth and Sinclair, 1984), or (b) measurement, or (c) rating the measured \(K_c \) values based on the Campkin rating procedure (Campkin, 1985 and Table 9.1) followed by assigning the respective \(K_c \) values (0.10, 0.30, and 0.70 meq % for low, medium, and high \(K_c \) soils, respectively).

When the assigned \(K_c \) values (Campkin, 1985) are used, Eq. 9.1 assumes the forms given in Table 9.1 for low (Eq. 9.3), medium (Eq. 9.4), and high (Eq. 9.5) \(K_c \) soils.

For soils in the Recent New Zealand soil group that contain relatively large amounts of non-exchangeable \(K \) (Jackson, 1985), the following equation was developed by Cornforth and Sinclair (1984) to predict the soil \(K \) supply.

\[
\text{Soil K supply (kg ha}^{-1}\text{ yr}^{-1}) = 50 \, (\text{NaTPB} \, K + 0.10) \quad (9.6)
\]
Where NaTPB K is K removed by sodium tetraphenyl boron (NaTPB) reagent (Jackson, 1985).

Also available is the equation developed by A. Metherell (pers. comm.) based on NaTPB K and QTK. The K supplied from non-exchangeable but available potassium (NEAP) in the Metherell equation is calculated using NaTPB K and QTK, and replaces K_c in Eq. 9.1. The K supplied from NEAP is estimated as 50 kg ha$^{-1}$ yr$^{-1}$ per one meq % of NEAP (A. Metherell, pers. comm.). This means that NEAP has a fertilizer equivalent of 18.86 % that is annually plant available compared to 40 % for K_c.

Soil K_{wex} supply (kg ha$^{-1}$ yr$^{-1}$) = (50 NaTPB K - 3.5 QTK)

Therefore,

Soil K supply (kg ha$^{-1}$ yr$^{-1}$) = 10 (QTK - 3)

+ (50 NaTPB K - 3.5 QTK)

The K supply from the 19 unleached YGE and related soils (described in Chapter 3) was estimated using the equations 9.1-9.8. The measured QTK and the measured K_c values are presented in Table 9.2. The plant K uptake from the unleached soils in the pot trial (Chapter 4) was used to test the accuracy of the model predictions using a range of K supply equations.

Table 9.1 Simplified equations to estimate soil K supplies (kg ha$^{-1}$ yr$^{-1}$) for low, medium, and high K_c soils (Campkin, 1985)

<table>
<thead>
<tr>
<th>Rating</th>
<th>K_c Range (meq %)</th>
<th>Assigned (constant) value (meq %)</th>
<th>Equation</th>
<th>Equation No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (L)</td>
<td>< 0.21</td>
<td>0.10</td>
<td>10(QTK-2)</td>
<td>9.3</td>
</tr>
<tr>
<td>Medium (M)</td>
<td>0.21-0.45</td>
<td>0.30</td>
<td>10(QTK+0)</td>
<td>9.4</td>
</tr>
<tr>
<td>High (H)</td>
<td>> 0.46</td>
<td>0.70</td>
<td>10(QTK+4)</td>
<td>9.5</td>
</tr>
</tbody>
</table>
Table 9.2 \(K_s\) rating and measured \(K_s\) and QTK values of 19 soils

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Classification using</th>
<th>Measured (K_s) values (meq %)</th>
<th>QTK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North Island YGE and related soils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>Tokorangi</td>
<td>M</td>
<td>0.34</td>
<td>14</td>
</tr>
<tr>
<td>S2</td>
<td>Tokomaru (a)</td>
<td>M</td>
<td>0.23</td>
<td>8</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru (b)</td>
<td>M</td>
<td>0.24</td>
<td>4</td>
</tr>
<tr>
<td>S4</td>
<td>Milson</td>
<td>L</td>
<td>0.20</td>
<td>18</td>
</tr>
<tr>
<td>S5</td>
<td>Marton (a)</td>
<td>L</td>
<td>0.20</td>
<td>2</td>
</tr>
<tr>
<td>S6</td>
<td>Marton (b)</td>
<td>L</td>
<td>0.21</td>
<td>2</td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe</td>
<td>M</td>
<td>0.24</td>
<td>7</td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea</td>
<td>M</td>
<td>0.26</td>
<td>7</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>M</td>
<td>0.44</td>
<td>2</td>
</tr>
<tr>
<td>S10</td>
<td>Te Arakura</td>
<td>M</td>
<td>0.40</td>
<td>3</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>M</td>
<td>0.23</td>
<td>6</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>M</td>
<td>0.38</td>
<td>2</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>H</td>
<td>0.48</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>South Island YGE soils</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>M</td>
<td>0.43</td>
<td>23</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>M</td>
<td>0.37</td>
<td>4</td>
</tr>
<tr>
<td>S16</td>
<td>Claremont (a)</td>
<td>M</td>
<td>0.34</td>
<td>11</td>
</tr>
<tr>
<td>S17</td>
<td>Claremont (b)</td>
<td>M</td>
<td>0.32</td>
<td>3</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha (a)</td>
<td>M</td>
<td>0.45</td>
<td>11</td>
</tr>
<tr>
<td>S19</td>
<td>Opuha (b)</td>
<td>M</td>
<td>0.35</td>
<td>7</td>
</tr>
</tbody>
</table>

(a) Undeveloped site
(b) Developed site
9.3 RESULTS AND DISCUSSION

9.3.1 Soil K supply from exchangeable sources

The predicted K supply of the 19 YGE soils from exchangeable sources (as measured by QTK) using the first half of Eq. 9.1 ranged from -10 to 200 kg ha\(^{-1}\) yr\(^{-1}\) (Table 9.3).

The negative or zero soil QTK supply resulted from assuming that QTK levels rarely fall below 3 for most New Zealand soils (Campkin, 1985). Calculations based on the model therefore show that soils can supply 10(QTK-3) kg K ha\(^{-1}\) annually from their exchangeable pool.

The negative or zero QTK supply in Marton (S5 and S6), Raumai (S9), Te Arakura (S10), Wharekaka (S12), and developed Claremont (S17) soils indicated that during a year these soils theoretically cannot supply K from the exchangeable pool. Thus all the K taken up by the plants is derived from K\(\text{ex}\) sources. If this situation existed on a dairy farm it would mean that either the K\(\text{ex}\) sources are releasing sufficient K to maintain maximum pasture production or K deficiency is reducing pasture yield. The possibility of no contribution from QTK is unlikely as for all soils in the pot trial, the contribution of K\(\text{ex}\) to plant uptake is positive (Chapter 4).

9.3.2 Predicted soil K supply from non-exchangeable sources based on the assigned and measured K\(\text{e}\) values

The soil K\(\text{ex}\) supply currently assigned (Cornforth and Sinclair, 1984) to the 13 North Island and the 6 South Island soils under investigation is 30 and 70 kg ha\(^{-1}\) yr\(^{-1}\), respectively (column A in Table 9.3). This means that the less weathered YGE soils in the South Island are predicted to supply 40 kg ha\(^{-1}\) more K from the reserve K pool annually than their counterparts in the North Island irrespective of the variations in K\(\text{ex}\) availability within the soils of either region.

