Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
SOME IMMUNOLOGICAL ASPECTS OF
TAENIA HYDATIGENA
INFECTIONS IN SHEEP.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Veterinary Science at Massey University.

HELEN JEAN FISHER

1991
ABSTRACT

The literature on the biology, distribution, prevalence and importance of *T. hydatigena*, the biology of its life cycle, and the immunology of the relationships between taeniids and their hosts, is reviewed.

In three experiments, serum was transferred from immune donors to non-immune recipients before the latter were given a homologous challenge infection. Highly significant protection was achieved in recipients of serum from lambs given three immunizations of solubilized *T. hydatigena* oncospheres or three oral infections, but not in recipients of serum from lambs given a single low-level oral infection. Comparison of sera of recipients by ELISA using solubilized *T. hydatigena* oncosphere antigen, revealed that unprotected recipients had substantially lower levels of anti-*T. hydatigena* antibodies than protected recipients. The donors of the sera which did not protect the recipients also had low ELISA absorbances but were, themselves, immune to a challenge infection.

The importance of antibody in causing death of oncospheres was examined *in vitro*. Oncospheres were cultured in the presence or absence of antibody, complement, and leukocytes from immune or non-immune animals, and their effects and interactions on larval survival assessed after 10 days culture. No reduction of larval survival occurred when antibody was absent. The major effect of antibody was mediated by complement. In the presence of antibody and complement, leukocytes further reduced larval survival but in the absence of complement, their influence was unclear.

The involvement of colostral antibody from orally infected ewes in protecting neonatal lambs was also examined. A significant, short-acting, immunity was transferred from ewes which had received either three oral doses of 150 activatable oncospheres, or an initial dose of 100 activatable oncospheres followed by two of 10 000. The correlation between the number of cysts resulting from the challenge infection and the level of anti-*T. hydatigena* antibody in their serum at the time of challenge, was highly significant. There appeared to be a critical level of antibody, above which virtually complete protection resulted and below which, there was very little. Significant relationships existed between the levels of antibody in the sera of the one-week-old lambs and their dams on the day of parturition, and in the whey of colostrum collected on the same day.
The duration of the colostral immunity suggested that IgG₂ might be more effective than IgG₁ against *T. hydatigena* oncospheres. Culturing oncospheres with fractionated IgG from serum and colostrum indicated that increasing levels of both IgG₁ and IgG₂ resulted in decreasing levels of larval survival. However, the effect of increasing levels of IgG₂ was much more marked than with IgG₁.

A preliminary attempt to identify antigens able to induce protection against a challenge infection in sheep, indicated that antigens of less than 30 kDa molecular weight significantly protected recipients of them. The antigens on a Western blot of *T. hydatigena* oncospheral antigen which were recognized by immune sheep serum did not correspond with the antigens stained by the protein stains, Coomassie blue or silver stain. This suggests that protective antigens may be predominantly carbohydrate rather than protein.
ACKNOWLEDGEMENTS

Many people have been a great help to me in all aspects of the completion of this study and thesis. I thank all those who have played any part in its outcome.

In particular, I would like to thank my supervisors Assoc. Professors K.M. Moriarty, and W.A.G. Charleston and Dr David Heath for their invaluable advice, encouragement and patience throughout the experimental work and preparation of the thesis. Steve Lawrence, Dick Ris, and Mark Ralston, of the Hydatids Section at MAF Wallaceville, gave a great deal of practical help and information in the experimental part of this study, for which I am very grateful. Dr Gavin Harrison kindly provided the sheep IgG₁ and IgG₂, and Robert Dempster practical help. Both were always very willing to give advice and discuss procedures and results.

The anti-IgG₁ and -IgG₂ monoclonal antibodies were kindly provided by Dr Marshall Lightowlers, Werribee, Victoria, Australia, not to mention the many stimulating ideas and much encouragement from Marshall, Professor Mike Rickard (CSIRO) and their colleagues during the "Taenia ovis" meetings between MAF Wallaceville, Pitman-Moore and Melbourne University.

I acknowledge, with thanks, the financial support for this study provided by Pitman-Moore N.Z., MAF Wallaceville, and Massey University, and also the permission of Massey University for the experimental work to be carried out off-campus.

