Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PICSIL:
DESIGN AND SYNTHESIS OF DIGITAL ICs
FROM
DATA FLOW DIAGRAMS

A dissertation presented
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy in Computer Science
at Massey University

Murray William Pearson
1992
This thesis describes the background, development, and testing of PICSIL, a system for designing digital integrated circuits by structured decomposition.

PICSIL draws upon graphical and textual specification techniques; the first for high-level, architectural, system components, the second for more detailed, functional, specification.

Many graphical design paradigms already exist. Of these, DFDs (Data Flow Diagrams) best suit the assembly and intercommunication of abstract modules. With minor adaptations, DFDs were used as the high-level specification language. Lower-level functionality was described using a textual language based on HardwareC. Although HardwareC is not ideally suited to this use, and had to be extended in several areas it was adopted mainly for pragmatic reasons.

To accept a system definition and subsequently determine the details of its synthesis, the PICSIL system had not only to capture and edit high-level specifications, but also to deliver these specifications to one of several possible synthesis paths. The practical part of the thesis therefore consisted of implementing a graphical editor and a synthesis compiler. These drive the lower level Olympus and Octtools synthesis packages to provide a complete path from PICSIL input to chip layout. A layout produced by following this path has been sent for fabrication.
I would like to thank Professor Mark Apperley and Paul Lyons for their guidance during this research. The encouragement to make the "supreme effort" necessary to complete this thesis is now greatly appreciated. Particular thanks must go to Paul Lyons for the suggestions made during the production of this thesis.

Thanks must also go to the members of the Computer Science department for their constant encouragement, and tolerating the lack of disk space in the later stages of this research. In particular thanks must go to Colin Eagle for installation and maintenance of software, and Peter Kay for proof reading the last version of the thesis.

Many thanks to Bruce Moore, and various people on internet, including Paul Cohen and Rajesh Gupta, for their technical expertise during the development of the PICSIL synthesis system.

I am also very grateful to both my parents and parents-inlaw for their encouragement during this time. Finally, I would like to thank my wife, Brenda, for her patience and support (despite an expanding deadline) which has been necessary for me to complete this thesis.
Appendix Bibliography

Chapter 5 - The PICSIL Editor
5.1 An Overview of the PICSIL Editor ... 74
 The Drawing Window ... 74
 The Text Window ... 76
 The Group Flow Window .. 76
 Iconised Windows ... 76
5.2 Xview ... 76
5.3 Windows ... 77
 The Menu Bar ... 78
5.4 Using the PICSIL Editor ... 79
 Editing a DFD ... 84
5.5 The PICSIL Data Structure ... 90
 Representation of Objects in Drawing Windows ... 94
5.6 Conclusions .. 95

Chapter 6 - From PICSIL to Hardware .. 99
6.1 Selection of Synthesis Path ... 100
6.2 Translation of PICSIL to Olympus Descriptions ... 103
 Translation of the PICSIL Data Structure into LinearP 104
 Compilation into HardwareC ... 106
6.3 The PICSIL Synthesis Manager ... 121

Chapter 7 - Testing the PICSIL Synthesis System .. 127
7.1 Parallel Buffer .. 128
7.2 Packet Switch ... 133
7.3 Traffic Light Controller ... 136

Chapter 8 - Conclusions .. 141
8.1 Conclusions .. 142
 Designing at the System Level .. 142
 Complex Digital Designs are Naturally Graphical 142
 Automating synthesis .. 143
8.2 Further Research .. 144
 PICSIL HDL ... 144
 PICSIL EDITOR ... 145
 PICSIL SYNTHESIS SYSTEM .. 145
 TESTING ... 146
8.3 Concluding Remarks .. 146

Bibliography .. 147

Appendix 1 - PICSIL Data Dictionary Language .. 151
A1.1 Primitive Process Definitions (PSPECs) .. 151
 Compound Statements .. 151
 Variables and Constants .. 153
 Expressions ... 156
 Statements ... 159
A1.2 Data Flow Definitions .. 167
A1.3 Data Store Definitions ... 169
A1.4 Data Dictionary Appendix .. 169
 Constants ... 170
 User Defined Types ... 170
 Procedures ... 170
 Functions ... 171