The predicted reserve K supply of South Island YGE soils based on measured K\(\text{e}\) values (column B in Table 9.3) are on average 33 kg ha\(^{-1}\) yr\(^{-1}\) lower than those based on the
Table 9.3 Predicted soil K supply from \(K_{ex}\) and \(K_{net}\) sources

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Soil K supply (kg ha(^{-1}) yr(^{-1})) from (K_{ex}) and (K_{net}) pools (Eq. 9.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(K_{ex}) pool</td>
</tr>
<tr>
<td>S1</td>
<td>Tokorangi</td>
<td>110</td>
</tr>
<tr>
<td>S2</td>
<td>Tokomaru (a)</td>
<td>50</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru (b)</td>
<td>10</td>
</tr>
<tr>
<td>S4</td>
<td>Milson</td>
<td>150</td>
</tr>
<tr>
<td>S5</td>
<td>Marton (a)</td>
<td>-10</td>
</tr>
<tr>
<td>S6</td>
<td>Marton (b)</td>
<td>-10</td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe</td>
<td>40</td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea</td>
<td>40</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>-10</td>
</tr>
<tr>
<td>S10</td>
<td>Te Arakura</td>
<td>0</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>30</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>-10</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>30</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>200</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>10</td>
</tr>
<tr>
<td>S16</td>
<td>Claremont (a)</td>
<td>80</td>
</tr>
<tr>
<td>S17</td>
<td>Claremont (b)</td>
<td>0</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha (a)</td>
<td>80</td>
</tr>
<tr>
<td>S19</td>
<td>Opuha (b)</td>
<td>40</td>
</tr>
</tbody>
</table>

A = Based on the current categorisation of the North Island YGE and related soils as medium \(K_c\) soils (0.30 meq % as an assigned \(K_c\) value) and their southern counterparts as high \(K_c\) soils (0.70 meq % as an assigned \(K_c\) value)

B = Based on measured \(K_c\) values

C = Based on measured \(K_c\) values of the soils, rating the \(K_c\) of the soils using Campkin’s ranking procedure (Table 4.1 and Table 9.1), and thereafter estimating soil \(K_{net}\) supply using the respective assigned \(K_c\) values of Campkin (Table 9.1)
Cornforth and Sinclair (1984) rating (column A in Table 9.3). The difference in the reserve supply estimated by using the measured \(K_c \) values and the assigned \(K_c \) value in the YGE soils in the North Island was less than or equal to 18 kg ha\(^{-1}\) yr\(^{-1}\). The variations in \(K_{\text{max}} \) supply within the soils of either North Island YGE group or South Island YGE group may be economically significant enough to invalidate applying a single \(K_c \) value to either of the groups.

The average predicted \(K_{\text{max}} \) supply from these North Island soils is, however, similar to that of the assigned supply (30 kg ha\(^{-1}\) yr\(^{-1}\)).

It should be noted that the measured \(K_c \) ratings of the soils in Table 9.2 are based on measurement, and ranking according to the Campkin (1985) \(K_c \) rating procedure. Indeed, the rating procedure of Campkin (Table 9.1) was the basis on which the assigned \(K_c \) values (0.10, 0.30, 0.70 meq % for low, medium, and high \(K_c \) status soil, respectively) were obtained. Using this criterion, 4 of the North Island YGE soils did not fall into the medium \(K_c \) category whereas all the South Island soils fell into the medium \(K_c \) group (Table 9.2) as against the medium and high categories in the current scheme, respectively (Cornforth and Sinclair, 1984). This misranking will lead the current model (using AgResearch equations) to overestimate soil \(K \) supply by 20 kg ha\(^{-1}\) yr\(^{-1}\) in S4, S5, and S6 and underestimate by 40 kg in S13 (Comparing A and C in Table 9.3). The predicted \(K \) supply from the South Island soils will be higher by 40 kg ha\(^{-1}\) yr\(^{-1}\). This casts some doubt as to the classification of the South Island YGE soils in the current scheme as high \(K_c \) soils. It may be that if the rated \(K_c \) for South Island YGE soils is "medium" then the estimation that no \(K \) fertilizer is required for these soils (Cornforth and Sinclair, 1984) may be in error.

It is not clear why in the current CFAS model for determining \(K \) fertilizer requirements the South Island YGE soils were rated as "high" \(K_c \) soils while none of the YGE soils in this study (Table 9.2) and in the literature (New Zealand Soil Bureau, 1968; Metson, 1980) approach this figure. The \(K_c \) of the Claremont soil, however, in one separate study (Jackson, 1985) is reported to be 0.76 meq %, thus reflecting the extent of variability in \(K_c \) measurement even within a soil type. Both the undeveloped (S16) and the developed (S17) Claremont soils in the present study, on the other hand, have the
same K_c value of 0.33 meq % (Table 9.2).

Campkin (1985) may have assigned a value of 0.70 meq % to high K_c soils so that the model could cater for recent alluvial soils with very high K_c (Cornforth and Sinclair, 1984). K_c values of more than 0.70 meq % are infrequent in New Zealand soils. The soils reported to have K_c values higher than 0.70 meq % are listed in Table 9.4.

The suggestion by AgResearch that no K fertilizer is required on high K_c soils implies that the amounts of K being released from minerals in these soils are sufficient to replace the annual K loss from a farming system. It is not known, however, how long the rate of supply of K_{net} continues to replace the losses of K.

9.3.3 Relationship between observed K uptake by plants and predicted soil K supply

Table 9.5 shows the soil K supply of the 19 YGE soils (X-variable) estimated using different models (section 9.2) regressed against observed K uptake (Y-variable) by ryegrass grown on the unleached soils (Chapter 4). The assumptions as to bulk density and rooting depth made for converting pot trial K uptake data to kg ha$^{-1}$ were similar to those used when the original soil K supply model was developed (Campkin, 1985).

As seen from the slopes of the regression equations (Table 9.5), the pot trial extracted 2-3 times as much K as predicted by various models developed from field trial data, reflecting the capacity of the Stanford and DeMent technique of pot culture to exhaustively extract a plant nutrient. The larger K uptakes per unit weight of soil in the pot trial can be explained by the large amounts of dry matter produced. On a per hectare basis the dry matter (shoots) ranged from 84660 to 164560 kg. These values are based on the weight of the soil and assuming a soil depth of 75 mm. Havlin and Westfall (1985), Weber and Grimme (1986), and Portela (1993) all reported that the rate of K removal per unit soil mass under glasshouse conditions is much higher than in the field.

Other pot experiments in New Zealand that are less exhaustive than the pot trial in
Table 9.4 List of New Zealand soils that have K_c values of more than 0.70 meq % as reported in the literature

<table>
<thead>
<tr>
<th>Reference</th>
<th>Soil Name</th>
<th>Depth (mm)</th>
<th>New Zealand genetic soil group</th>
<th>K_c</th>
<th>Assigned rating based on soil group (Cornforth and Sinclair, 1984)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackson (1985)</td>
<td>Claremont</td>
<td>0-75</td>
<td>Yellow-grey earth</td>
<td>0.76</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Hurunui</td>
<td>0-75</td>
<td>Yellow-brown earth</td>
<td>0.76</td>
<td>Medium</td>
</tr>
<tr>
<td>New Zealand Soil</td>
<td>Conroy</td>
<td>0-102</td>
<td>Brown-grey earth</td>
<td>0.88</td>
<td>High</td>
</tr>
<tr>
<td>Soil Bureau (1968)</td>
<td>sandy loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waikakahi</td>
<td>0-152</td>
<td>Rendzina</td>
<td>0.75</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>clay loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waiaareka</td>
<td>0-76</td>
<td>Brown granular clay</td>
<td>1.30</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ahuriri</td>
<td>0-76</td>
<td>Gley recent soil</td>
<td>0.82</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9.5 Regression analyses between K uptake (kg ha\(^{-1}\)) from the pot trial (Y-variable) and the soil K supply (kg ha\(^{-1}\) yr\(^{-1}\)) predicted using existing models (X-variable)