Many of the MAFTech staff at Wallaceville Animal Research Centre, not previously mentioned, were always eager to help and provide expertise whenever asked, including Drs Warren Jonas, Bryce Buddle, Keith Miller, and Phil Douch. I very much appreciate the assistance given by the farm staff at the Wallaceville and Kaitoke farms with special thanks to Bob, Doug, Richard, Henry, Les and Allan for their work with the sheep, and Rosemary for her care of the dogs. Thanks also to Carol Devine for her efficiency and helpfulness in carrying out the literature searches. For the photography of gels, Western blots, PAGE gels and livers I am indebted to Allan Barkus, Christa Bollard, and Kitty Mullgan, and for all the printing of photographs to Allan Barkus.

At Massey University, the statistical advice given by Hugo Varela-Alvarez and Greg Arnold is very much appreciated. My thanks also go to Olive and Tracey Harris for
typing the references, to Olive, Allain Scott and Sheryll Crawford for their help with wordprocessing.

During my time at MAF Wallaceville and Massey University, I enjoyed the friendship of so many of the staff that they are too numerous to mention individually, but my thanks go to all of them.

Thanks go to my friends who have all helped in many ways, especially Steve Smith for helping to organize my reference system and Deb Anthony for her help with mounting the photographs, and a very special thankyou goes to my parents and family for their encouragement and support throughout this time.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT.</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS.</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS.</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES AND TABLES.</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION AND REVIEW OF THE LITERATURE.</td>
<td></td>
</tr>
<tr>
<td>1.1 GENERAL INTRODUCTION TO T. HYDATIGENA.</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Classification and General Features.</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Distribution, Prevalence and Importance in the World.</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Prevalence and Importance in New Zealand.</td>
<td>9</td>
</tr>
<tr>
<td>1.2 BIOLOGY OF THE PARASITE.</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1 The Egg.</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1.1 Structure.</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1.2 Hatching and Activation of the Embryo.</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2 Development of the Larva.</td>
<td>15</td>
</tr>
<tr>
<td>1.2.2.1 Intestinal Penetration and Transport to the Site of Development.</td>
<td>15</td>
</tr>
<tr>
<td>1.2.2.2 Post-oncospheral Development and Larval Migration.</td>
<td>17</td>
</tr>
<tr>
<td>1.2.2.3 Completion of Development of the Cysticerci.</td>
<td>18</td>
</tr>
</tbody>
</table>
1.2.3 Infection of the Definitive Host. 19
1.2.4 Egg Survival and Dispersal. 21

1.3 IMMUNOLOGICAL ASPECTS OF TAENIID HOST-PARASITE RELATIONSHIPS. 23

1.3.1 Immunity in the Definitive Host. 23

1.3.2 Immunity in the Intermediate Host. 25

1.3.2.1 General Features of Innate and Acquired Immunity. 25
1.3.2.2 Immunization Against Taeniid Infections. 27
1.3.2.3 The Nature and Origins of Antigens Stimulating Protection. 28
1.3.2.4 The Transfer of Immunity via Colostrum. 30
1.3.2.5 The Transfer of Immunity via Serum. 33
1.3.2.6 Possible Mechanisms of Immunity. 33
1.3.2.7 Site of Immune Protection. 37
1.3.2.8 Parasite Evasion of Host Response. 37
1.3.2.9 Cross-Resistance Between Taeniid Species. 40
1.3.2.10 Taeniid Vaccines. 41

1.4 THE AIMS OF THIS STUDY. 42

CHAPTER 2. IMMUNITY AGAINST T.HYDATIGENA TRANSFERRED FROM IMMUNE TO NAIVE HOSTS VIA SERUM TO PROTECT AGAINST A CHALLENGE INFECTION. 43

2.1 INTRODUCTION. 43

2.2 MATERIALS AND METHODS. 43

2.2.1 Experiment 1. The Transfer of Serum From Lambs Given a Single Oral Dose of T.hydatigena Eggs, to Naive Lambs. 43

2.2.1.1 Experimental Animals. 43
2.2.1.2 Harvesting T.hydatigena Eggs. 44
2.2.1.3 Collection of Serum from Donor Lambs Prior to Infection. 45
2.2.1.4 Estimation of the Number of Eggs Required for Infecting Donor Lambs. 45
2.2.1.5 Experimental Infection of Serum Donors. 46
2.2.1.6 Collection of Serum from Donor Lambs Orally Infected with T. hydatigena. 46
2.2.1.7 Verification of the Presence of Anti-T. hydatigena Antibodies in Donor Sera by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting. 47
2.2.1.8 Detection of Anti-T. hydatigena Antibody in Lamb Sera by ELISA. 49
2.2.1.9 Preparation of Non-immune and Immune Donor Sera for Transfer to Naive Recipients. 50
2.2.1.10 Injection of Sera and Saline into Recipients. 50
2.2.1.11 Challenge Infection of Recipient and Donor Lambs. 51
2.2.1.12 Necropsy of Lambs. 51