<table>
<thead>
<tr>
<th>Model</th>
<th>(K_c) based on</th>
<th>Regression equation</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (QTK-3) + 100 ((K_c))</td>
<td>AssIGNED (K_c) values for soil groups</td>
<td>(Y = 16.6 + 1.99X)</td>
<td>0.82**</td>
</tr>
<tr>
<td>(Eq. 9.1)</td>
<td>Measured values</td>
<td>(Y = 13.8 + 2.31X)</td>
<td>0.86**</td>
</tr>
<tr>
<td></td>
<td>Measured and assigned values using Campkin's rating procedure</td>
<td>(Y = 22.0 + 2.27X)</td>
<td>0.84**</td>
</tr>
<tr>
<td>50 (NaTPB K+0.010)</td>
<td>-</td>
<td>(Y = -12.5 + 3.10X)</td>
<td>0.92**</td>
</tr>
<tr>
<td>(Eq. 9.6)</td>
<td>-</td>
<td>(Y = 30.7 + 2.05X)</td>
<td>0.97**</td>
</tr>
<tr>
<td>10 (QTK-3) + (50 NaTPB K-3.5 QTK)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4 have shown that the observed K uptake by ryegrass plants was 2-4 times more than that predicted by the model using QTK and the measured Ke (Table 9.6).

The observed K\textsubscript{ex} supply in the pot trial is 8.90 and 2.32 times more than that predicted annually using the second half of Eq. 9.1 (measured Ke) and Metherell’s equation (Eq. 9.7), respectively (see regression coefficients in Table 9.7). The former value may be a little misleading because of the large negative intercept obtained in the regression equation.

It appears from the correlation coefficients \((r)\) (Table 9.5) that the predicted total soil supply of K is reasonably good irrespective of how the Ke value is obtained. In contrast, Table 9.7 shows that the r values for the supply of K\textsubscript{ex} improved considerably when the Ke values are measured. Replacing Ke with the NaTPB K improved the fit.

9.3.4 Development of a model for predicting soil K supply from the pot trial

In the original Campkin model (Eq. 9.1), the K supplied from QTK and Ke was estimated as 10 and 100 kg ha\(^{-1}\) annually for one unit of QTK and for one meq % of Ke, respectively (Chapter 2, section 2.9). These estimates were based on one year K response field trials conducted at 38 sites throughout New Zealand (Campkin, 1983). For these trials, 100 percent clippings were returned. The major soil groups of New Zealand covering a wide range of Ke values were included. The Ke values, however, were not measured at the time, but were taken from Soil Bureau data (New Zealand Soil Bureau, 1968) for each soil group but not necessarily the same location and site conditions.

It is possible a significant linear fit could have been obtained with Campkin data based on the relationship between K uptake from the control plots (minus K treatment) and the measurements of K releasing power (QTK and Ke). The estimates for QTK and Ke were, however, obtained on the basis of slopes derived from the regression analyses between these measurements of K releasing power and the fertilizer K required to produce 90 % maximum yields (Chapter 2).
Table 9.6 Relationship between observed and predicted uptake in other pot experiments in New Zealand using Campkin equation (9.1)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Soil:plant ratio (g plant⁻¹)</th>
<th>No. of soils</th>
<th>Regression equation</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table 9.5 1</td>
<td>19</td>
<td>Y = 13.8 + 2.31X</td>
<td>0.86**</td>
</tr>
<tr>
<td>2</td>
<td>Jackson (1985) (Trial A soils)</td>
<td>13</td>
<td>Y = -13.0 + 2.76X</td>
<td>0.72**</td>
</tr>
<tr>
<td>3</td>
<td>Jackson (1985) (Trial B soils)</td>
<td>25</td>
<td>Y = -19.3 + 4.26X</td>
<td>0.85**</td>
</tr>
<tr>
<td>4</td>
<td>Hay (1971) 8.33</td>
<td>16</td>
<td>Y = 43.0 + 1.80X</td>
<td>0.53*</td>
</tr>
<tr>
<td>5</td>
<td>Campkin (1972) 66.66</td>
<td>13</td>
<td>Y = 65.8 + 1.60X</td>
<td>0.90**</td>
</tr>
</tbody>
</table>

Y = Observed K uptake (kg ha⁻¹) in pot trial
X = Predicted K uptake (kg ha⁻¹ yr⁻¹) using QTK and measured Kc (Eq. 9.1)

Table 9.7 Regression analyses between Kc uptake (kg ha⁻¹) observed in the pot trial (X-variable) and that predicted (kg ha⁻¹ yr⁻¹) by models (Y-variable)

<table>
<thead>
<tr>
<th>Model</th>
<th>Kc based on</th>
<th>Regression equation</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (Kc)</td>
<td>Assigned Kc values for soil groups</td>
<td>Y = -32.5 + 2.08X</td>
<td>0.41NS</td>
</tr>
<tr>
<td>(Second half of Eq. 9.1)</td>
<td>Measured values</td>
<td>Y = -227.7 + 8.90X</td>
<td>0.85**</td>
</tr>
<tr>
<td></td>
<td>Measured and assigned values using Campkin rating procedure</td>
<td>Y = -55.3 + 3.85X</td>
<td>0.49*</td>
</tr>
<tr>
<td>50 NaTPB K-3.5 QTK (Eq. 9.7)</td>
<td>-</td>
<td>Y = -20.3 + 2.32X</td>
<td>0.92**</td>
</tr>
</tbody>
</table>
On the other hand, the slopes obtained by the regression analyses between K uptake and the measurements of K release (Chapter 6) should give the amounts of K supplied to plants in the pot trial. Therefore, with the information available in Chapter 6 (Table 6.2) the following equations were developed using a conversion technique (to convert QTK units and meq % of K_c to kg K ha$^{-1}$) similar to that of Campkin (1985).

\[
\text{Soil K supply (kg ha}^{-1}) = 16 (\text{QTK-3}) + 994 (K_c) \quad (9.9)
\]

\[
\text{Soil K supply (kg ha}^{-1}) = 16 (\text{QTK-3}) + 175 \text{ (step K)} \quad (9.10)
\]

Equation 9.9 is based on the measured K_c values because K uptake is poorly correlated with the assigned K_c values. Furthermore, since step K was better correlated with K uptake (Table 6.2) and K_{net} uptake (Table 6.3) than K_c, Eq. 9.10 may be more valid and useful than Eq. 9.9.

An attempt was made to test the soil K supply model based on the pot trial study i.e., Eq. 9.9, against the data from other pot trials reported in the New Zealand literature (Table 9.8). It is evident from the regression slopes and intercepts that the equation developed from the present pot trial relates reasonably well with only one pot trial (Jackson, 1985; trial B soils) where maximum K uptake was 1224 kg ha$^{-1}$. The lack of general agreement is probably a reflection of different methodologies of measuring K uptake with different durations of cropping and with different planting densities.

9.4 GENERAL DISCUSSION

By considering the "soil K supply" parameter of the CFAS K model, it is possible to identify the factors which cause variations in the predicted soil K supply.

9.4.1 Variations due to reserve K supply

Currently quantifying the amount of annual reserve soil K (K_r) supply is dependent on the ranking of soils by AgResearch into K_r categories (low, medium, or high) and subsequently assigning the corresponding K_r values (0.1, 0.3, and 0.7 meq %, respectively). No allowance is made for variations in "real" K_r within soil group.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Soil:plant ratio (g plant(^{-1}))</th>
<th>No. of soils</th>
<th>Regression equation</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jackson (1985) (Trial A soils)</td>
<td>8.33</td>
<td>13</td>
<td>(Y = -104.9 + 0.72X)</td>
<td>0.75**</td>
</tr>
<tr>
<td>2 Jackson (1985) (Trial B soils)</td>
<td>8.33</td>
<td>25</td>
<td>(Y = -54.4 + 0.87X)</td>
<td>0.72**</td>
</tr>
<tr>
<td>3 Hay (1971)</td>
<td>8.33</td>
<td>16</td>
<td>(Y = -420.2 + 1.07X)</td>
<td>0.77**</td>
</tr>
<tr>
<td>4 Campkin (1972)</td>
<td>66.66</td>
<td>13</td>
<td>(Y = 33.8 + 0.57X)</td>
<td>0.85**</td>
</tr>
</tbody>
</table>

\(Y\) = Observed K uptake (kg ha\(^{-1}\)) in pot trial

\(X\) = Predicted K uptake (kg ha\(^{-1}\)) using QTK and measured \(K_c\) (Eq. 9.9)
Indeed, measurements of K_c revealed that actual K_c may be well removed from assigned K_c. From the fertilizer requirement perspective the differences could cause errors in fertilizer recommendations (0.1 meq % of K_c has a fertilizer equivalent of 10 kg K ha$^{-1}$ yr$^{-1}$). Furthermore, none of the soils under investigation has a measured K_c of greater than 0.48 meq %, yet some are ranked as high K_c soils (0.70 meq %).

9.4.2 Variations due to soil K_{x} supply

The estimation of soil K_{x} supply based on the equations 9.1 and 9.2 has been used to address the validity of the assumptions made by Campkin (1985). It can be seen from the first half of the Eq. 9.1 i.e., $10(QTK-3)$, that each increase in the QTK of one unit above a value of 3 decreases the K requirement by 10 kg ha$^{-1}$ yr$^{-1}$. Unfortunately, the 30% coefficient of variation associated with QTK values (Edmeades et al., 1985) due to spatial return of excretal K by grazing animals in pasture soils, and possibly other factors, is inevitable. This results in an uncertainty of test values and a consequent uncertainty in fertilizer recommendations. Thus a 1, 2, or 4 unit change in the QTK value will change the fertilizer recommendation by 10, 20, 40 kg ha$^{-1}$ or a fertilizer cost by approximately $7.50, $15.00, and $30.00 per hectare (M.J. Hedley, pers. comm.). This variability associated with the soil test result and the recommendations does not engender confidence for the grower, farmer or consultant.

Yet another problem with the QTK measurements is that it may be difficult to measure the changes in the quantity of K_{x} (as measured by QTK) to indicate the depletion of soil K over a period of time in the grazed pastures. For example, the determination of the amount of QTK in the 0-75 mm depth of Massey University No. 4 dairy farm soil over the last 5 years (Table 9.9) has shown little indication of decline (M.J. Hedley, pers. comm.), despite an estimated 87 kg K annual loss per hectare (based on the CFAS model). If real, this is assumed to be due to the continuous replenishment of K_{x} from the large pool of K_{x} in the K-bearing minerals (Williams, 1988; Williams et al., 1990). Also errors in measurement of QTK due to spatial variability could mask any downward trend.

In contrast to the field situation, changes in the quantity of K_{x} were observed in the pot
Table 9.9 Quick test K values (parts per 250,000 of extract) of reference paddocks on No. 4 dairy farm on Massey University (M.J. Hedley, pers. comm.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Paddock No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1988</td>
<td>6</td>
</tr>
<tr>
<td>1989</td>
<td>4</td>
</tr>
<tr>
<td>1990</td>
<td>2</td>
</tr>
<tr>
<td>1991</td>
<td>6</td>
</tr>
<tr>
<td>1992</td>
<td>5</td>
</tr>
</tbody>
</table>
experiment (Chapter 4) where K_{ex} levels dropped significantly after cropping ryegrass. The drop in K_{ex} is less than the plant uptake on many soils (Chapter 4), indicating release from K_{net} sources. It is difficult therefore to compare over time the estimated net losses or gains of K with changes in the soil K using either K_{ex} or QTK measurements in soils containing K bearing minerals that permit release of K in variable amounts. Williams (1988), concluded that an organic soil might be one of the few soil types suitable for the purpose of comparison both because of the lack of soil minerals that release K_{net}, and the low native K content.

9.4.3 Possible improvements to the CFAS soil supply model

(1) The current CFAS model for predicting soil K supply (using AgResearch equations) clearly would gain value if the designated K_c values of the major soil groups (Cornforth and Sinclair, 1984; Campkin, 1985) are replaced with the measured K_c values. Another possible issue is related to the South Island YGE soils. These soils are currently recognised as "high" K_c soils with an assigned value of 0.70 meq %. But the evidence appears to rest only on the published information by Cornforth and Sinclair (1984) and Campkin (1985). In this study somewhat lower values were observed. Measurement of K_c and the subsequent rating using the rating procedure of Campkin (1985) revealed that the South Island YGE soils fall into the "medium" K_c category (section 9.3.2).

(2) As a result of finding a variable supply of QTK and K_{net} from soils in the YGE soil group the soil K supply parameter of the K model would benefit from rigorous field test verification of the fertilizer equivalents of QTK and K_c (75 and 40 %, respectively) for at least soils in the YGE soil group. Variability could also occur in other important major soil groups. The percent utilisation values determined were not based on assessing variability within soil groups, nor for periods longer than one year. Moreover, the trials on which the fertilizer equivalents for QTK and K_c were based included a range of application rates of K in order to predict the amount of fertilizer required that would maintain 90 % of maximum pasture (ryegrass-clover), but did not involve grazing animals. The maintenance rate of K fertilizer that is required for 90 % relative yields
may be less for the grazed trial than for the 100 % clippings returned trial (Morton, 1981) at least in the short term (less than one year). The reason for this difference in responsiveness to K fertilizer is thought to be due to a more rapid recycling of K and N via excreta in the grazing trial compared to the mowing with clippings returned trial (Williams, 1988). The fertilizer equivalents of QTK and Kc would therefore be expected to exceed 75 and 40 %, if obtained from grazing trials.

(3) Campkin (1985) assumed soil K will be available from only the top 75 mm. Williams (1988), however, found approximately 35 % of the pasture roots can explore soils to depths greater than 75 mm. Thus one meq % of Kc may be equivalent to larger quantities of K on a hectare basis than the 100 kg presently estimated by the AgResearch model based on a root depth of 75 mm. In any future work associated with assessing soil K supply consideration should be given to assessing the effect of soil depth.

(4) The soil K supply parameter of the K model could be improved by using measurements of K supply that correlated well with the plant uptake in the pot trial (Chapter 6, Table 6.2). For example, step K could be used to replace Kc, because it better explained the variations observed in both total K and Kuex uptake by ryegrass from the 19 soils.