2.2.2 Experiment 2. The Transfer of Serum from Lambs Given 3 Oral Doses of T. hydatigena Eggs to Naive Recipients. 52
2.2.2.1 Experimental Animals. 52
2.2.2.2 Monitoring the Antibody Levels of the Donors. 52
2.2.2.3 Experimental Infection of Serum Donors. 52
2.2.2.4 Collection of Serum from Donors. 52
2.2.2.5 The Transfer of Sera and Saline into Naive Recipients. 53
2.2.2.6 Post-Transfer Procedure. 53

2.2.3 Experiment 3. The Transfer of Serum from Lambs Given 3 Immunizations of Solubilized Oncospheres into Naive Recipients. 54
2.2.3.1 Experimental Animals. 54
2.2.3.2 Monitoring the Antibody Levels of the Donors. 54
2.2.3.3 Preparation of FTS Oncosphere Antigen for Immunization. 54
2.2.3.4 Immunization of Serum Donors. 54
2.2.3.5 Collection of Serum from Donors. 55
2.2.3.6 The Transfer of Serum into Naive Recipients and the Post-Transfer Procedure. 55
2.2.4 Statistical Analysis. 55

2.3 RESULTS. 56

2.3.1 Experiment 1. The Transfer of Serum from Lambs Given a Single Oral Dose of *T. hydatigena* Eggs, to Naive Lambs. 57

2.3.1.1 SDS-PAGE Analysis of Donor Serum Samples. 57
2.3.1.2 Cyst Numbers at Necropsy. 57

2.3.2 Experiment 2. The Transfer of Serum from Lambs Given 3 Oral Doses of *T. hydatigena* Eggs, to Naive Lambs. 61

2.3.2.1 SDS-PAGE Analysis of Serum Samples. 61
2.3.2.2 Cyst Number Found at Necropsy. 61

2.3.3 Experiment 3. The Transfer of Serum from Lambs Given 3 Immunizations, to Naive Lambs. 64

2.3.3.1 SDS-PAGE Analysis of Serum Samples. 64
2.3.3.2 Cyst Numbers Found at Necropsy. 64
2.3.3.3 The Degree of Damage to the Recipients’ Livers in Experiments 2 and 3. 68

2.3.4 Comparison of Results from the 3 Passive Transfer Experiments. 68

2.4 DISCUSSION. 74

CHAPTER 3. THE INFLUENCE OF IMMUNE SERUM, COMPLEMENT AND LEUKOCYTES ON ONCOSPHERE SURVIVAL *IN VITRO*. 78

3.1 INTRODUCTION. 78

3.2 MATERIALS AND METHODS. 78

3.2.1 Experimental Animals and the Immunization Regime. 78
3.2.2 Preparation of the Sheep Leukocytes for use in Cultures. 78
3.2.3 Preparation of Serum for Use in Cultures. 79
3.2.4 Preparation of the Cell Line. 80
3.2.5 The Design of the In Vitro Assay. 80
3.2.6 Statistical Analysis. 81

3.3 RESULTS. 81
3.3.1 Analysis of Leukocyte Preparations. 81
3.3.2 Overall Effects of Immune Serum, Complement and Leukocytes on Larval Survival. 82
3.3.3 Tukey Pairwise Comparisons of Treatments. 82
3.2.4 Adherence of Leukocytes to Larvae In Vitro. 84
3.2.5 Degree of Larval Development. 85

3.4 DISCUSSION. 85

CHAPTER 4. THE TRANSFER OF IMMUNITY AGAINST T.HYDATIGENA FROM IMMUNE EWES TO LAMBS VIA COLOSTRUM. 95

4.1 INTRODUCTION. 95

4.2 MATERIALS AND METHODS. 95
4.2.1 Experimental Animals. 95
4.2.2 Pre-challenge Procedure for Ewes and Lambs. 95
4.2.3 Challenge of Lambs and Ewes. 97
4.2.4 Detection of Immunoglobulin in Lamb Sera Using the Sodium Sulphite Turbidity Test (SSTT). 98
4.2.5 Detection of Anti-T. hydatigena Antibody in Lamb Sera by Western Blot. 99
4.2.6 Detection of Anti-T. hydatigena Antibody in Lamb Sera by ELISA. 99
4.2.7 Detection of Anti-T. hydatigena Antibody in Ewe Sera and Whey. 99
4.2.8 Statistical Analysis. 99