Furthermore, the step K method, in contrast to Kc, enabled monitoring of the expected soil K depletion due to farming practices as is evidenced by lower step K levels in the developed (pasture) sites when compared to the undeveloped (virgin) sites of the South Island YGE soils (section 6.3.4 and Table 9.10). Over a period of time, Kmax as measured by step K, may be lowered in the absence of K fertilizers indicating the depletion of plant available K. This depletion will be more rapid in an arable cropping system than under grazed pastures, because of the more rapid K recycling in the latter. While this drop in step K, due to artificial leaching of the Kmax and subsequent cropping with ryegrass, was observed in the majority of the soils in the pot trial (Table 9.10 and Fig. 6.7), no attempt was made to study the changes in step K over a period
Table 9.10 Changes in step K (kg ha⁻¹) due to leaching and cropping

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Soil name</th>
<th>Original unleached soils</th>
<th>After leaching</th>
<th>After leaching and cropping</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Tokorangi</td>
<td>363</td>
<td>353</td>
<td>335</td>
</tr>
<tr>
<td>S2</td>
<td>Tokomaru (a)</td>
<td>191</td>
<td>203</td>
<td>198</td>
</tr>
<tr>
<td>S3</td>
<td>Tokomaru (b)</td>
<td>205</td>
<td>206</td>
<td>227</td>
</tr>
<tr>
<td>S4</td>
<td>Milson</td>
<td>177</td>
<td>172</td>
<td>185</td>
</tr>
<tr>
<td>S5</td>
<td>Marton (a)</td>
<td>167</td>
<td>162</td>
<td>165</td>
</tr>
<tr>
<td>S6</td>
<td>Marton (b)</td>
<td>210</td>
<td>203</td>
<td>204</td>
</tr>
<tr>
<td>S7</td>
<td>Halcombe</td>
<td>196</td>
<td>216</td>
<td>202</td>
</tr>
<tr>
<td>S8</td>
<td>Ohakea</td>
<td>240</td>
<td>242</td>
<td>241</td>
</tr>
<tr>
<td>S9</td>
<td>Raumai</td>
<td>723</td>
<td>635</td>
<td>436</td>
</tr>
<tr>
<td>S10</td>
<td>Te Arakura</td>
<td>340</td>
<td>314</td>
<td>303</td>
</tr>
<tr>
<td>S11</td>
<td>Matapiro</td>
<td>299</td>
<td>295</td>
<td>278</td>
</tr>
<tr>
<td>S12</td>
<td>Wharekaka</td>
<td>330</td>
<td>305</td>
<td>291</td>
</tr>
<tr>
<td>S13</td>
<td>Pirinoa</td>
<td>475</td>
<td>428</td>
<td>359</td>
</tr>
<tr>
<td>S14</td>
<td>Timaru (a)</td>
<td>511</td>
<td>430</td>
<td>332</td>
</tr>
<tr>
<td>S15</td>
<td>Timaru (b)</td>
<td>423</td>
<td>374</td>
<td>329</td>
</tr>
<tr>
<td>S16</td>
<td>Claremont (a)</td>
<td>410</td>
<td>327</td>
<td>263</td>
</tr>
<tr>
<td>S17</td>
<td>Claremont (b)</td>
<td>285</td>
<td>252</td>
<td>237</td>
</tr>
<tr>
<td>S18</td>
<td>Opuha (a)</td>
<td>686</td>
<td>595</td>
<td>456</td>
</tr>
<tr>
<td>S19</td>
<td>Opuha (b)</td>
<td>405</td>
<td>339</td>
<td>317</td>
</tr>
</tbody>
</table>
of time in the field situation. The existing method of determining K_{max} supply based on the K_c on the other hand, conceptually does not estimate soil K depletion due cropping and grazing (Metson, 1980).

(5) Development of prediction equations to obtain the fertilizer equivalents of acid-extractable K under field conditions could also be considered.

Ultimately, whether a depletive (CFAS model) or K maintenance (sustainable) model best meets the future requirements of New Zealand’s growers and the community at large will be determined by economic factors and the sense of responsibility to future generations.

9.5 CONCLUSIONS

1. The North Island YGE and related soils have been assigned by AgResearch to the medium K_c group which implies that 30 kg K_{max} ha$^{-1}$ is annually available to plants. The measured K_{max}, however, ranges from 20-48 kg ha$^{-1}$. The difference between expected and measured K_{max} may be economically significant to the point that it is not valid to apply a single assigned K_c value to the North Island YGE soil group. Further work may reveal that a single assigned K_c value is also invalid for other soil groups.

2. None of the South Island YGE soils under investigation had a measured K_c value of more than 0.45 meq %, despite AgResearch treating them as high K_c soils. On the basis of the measured K_c values and the K_c rating procedure adopted by Campkin (1985), these soils fall into the "medium" K_c category, in which case the estimation that no K fertilizers is required for grazed pastures on these soils (Cornforth and Sinclair, 1984) may be in error.

3. Plants in the pot trial extracted twice as much K as was predicted by the soil K supply model of Cornforth and Sinclair (using AgResearch equations) indicating that the rate of K removal per unit soil weight under glasshouse conditions is much higher than in the field. A model similar to that of Campkin (1985)
developed on the basis of the Stanford and DeMent pot trial indicated that the efficiencies of utilisation of K by ryegrass plants from QTK and Kc were more than those predicted by Campkin (1985) using field trial data.
CHAPTER 10

SUMMARY

The work presented in this thesis may be summarised as follows:

1. A review of the literature indicated that low levels of K_{eq} do not always indicate lack of plant available K i.e., responses do not always occur where K_{eq} is low. This is because measures of exchangeable K_{eq} (e.g., QTK) fail to account for K_{nex}, which is sometimes also plant available. In New Zealand, K_c is used to measure the potential amount of non-exchangeable, but plant available, K.

The K_c method was originally developed as an index of long term K supply. It was intended to be specific to a soil genetic group, and was dependent on the mineralogy. Soils within a genetic group may well contain variable reserves of micaceous minerals, which release K at different rates. Thus K_c is not a totally reliable parameter for estimation of the short or medium term K_{nex} supply, because it disregards the more soluble portion of non-exchangeable K. Hence there is a need for a short term index for measuring K_{nex} in the soils of New Zealand.

2. It was also apparent from the literature review that the CFAS model used to estimate annual K requirements of pastures and crops in New Zealand is based in part on a routine soil test (QTK) and a single estimate of K_c assigned to the appropriate soil group. All YGE soils and intergrades in the North Island have been assigned a medium reserve of K (K_c value of 11.7 mg 100 g$^{-1}$), while the southern YGE soils have a K_c of 27.3 mg 100 g$^{-1}$. No allowance is made for any variation of reserve K within a soil group.

Therefore any variation in the K_{nex} supply within the YGE soils of either the North or South Islands would undermine the validity of the K_c method as an
index of K_{net} supply and hence its place in the CFAS K model.

3. An investigation was conducted to compare the K_{net} supply of the YGE soils in the North and South Islands, using a modified Stanford and DeMent pot trial. There was a wide variation in the measured K_c of the YGE soils from each island. The measured K_c of the North Island YGE soils ranged from 7.8-18.6 mg 100 g$^{-1}$, and the southern YGE soils had a narrower range of 12.3-16.8 mg 100 g$^{-1}$. The corresponding assigned K_c values are 11.7 and 27.3.

The results also showed large differences in K_{net} supply within the YGE group of each island. The K_{net} supply of the soils in the North Island ranged from 0 to 41 mg 100 g$^{-1}$ and that of in the South Island soils ranged from 3 to 35 mg 100 g$^{-1}$.

4. With respect to the South Island YGE soils, there were consistent differences in the K_{net} supply between the undeveloped (virgin) and developed (pasture) sites of a particular soil type. This must have implications for the soil group concept currently used to estimate K_{net} supply. Because, though the measured K_c was more or less the same for both the developed and undeveloped soils, the actual K_{net} taken up by plants grown to K exhaustion in the glasshouse varied markedly.