4.3 RESULTS. 100
4.3.1 Analysis of Ewe Serum Samples.
4.3.2 Immunoglobulin Levels in the Lambs Detected by the Sodium Sulphite Turbidity Test (SSTT).
4.3.3 Viability of the Challenge Eggs.
4.3.4 Cyst Numbers Present in Ewes and Lambs at Necropsy.
4.3.5 Analysis of Serum and Whey Samples by Western Blot.
4.3.6 Analysis of Serum and Whey Samples by ELISA.

4.4 DISCUSSION.

CHAPTER 5. The Effect of Complement and Immunoglobulin Fractions Enriched with IgG\textsubscript{1} or IgG\textsubscript{2} on the survival of \textit{T. hydatigena} Larvae \textit{In Vitro}.

5.1 INTRODUCTION.

5.2 MATERIALS AND METHODS.

5.2.1 Part 1: Preparation of Pooled Groups of Immune Serum- or Immune Colostral-Immunoglobulin Containing IgG\textsubscript{1} and IgG\textsubscript{2}.

5.2.1.1 Experimental Animals and the Immunization Regime.
5.2.1.2 Isolation of Immunoglobulin from Serum and Colostrum.
5.2.1.3 Isoelectric Focussing of Immune Serum and Low Infection Whey Immunoglobulin Preparations.
5.2.1.4 Immunoglobulin Class Analysis by ELISA of Isoelectrically-Focussed (IEF) Fractions.
5.2.1.5 Immunoelectrophoresis (IEP) of the Immunoglobulin Fractions.
5.2.1.6 Isoelectrically Focussed Fractions Pooled in Preparation for use \textit{In Vitro}.
5.2.1.7 Levels of IgG\textsubscript{1} and IgG\textsubscript{2} in Each of the Pooled Groups Determined by ELISA.
5.2.1.8 SDS-PAGE of FTS Oncosphere Antigen and Western Blot Probed with Group 5 of the Serum Preparation.
5.2.1.9 Silver Staining the SDS-Polyacrylamide Gel Containing \textit{T. hydatigena} Oncosphere Antigen.
5.2.2 Part 2a: Culture of Oncospheres in the Presence of IgG₁ and IgG₂ from Immune Serum With or Without Complement.

5.2.2.1 Preparation of IgG₁- and IgG₂-Enriched Serum Samples and Complement.

5.2.2.2 Design of the In Vitro Assay.

5.2.3 Part 2b: Culture of Oncospheres in the Presence of Complement With Either Immune Serum or Colostral Whey Immunoglobulins, or Fractions of These.

5.2.3.1 Preparation of the Immunoglobulin Samples and Complement.

5.2.3.2 Design of the In Vitro Assay.

5.2.4 Statistical Analysis.

5.3 RESULTS.

5.3.1 Part 1: Determination of the Levels of IgG₁ or IgG₂ in the Isoelectrically Focussed Fractions.

5.3.1.1 IgG Sub-Class Analysis of All Fractions by ELISA.

5.3.1.2 IgG Sub-Class Analysis of All Fractions by (IEP).

5.3.1.3 Levels of Anti-T. hydatigena IgG₁ and IgG₂ in the Pooled Groups of Fractions as Determined by ELISA.

5.3.1.4 Analysis of Antigens on Western Blot.

5.3.2 Part 2a: The Effect of IgG₁ and IgG₂ from Immune Serum on the Survival of Oncospheres In Vitro With or Without Complement.

5.3.3 Part 2b: The Effect of Serum and Colostrum Immunoglobulin Preparations and Fractions of These in the Presence of Complement on the Survival of Oncospheres In Vitro.

5.4 DISCUSSION.
CHAPTER 6 THE IMMUNIZATION OF SHEEP WITH FRACTIONS OF T. HYDATIGENA ANTIGENS SEPARATED BY SODIUM DODECYL SULPHATE-POLYACRYLAMIDE GEL ELECTROPHORESIS.

6.1 INTRODUCTION.

6.2 MATERIALS AND METHODS.

6.2.1 Preparation of Antigens Not Run on SDS-PAGE.
6.2.2 Preparation of SDS-PAGE Antigens.
6.2.3 Immunization of Experimental Animals.
6.2.4 Monitoring the Antibody Response.
6.2.5 Challenge Infections.
6.2.6 Statistical Analysis.