5. An experimental attempt to explain the differences in the K_{net} supply of the soils, using the "threshold K level" concept, was not satisfactory. The threshold K levels (in terms of equilibrium concentration of K in solution, K_{ex}, and ARK) were not related to the K_{net} supply and release. The lack of agreement may be due to differences in the K_{net} release mechanisms of the laboratory experiment, created by an equilibrated CaCl$_2$ soil solution and a pot experiment, that involved rhizospheric soil solution.

The above finding has an important implication to the concept behind the mechanism of K release from K_{net} (interlayer) sources. The supply and release
of K_{nex} by the soils of the present study seemed to reflect an interlayer penetration that was due more to hydronium ions than hydrated Ca ions.

6. Soil chemical tests based on the extraction of K_{ex} plus K_{nex} provided a better measure of available K when compared to those based on separate extractions of K_{ex} and K_{nex}. The highest simple correlation with plant available K was obtained from boiling nitric acid-extractable K. This test requires less time and cost than the NaTPB K method.

The results also showed that the step K method of measuring K_{nex} (obtained by subtracting the NH$_4$OAc extractable K_{ex} from the acid-extractable K value) was better than the K_{c} method for explaining the variations among the soils in the amount of K_{nex} taken up by ryegrass plants.

7. The 7 YGE soils of the North Island, supplied little or no K_{nex} to ryegrass plants in the pot trial, had K_{c} and step K values of 10 and 35 mg 100 g$^{-1}$, respectively. All other soils with K_{c} and step K values of more than 10 and 35 mg 100 g$^{-1}$ supplied K_{nex} to the plants grown to K exhaustion in the pot trial. The 7 YGE soils that did not supply K_{nex} to plants can be designated as soils with low K_{nex} supplying power, in relation to the remainder of the soils in the study.

8. Depletion of soil K by plant growth was more clearly shown by change in the acid-extractable K level than by a change in K_{ex} measurement. Unlike acid-extractable K, the K_{ex} of the soils was found to decline to more or less constant levels (below 7.2 mg 100 g$^{-1}$) under cropping.

Thus for soils that supplied K_{nex} to ryegrass, a reduction in step K was observed. For soils that did not supply K_{nex} step K levels remained unchanged. This indicated that, unlike K_{c} (which is reported to be constant after short term cropping), the step K method was sensitive to changes in K_{nex} status caused by plant uptake. Furthermore, step K measurement better differentiated undeveloped soils from developed counterparts than did K_{c}.

9. After it was demonstrated that acid-extractable K was a better index of K supplying power, the test was used to assess the K releasing power of soil textural separates. The results indicated that the acid-extractable K was highest for the clay separate on a per weight basis in all the 19 soils studied.

When calculated on a whole soil basis, the contributions of the sand and silt separates represented approximately 50 % of the K released. The exceptionally high percent contributions observed for the sand and silt separates of the Marton (S5 and S6), Raumai (S9), and Matapiro (S11) soils, indicated that these separates may deserve more consideration in estimating potential supply of K plants. The corresponding values were 64, 69, 83, and 66 %, respectively.

10. A more detailed investigation into 6 selected soils using chemical analyses of soil separates and a novel agar pot trial, especially designed to grow plants on the soil separates, confirmed the potential K releasing and supplying power of the clay separates.

With respect to the K releasing power the sand plus silt separates of three soils (Marton, S6; Raumai, S9; and Matapiro, S11) contributed substantially to the acid-extractable K. These percent contributions were 45, 85, and 49, respectively. The acid-extractable K data for these whole soils were in accord with the computed data of their separates on a whole soil basis.

With respect to K supplying power (K uptake), the percentage contribution data for the whole soils of only Marton (S6) and Matapiro (S11), were in accord with the computed data of their separates on a whole soil basis. The study demonstrated therefore the difficulty of obtaining reliable estimates of the relative contributions of soil separates to the whole soil K releasing and supplying power.
11. Contrary to expectation, the acid-extractable K of the clay fraction did not correlate well with plant K uptake. Nevertheless, a significant r value was obtained when the acid-extractable K data of all the three separates were correlated against their respective K uptake data.

12. That \(K_c \) values reflected soil mineralogy was demonstrated by clay mineralogical studies. The XRD patterns for the clays of soils in the 12-19 mg 100 g soil\(^{-1} \) \(K_c \) range were distinct from those in the 8-10 \(K_c \) range. The soils in the former \(K_c \) range appeared to have more K bearing minerals in the clay fraction than was the case for the latter. The differences in the \(K_{nex} \) supply of soils within each \(K_c \) range, however, could not be explained by differences in mineralogy.

Micas and volcanic glass were identified in the coarser fractions (sand and silt) of Raumai (S9) and Matapiro (S11) soils, respectively. These primary minerals could serve as potential sources of K to plants.

13. The assigned \(K_c \) values for the soils of the North Island and the South Island translate to an annual \(K_{nex} \) supply to pasture plants of 30 and 70 kg ha\(^{-1} \), respectively. The measured \(K_c \) values of the 13 North Island soils result in different annual K fertilizer recommendations to that using assigned values. Underestimations of the annual \(K_{nex} \) supplies as predicted by the CFAS K model (using assigned \(K_c \) values) were in the range of 4-18 kg ha\(^{-1} \) (4 soils) while the range of overestimation was 4-10 kg ha\(^{-1} \) (9 soils). The variations in the \(K_{nex} \) supply within a soil group may be significant enough to economically invalidate applying a single \(K_c \) value to a soil group.

14. AgResearch has placed South Island YGE soils in the high \(K_c \) category. The CFAS model therefore indicates these soils do not need K fertilizers unless used excessively for hay or silage. High \(K_c \) soils currently are presumed to replace K losses from the grazed pastures while maintaining productivity at acceptable level, but it is not known for how long these losses can be sustained.
In the present study none of the South Island YGE soils had a K_c value of more than 0.45 meq % which places them in the medium K_c category. Thus fertilizer K may be necessary for some of these soils, and K losses may be depleting the soils more readily than hitherto suspected.

15. In the Stanford and DeMent pot trial, ryegrass extracted twice as much K as would be released in a pasture annually on the basis of the field based CFAS soil K supply model. This was attributed to the rapid rate of K removal per unit soil weight under glasshouse conditions when compared to the field.

16. A soil K supply estimate based on QTK and a calculated value of K_{nex} using NaTPB K better predicted the variations in K uptake by ryegrass in the pot trial than did the current method based on QTK and the assigned value of K_c (CFAS approach). Given the conclusion in 6 (above) this finding supports the replacement of K_c values in the CFAS model by other methods of K_{nex} determination. There seems to be a great potential for the step K method of determining K_{nex}.

17. The findings reported in this thesis lead to the conclusion that the CFAS model for K fertilizer recommendations in New Zealand would benefit from more investigations in respect of the soil K supply component. The use of measured K_{nex} values based on HN0₃ extraction (K_c method) would be more meaningful than the assigned values, and the soil K supply component of the model would benefit from field test verification.

18. As a result of good correlation of acid-extractable K with plant K uptake, prediction equations to obtain pasture utilisation of K from acid-extractable K and step K under New Zealand field conditions should be developed.
BIBLIOGRAPHY

Haylock, O.F. 1956b: A fractionation of acid-soluble non-exchangeable potassium in some New Zealand soils into available and non-available forms. Thesis, Ph.D., Massey University, Palmerston North, New Zealand.

Imports Monthly, June 1993; YTD Provisional, Wellington; Statistics New Zealand.

Richards, J.E.; Bates, T.E. 1988: Studies on the potassium-supplying capacities of

Tabatabai, M.A.; Hanway, J.J. 1969. Potassium supplying power of Iowa soils at their

Weber, M.; Grimme, H. 1986: The K-supplying capacity of soils developed from loess before and after intensive cropping with rye grass. Transactions of the 13th

Appendix 4.1
Dry matter (g pot\(^{-1}\)) of ryegrass grown on unleached (UL) and leached (L) soils

<table>
<thead>
<tr>
<th>SOILS</th>
<th>CUT1</th>
<th>CUT2</th>
<th>CUT3</th>
<th>CUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UL</td>
<td>L</td>
<td>UL</td>
<td>L</td>
</tr>
<tr>
<td>S1</td>
<td>0.66</td>
<td>0.56</td>
<td>1.24</td>
<td>1.01</td>
</tr>
<tr>
<td>S2</td>
<td>0.59</td>
<td>0.51</td>
<td>1.07</td>
<td>0.89</td>
</tr>
<tr>
<td>S3</td>
<td>0.54</td>
<td>0.48</td>
<td>0.94</td>
<td>0.75</td>
</tr>
<tr>
<td>S4</td>
<td>0.65</td>
<td>0.51</td>
<td>1.13</td>
<td>0.83</td>
</tr>
<tr>
<td>S5</td>
<td>0.49</td>
<td>0.49</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>S6</td>
<td>0.52</td>
<td>0.46</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>S7</td>
<td>0.55</td>
<td>0.46</td>
<td>1.06</td>
<td>0.84</td>
</tr>
<tr>
<td>S8</td>
<td>0.60</td>
<td>0.51</td>
<td>0.96</td>
<td>0.90</td>
</tr>
<tr>
<td>S9</td>
<td>0.61</td>
<td>0.54</td>
<td>1.27</td>
<td>1.28</td>
</tr>
<tr>
<td>S10</td>
<td>0.53</td>
<td>0.50</td>
<td>0.95</td>
<td>0.98</td>
</tr>
<tr>
<td>S11</td>
<td>0.58</td>
<td>0.49</td>
<td>1.08</td>
<td>0.83</td>
</tr>
<tr>
<td>S12</td>
<td>0.53</td>
<td>0.51</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>S13</td>
<td>0.61</td>
<td>0.55</td>
<td>1.27</td>
<td>1.23</td>
</tr>
<tr>
<td>S14</td>
<td>0.60</td>
<td>0.59</td>
<td>1.37</td>
<td>1.23</td>
</tr>
<tr>
<td>S15</td>
<td>0.57</td>
<td>0.55</td>
<td>1.03</td>
<td>0.96</td>
</tr>
<tr>
<td>S16</td>
<td>0.65</td>
<td>0.56</td>
<td>1.18</td>
<td>1.15</td>
</tr>
<tr>
<td>S17</td>
<td>0.58</td>
<td>0.52</td>
<td>0.97</td>
<td>0.87</td>
</tr>
<tr>
<td>S18</td>
<td>0.68</td>
<td>0.60</td>
<td>1.34</td>
<td>1.15</td>
</tr>
<tr>
<td>S19</td>
<td>0.61</td>
<td>0.56</td>
<td>1.18</td>
<td>0.96</td>
</tr>
<tr>
<td>CONTROL</td>
<td>0.47</td>
<td>0.67</td>
<td>0.34</td>
<td>0.54</td>
</tr>
<tr>
<td>LSD (0.05) soilxtrt*</td>
<td>0.06</td>
<td>0.10</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>C.V (%)</td>
<td>8.0</td>
<td>6.9</td>
<td>9.4</td>
<td>10.9</td>
</tr>
</tbody>
</table>

* Treatment
LSD = Least-squares difference
C.V = Coefficient of variation
Appendix 4.2 Percent K content of ryegrass tops grown on unleached (UL) and leached (L) soils during four cuts

<table>
<thead>
<tr>
<th>SOILS</th>
<th>CUT1 UL</th>
<th>CUT2 UL</th>
<th>CUT1 L</th>
<th>CUT2 L</th>
<th>CUT3 UL</th>
<th>CUT3 L</th>
<th>CUT4 UL</th>
<th>CUT4 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.52</td>
<td>0.30</td>
<td>0.29</td>
<td>0.22</td>
<td>0.29</td>
<td>0.21</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>S2</td>
<td>0.30</td>
<td>0.22</td>
<td>0.26</td>
<td>0.19</td>
<td>0.22</td>
<td>0.21</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>S3</td>
<td>0.23</td>
<td>0.19</td>
<td>0.21</td>
<td>0.18</td>
<td>0.20</td>
<td>0.20</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>S4</td>
<td>0.54</td>
<td>0.23</td>
<td>0.28</td>
<td>0.19</td>
<td>0.24</td>
<td>0.19</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>S5</td>
<td>0.19</td>
<td>0.21</td>
<td>0.19</td>
<td>0.18</td>
<td>0.21</td>
<td>0.19</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>S6</td>
<td>0.21</td>
<td>0.22</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>S7</td>
<td>0.27</td>
<td>0.26</td>
<td>0.23</td>
<td>0.20</td>
<td>0.21</td>
<td>0.20</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>S8</td>
<td>0.24</td>
<td>0.24</td>
<td>0.23</td>
<td>0.20</td>
<td>0.22</td>
<td>0.20</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>S9</td>
<td>0.40</td>
<td>0.51</td>
<td>0.31</td>
<td>0.36</td>
<td>0.33</td>
<td>0.42</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>S10</td>
<td>0.24</td>
<td>0.25</td>
<td>0.21</td>
<td>0.19</td>
<td>0.21</td>
<td>0.20</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>S11</td>
<td>0.30</td>
<td>0.22</td>
<td>0.25</td>
<td>0.20</td>
<td>0.21</td>
<td>0.21</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>S12</td>
<td>0.22</td>
<td>0.24</td>
<td>0.21</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>S13</td>
<td>0.43</td>
<td>0.39</td>
<td>0.31</td>
<td>0.27</td>
<td>0.29</td>
<td>0.27</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>S14</td>
<td>1.19</td>
<td>0.53</td>
<td>0.50</td>
<td>0.26</td>
<td>0.43</td>
<td>0.25</td>
<td>0.24</td>
<td>0.19</td>
</tr>
<tr>
<td>S15</td>
<td>0.32</td>
<td>0.28</td>
<td>0.22</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>S16</td>
<td>0.58</td>
<td>0.45</td>
<td>0.29</td>
<td>0.24</td>
<td>0.33</td>
<td>0.24</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>S17</td>
<td>0.23</td>
<td>0.21</td>
<td>0.20</td>
<td>0.18</td>
<td>0.20</td>
<td>0.19</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>S18</td>
<td>0.60</td>
<td>0.45</td>
<td>0.32</td>
<td>0.25</td>
<td>0.38</td>
<td>0.28</td>
<td>0.23</td>
<td>0.18</td>
</tr>
<tr>
<td>S19</td>
<td>0.36</td>
<td>0.28</td>
<td>0.26</td>
<td>0.21</td>
<td>0.25</td>
<td>0.22</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>CONTROL</td>
<td>0.19</td>
<td>0.19</td>
<td>0.22</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0.05) soilxtrt</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V (%)</td>
<td>11.0</td>
<td>12.4</td>
<td>8.3</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4.3

Uptake of K (mg pot⁻¹) by ryegrass tops grown on unleached (UL) and leached (L) soils