6.3 RESULTS.

6.3.1 Cyst Numbers Found at Necropsy.
6.3.2 Antibody Responses, Before and After Immunization.

6.4 DISCUSSION.

CHAPTER 7 GENERAL DISCUSSION.

APPENDICES.

REFERENCES.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Percentage of dogs infected with tapeworms in New Zealand.</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>Simplified diagram of a taeniid egg.</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Simplified diagram of a typical taeniid oncosphere.</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Simplified diagram of a typical cysticercus.</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>Western blot of T. hydatigena oncosphere antigen probed with sera from each of the donor lambs of Experiment 1 (a) before and (b) after they were infected.</td>
<td>58</td>
</tr>
<tr>
<td>2.2</td>
<td>Western blot of T. hydatigena oncosphere antigen probed with pooled sera from the recipients 24 hr after the transfer. Experiment 2.</td>
<td>59</td>
</tr>
<tr>
<td>2.3</td>
<td>Livers with lesions typical of each group of recipient lambs 28 days after challenge.</td>
<td>60</td>
</tr>
<tr>
<td>2.4</td>
<td>Western blot of T. hydatigena oncosphere antigen probed with the sera from 2 of the donors 0, 21, 42 and 47 days after the first infection in Experiment 2.</td>
<td>62</td>
</tr>
<tr>
<td>2.5</td>
<td>Western blot of T. hydatigena oncosphere antigen probed with sera collected from some of the recipients of Experiment 2, 24 hr and 7 days after transfer.</td>
<td>63</td>
</tr>
<tr>
<td>2.6</td>
<td>Western blot of T. hydatigena oncosphere antigen probed with sera from one of the donor lambs 0, 21, 42 and 47 days after the first immunization in Experiment 3.</td>
<td>65</td>
</tr>
<tr>
<td>2.7</td>
<td>Western blot of T. hydatigena oncosphere antigen probed with sera collected from some of the recipients 24 hr and 7 days after the transfer in Experiment 3.</td>
<td>66</td>
</tr>
<tr>
<td>2.8</td>
<td>The livers of the recipients in Experiment 2 and 3, 28 days after challenge.</td>
<td>69</td>
</tr>
<tr>
<td>2.9</td>
<td>Western blot of T. hydatigena oncosphere antigen probed with sera from the donors of Experiments 1, 2 and 3 after pooling the samples from each group.</td>
<td>70</td>
</tr>
<tr>
<td>2.10</td>
<td>The ELISA absorbances of the sera from donors and recipients of Experiments 1, 2 and 3 against T. hydatigena oncosphere antigen.</td>
<td>71</td>
</tr>
<tr>
<td>2.11</td>
<td>Western blot of T. hydatigena oncosphere antigen probed with sera from the donors of Experiments 2 and 3.</td>
<td>72</td>
</tr>
<tr>
<td>2.12a</td>
<td>Cyst numbers found in the recipients of saline, immune or non-immune serum in Experiment 1.</td>
<td>75</td>
</tr>
</tbody>
</table>
2.12b Cyst numbers found in the recipients of saline, immune or non-immune serum in Experiments 2 and 3.
2.13 The livers of the donors of the immune serum 28 days after challenge.

3.1 Mean (± S.E.) number of larvae surviving after 10 days in culture.
3.2 Significant differences between numbers of surviving larvae.
3.3 Larvae cultured in the presence of immune serum and leukocytes from (a) control sheep or (b) immune sheep; Day 4.
3.4 Larvae cultured in the presence of immune serum and leukocytes from (a) control sheep or (b) immune sheep; Day 10.
3.5 Larvae cultured in the absence of antibody and in the presence of leukocytes from (a) control sheep or (b) immune sheep; Day 4.
3.6 Larvae cultured in the absence of antibody and in the presence of leukocytes from (a) control sheep or (b) immune sheep; Day 10.
3.7 Larvae cultured in the presence of immune serum and in the absence of leukocytes; Day 4.
3.8 Larvae cultured in the presence of immune serum and in the absence of leukocytes; Day 10.