<table>
<thead>
<tr>
<th>SOILS</th>
<th>CUT1 UL</th>
<th>CUT1 L</th>
<th>CUT2 UL</th>
<th>CUT2 L</th>
<th>CUT3 UL</th>
<th>CUT3 L</th>
<th>CUT4 UL</th>
<th>CUT4 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>3.24</td>
<td>1.68</td>
<td>3.59</td>
<td>2.19</td>
<td>2.79</td>
<td>1.43</td>
<td>2.97</td>
<td>1.81</td>
</tr>
<tr>
<td>S2</td>
<td>1.78</td>
<td>1.11</td>
<td>2.77</td>
<td>1.69</td>
<td>1.45</td>
<td>1.01</td>
<td>2.02</td>
<td>1.15</td>
</tr>
<tr>
<td>S3</td>
<td>1.23</td>
<td>0.88</td>
<td>1.98</td>
<td>1.31</td>
<td>1.12</td>
<td>0.85</td>
<td>1.33</td>
<td>0.96</td>
</tr>
<tr>
<td>S4</td>
<td>3.46</td>
<td>1.15</td>
<td>3.14</td>
<td>1.55</td>
<td>1.19</td>
<td>0.94</td>
<td>2.69</td>
<td>1.01</td>
</tr>
<tr>
<td>S5</td>
<td>0.92</td>
<td>1.00</td>
<td>1.56</td>
<td>1.53</td>
<td>0.90</td>
<td>0.87</td>
<td>1.07</td>
<td>0.94</td>
</tr>
<tr>
<td>S6</td>
<td>1.10</td>
<td>1.01</td>
<td>1.46</td>
<td>1.48</td>
<td>0.87</td>
<td>0.71</td>
<td>1.19</td>
<td>1.01</td>
</tr>
<tr>
<td>S7</td>
<td>1.48</td>
<td>1.18</td>
<td>2.43</td>
<td>1.66</td>
<td>1.30</td>
<td>0.99</td>
<td>1.77</td>
<td>1.17</td>
</tr>
<tr>
<td>S8</td>
<td>1.43</td>
<td>1.21</td>
<td>2.17</td>
<td>1.79</td>
<td>1.35</td>
<td>0.99</td>
<td>1.73</td>
<td>1.26</td>
</tr>
<tr>
<td>S9</td>
<td>2.37</td>
<td>2.73</td>
<td>3.91</td>
<td>4.63</td>
<td>3.17</td>
<td>3.90</td>
<td>3.53</td>
<td>3.65</td>
</tr>
<tr>
<td>S10</td>
<td>1.25</td>
<td>1.25</td>
<td>2.02</td>
<td>1.83</td>
<td>1.06</td>
<td>1.08</td>
<td>1.25</td>
<td>1.24</td>
</tr>
<tr>
<td>S11</td>
<td>1.75</td>
<td>1.07</td>
<td>2.66</td>
<td>1.64</td>
<td>1.39</td>
<td>1.10</td>
<td>1.84</td>
<td>1.31</td>
</tr>
<tr>
<td>S12</td>
<td>1.13</td>
<td>1.24</td>
<td>1.96</td>
<td>1.90</td>
<td>0.93</td>
<td>1.20</td>
<td>1.33</td>
<td>1.39</td>
</tr>
<tr>
<td>S13</td>
<td>2.60</td>
<td>2.13</td>
<td>3.93</td>
<td>3.27</td>
<td>2.78</td>
<td>2.12</td>
<td>2.77</td>
<td>2.31</td>
</tr>
<tr>
<td>S14</td>
<td>7.01</td>
<td>3.14</td>
<td>6.79</td>
<td>3.19</td>
<td>4.36</td>
<td>2.05</td>
<td>4.33</td>
<td>2.45</td>
</tr>
<tr>
<td>S15</td>
<td>1.80</td>
<td>1.51</td>
<td>2.26</td>
<td>1.89</td>
<td>1.25</td>
<td>1.16</td>
<td>1.60</td>
<td>1.58</td>
</tr>
<tr>
<td>S16</td>
<td>3.72</td>
<td>2.46</td>
<td>3.37</td>
<td>2.72</td>
<td>2.80</td>
<td>1.83</td>
<td>3.29</td>
<td>2.27</td>
</tr>
<tr>
<td>S17</td>
<td>1.33</td>
<td>1.09</td>
<td>1.88</td>
<td>1.54</td>
<td>1.09</td>
<td>0.81</td>
<td>1.49</td>
<td>1.10</td>
</tr>
<tr>
<td>S18</td>
<td>4.04</td>
<td>2.70</td>
<td>4.26</td>
<td>2.88</td>
<td>4.08</td>
<td>2.30</td>
<td>3.92</td>
<td>2.36</td>
</tr>
<tr>
<td>S19</td>
<td>2.18</td>
<td>1.57</td>
<td>3.00</td>
<td>2.00</td>
<td>1.77</td>
<td>1.26</td>
<td>2.23</td>
<td>1.67</td>
</tr>
</tbody>
</table>

CONTROL

<table>
<thead>
<tr>
<th></th>
<th>UL</th>
<th>L</th>
<th>UL</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>1.27</td>
<td>0.75</td>
<td>0.92</td>
<td></td>
</tr>
</tbody>
</table>

LSD (0.05)

soilxtrt

<table>
<thead>
<tr>
<th></th>
<th>UL</th>
<th>L</th>
<th>UL</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>0.43</td>
<td>0.33</td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

C.V (%) | 10.8 | 12.4 | 14.4 | 12.8 |
Appendix 7.1 Dry matter (mg pot⁻¹) of ryegrass shoots for the three harvests

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Harvest 1 (3 week growth)</th>
<th>Harvest 2 (2 week growth)</th>
<th>Harvest 3 (3 week growth)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sand</td>
<td>Silt</td>
<td>Clay</td>
</tr>
<tr>
<td>S6</td>
<td>64</td>
<td>61</td>
<td>118</td>
</tr>
<tr>
<td>S9</td>
<td>66</td>
<td>76</td>
<td>134</td>
</tr>
<tr>
<td>S11</td>
<td>69</td>
<td>80</td>
<td>119</td>
</tr>
<tr>
<td>S12</td>
<td>73</td>
<td>72</td>
<td>132</td>
</tr>
<tr>
<td>S13</td>
<td>65</td>
<td>73</td>
<td>148</td>
</tr>
<tr>
<td>S18</td>
<td>81</td>
<td>76</td>
<td>159</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>20</td>
<td>23</td>
<td>28</td>
</tr>
</tbody>
</table>

Soilx Treatment
Appendix 7.4

Potassium uptake (kg/square meter) by ryegrass from soil separates for the 3 harvests (µg pot⁻¹)

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Harvest 1 (3 week growth)</th>
<th>Harvest 2 (2 week growth)</th>
<th>Harvest 3 (3 week growth)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sand</td>
<td>Silt</td>
<td>Clay</td>
</tr>
<tr>
<td>S6</td>
<td>36</td>
<td>24</td>
<td>162</td>
</tr>
<tr>
<td>S9</td>
<td>64</td>
<td>81</td>
<td>450</td>
</tr>
<tr>
<td>S11</td>
<td>52</td>
<td>66</td>
<td>212</td>
</tr>
<tr>
<td>S12</td>
<td>82</td>
<td>36</td>
<td>195</td>
</tr>
<tr>
<td>S13</td>
<td>38</td>
<td>45</td>
<td>521</td>
</tr>
<tr>
<td>S18</td>
<td>84</td>
<td>66</td>
<td>582</td>
</tr>
<tr>
<td>*</td>
<td>86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* K uptake by ryegrass from control pots (agar only)