4.1 Western blot of *T. hydatigena* oncosphere antigen probed with the pooled sera collected from the ewes 21 days after the first infection.
4.2 The numbers of cysts found in the lambs challenged 1 week after birth.
4.3 The numbers of cysts in the lambs from High Infection ewes.
4.4 Western blot of *T. hydatigena* oncosphere antigen probed with sera collected from all the housed lambs 1 week after birth.
4.5 Western blot of *T. hydatigena* oncosphere antigen probed with sera collected from the lambs in Groups 2 and 3a, 1 week after birth.
4.6 The levels of anti-*T. hydatigena* antibody in sera collected weekly from lambs after birth.
4.7 The relationship between the level of anti-*T. hydatigena* antibody at the time of challenge and the number of cysts present at necropsy.
4.8 The relationship between the level of anti-*T. hydatigena* antibody in the ewes' whey and sera on the day of parturition.
4.9 The relationship between the level of anti-*T. hydatigena* antibody in the lamb sera 1 week after birth and in the ewe whey on the day of parturition.
4.10 The relationship between the level of anti-\textit{T. hydatigena} antibody in the lamb sera 1 week after birth and in the ewe sera on the day of parturition.

4.11 The relationship between the number of cysts in the lambs and the level of anti-\textit{T. hydatigena} antibody in the ewe whey on the day of parturition.

4.12 The relationship between the number of cysts in the lambs and the level of anti-\textit{T. hydatigena} antibody in the ewe sera on the day of parturition.

5.1 Total IgG\textsubscript{1} and IgG\textsubscript{2} levels, and the pH of each of the fractions of the immune serum preparation.

5.2 Total IgG\textsubscript{1} and IgG\textsubscript{2} levels, and the pH of each of the fractions of the immune colostral whey preparation.

5.3 Immunoelectrophoresis of the isoelectrically focussed fractions of immune serum and colostrum immunoglobulin preparations precipitated with rabbit anti-sheep immunoglobulin antiserum.

5.4 Survival of oncospheres when cultured with immunoglobulin preparations and complement.

5.5 Western blot of \textit{T. hydatigena} oncosphere antigen probed with the pooled Group 5 of the IEF-fractions of immune serum immunoglobulin preparation compared with whole immune serum.

5.6 A silver stain of \textit{T. hydatigena} oncosphere antigen on SDS-PAGE.

5.7 The linear relationship between the level of IgG\textsubscript{1} and the percentage of oncosphere survival \textit{in vitro}.

5.8 The linear relationship between the level of IgG\textsubscript{2} and the percentage of oncosphere survival \textit{in vitro}.

5.9 The exponential relationship between the level of IgG\textsubscript{2} and the percentage of oncosphere survival \textit{in vitro}.

6.1 The positioning of the troughs and lanes of the stacking gels.

6.2 The stacking gel was discarded and the marker lanes were removed to be stained.

6.3 The division of the gel containing \textit{T. hydatigena} oncosphere antigen for use in immunizing 12 sheep.

6.4 Western blot of \textit{T. hydatigena} oncosphere antigen probed with immune sheep serum and showing the division between top, middle and bottom fractions of the gel.

6.5 The SDS-PAGE gel stained with Amido Black.
6.6 Number of cysts present in the peritoneal cavities of the sheep immunized with SDS-PAGE gel fractions and controls.

6.7 Western blot of T. hydatigena oncosphere antigen probed with the serum collected from each sheep before immunization and 28 days after immunization.

6.8 The level of anti-T. hydatigena antibody in the sera of the immunized sheep.

LIST OF TABLES

1.1 Hosts of T. hydatigena.
1.2 Prevalence of T. hydatigena in wild ruminants of N. America.
1.3 The prevalence of T. hydatigena in domestic animals.

2.1 The infection procedure used for serum donors in Experiment 2.
2.2 The immunization procedure used for serum donors in Experiment 3.
2.3 Cyst numbers found at necropsy.
2.4 Cyst numbers found in the recipients of serum or saline.
2.5 Cyst numbers found in the recipients of serum or saline.

3.1 Experimental Design.
3.2 Normal ovine blood leukocyte counts.

4.1 The infection of housed ewes with T. hydatigena eggs.
4.2 Days after birth when lambs were challenged with 50 activatable oncospheres.
4.3 The total cysts in lambs.
5.1 The immune serum IEF-fractions pooled into groups.
5.2 The immune colostrum IEF-fractions pooled into groups.
5.3 The percentage of freshly activated oncospheres surviving 24 hours culture in the presence of high levels of IgG₁ with low levels of IgG₂, or vice versa.

6.1 The nature of the immunizations given.