Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
SHOOT-ROOT ALLOMETRY AND GROWTH OF NASHI AND TOMATO: EFFECTS OF BUDDING, GIBBERELLINS AND CYTOKININS

SUREERAT THUANTAVEE
1991
of thesis: Shoot-root allometry and growth of
washi and tomato: Effects of budding, gibberellins and
cytokinins

a) I give permission for my thesis to be made available to
readers in the Hassey University Library under conditions
determined by the Librarian.
b) I do not wish my thesis to be made available to readers
without my written consent for ______ months.

a) I agree that my thesis, or a copy, may be sent to another
institution under conditions determined by the Librarian.
b) I do not wish my thesis, or a copy, to be sent to another
institution without my written consent for ______ months.
a) I agree that my thesis may be copied for Library use.
b) I do not wish my thesis to be copied for Library use for
______ months.

Signed __________________________

Date ______/____/____

Copyright of this thesis belongs to the author. Readers must
their name in the space below to show that they recognise
They are asked to add their permanent address.

AND ADDRESS

S BUREERAT THUANTAVEE
Saket Hort. Res. Centre
Saket, Thailand.

DATE ______/____/____

FOR
Reference Only
NOT TO BE REMOVED FROM THE LIBRARY
SHOOT-ROOT ALLOMETRY AND GROWTH OF NASHI AND TOMATO: THE EFFECTS OF BUDDING, GIBBERELLINS AND CYTOKININS

A thesis presented in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Horticultural Science at Massey University

Sureerat Thuantavee
March 1991
ABSTRACT

Growth of the root and the shoot systems of plants is generally, positively correlated, although the mechanism(s) controlling such relationships is not well understood. A series of experiments were carried out on young nashi trees (*Pyrus serotina*) and tomatoes (*Lycopersicon esculentum* Mill.) to explore this homeostatic phenomenon.

Two nashi cultivars, Hosui and Nijiseiki, were budded on to each of three clonal rootstocks, which differed in vigour (scion-budded trees). Buds from each rootstock was also budded on their own roots (rootstock trees). Growth, measured by individual organ and total plant dry weight, leaf attributes (leaf area, leaf number and leaf size) and root attributes (root length, root number and root volume) over two years after budding, indicated that scion-budded trees were markedly smaller than rootstock trees, irrespective of rootstock vigour. The imbalance of shoot-root ratio occurred following pruning after bud take; this remained in rootstock trees for one year but persisted for two years in scion budded trees. Vigour of all rootstocks appeared to diminish with time and final tree size was not well related to initial rootstock vigour. Neither rootstock nor scion morphological characteristics appeared to be changed by the partner, although presence of the cultivar bud on rootstocks delayed commencement of root activity in early spring. These results indicate that two-year-old (scion budded growth) nashi trees are not appropriate material for studying allometric relationship.

Plant growth regulators, gibberellins and cytokinins, were applied to 6- and 5-week-old tomato seedlings, respectively, in three separate aeroponic experiments. Gibberellic acid was sprayed twice to the shoot (at 2.9 $\times 10^{-5}$ M), while root application was achieved by incorporating GA$_3$ into the nutrient solution (conc. 5.8 $\times 10^{-5}$ and 2.9 $\times 10^{-4}$ M). Compared to the control, stem elongation, stem dry weight and stem weight ratio (SWR) was increased while root attributes (dry weight and root weight ratio (RWR)), leaf attributes (leaf area, leaf area ratio and leaf dry weight), and consequently total plant dry weight were reduced in GA$_3$ treated plants.
Gibberellic acid promoted apical dominance. Shoot applied GA$_3$ was quantitatively more effective than root application, suggesting that the organ in which physiologically active GA(s) originate may be an important component of plant response to environments. In addition, GA$_3$ effects were additive as indicated by the increasing difference with time in SWR and shoot-root ratio. The increased SWR and reduced leaf weight ratio (LWR) were responsible for an increase in the allometric value between stem and root dry weight (k_S), and a reduction in the allometric value between leaf and root dry weight (k_L), respectively. However, allometric value between shoot and root dry weight (k_T) was unaltered by GA$_3$. These results suggest no feedback mechanism of de novo GA synthesis occurred, and indicate that GA has no role in regulation of shoot-root allometry.

A synthetic cytokinin, benzylaminopurine (BA), was applied to roots at 2.2 X10$^{-8}$, 2.2 X10$^{-7}$ and 2.2 X10$^{-6}$ M. The control gave an intermediate response in all parameters measured, compared to the enhanced response at 2.2 X10$^{-8}$ M BA and the inhibitory response at other BA concentrations. This suggested that BA supplemented, and had a similar effect to, endogenous cytokinins. Benzylaminopurine initially or transiently stimulated shoot and leaf primordia and thus released buds from apical dominance, leading to an increase in leaf attributes (leaf number, leaf area, leaf dry weight and leaf weight ratio (LWR)), increased shoot-root ratio and reduced RWR. Benzylaminopurine had no effect on stem attributes (stem elongation, stem dry weight and SWR). There were, however, no changes induced in k_L and k_T. It is suggested that cytokinins participate in the homeostatic mechanism regulating plant growth allometry.

A model in which both gibberellins and cytokinins integrate to affect plant growth via allometric relationships is proposed. The usefulness of allometric studies to detect and analyse dynamic changes of organs and plant productivity in response to environment, as well as explain mechanisms regulating shoot-root equilibrium is strongly endorsed by this study.
ACNOWLEDGEMENTS

I am very grateful to these following people who have helped with various aspects of this thesis work:

- Professor D.J. Chalmers for his supervision of the thesis and in particular for the suggestion on the use of aeroponic system in the experiments using growth regulators,
- Mr E.A. Cameron for nashi scion bud supply and prompt proofreading of the thesis draft, and some comment on the nashi experiment.
- Mr C.R. Johnstone for his excellent budding work on the nashi seedlings,
- Dr D.E.S. Wood for his suggestion on the use of the nashi rootstock clones,
- The staff of Fruit Crops Unit for their pest control and water management of the nashi experiment,
- Mr R. Turner for his recommendation of fertilizer rate for nashi trees,
- The staff of Plant Growth Unit and Mr I.A. Painter for their construction and maintenance of the aeroponic system,
- Professor E.W. Hewett and Mr K.A. Funnell for crucial comment and suggestion on the final draft of the thesis,
- My husband, Muangthong, for assistance in drawing diagrams and graphics,
- Mrs C.L. Andricksen for her work in typing the tables,
- The Chairman of the Doctoral Research Committee, Professor K.S. Milne, Audrey, Jutta, the staff of Horticultural Science Department and all friends for their help and great moral support,
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. LITERATURE REVIEW

1.1. Plant Requirements for Primary Root Growth 1
1.2. Primary Root Growth, Distribution and Activity 2
 1.2.1. Root Apices and Primary Root Growth ... 2
 1.2.2. Root Distribution and Plasticity ... 3
1.3. Internal Factors Influencing Plant Growth and Development 5
 1.3.1. Genetic Factors ... 5
 1.3.2. Plant Types and Stages of Growth .. 5
 1.3.3. Hormonal and Related Factors .. 6
 1.3.3.1. Auxins and their Oxidation .. 6
 1.3.3.2. Root Cytokinins .. 7
 1.3.3.3. Gibberellins ... 8
 1.3.3.4. Abscisic Acid and Ethylene ... 8
1.4. Effects of Root Environmental Factors on Root Growth and Physiological Activity ... 9
 1.4.1. Nutrient Availability ... 9
 1.4.2. Soil Moisture .. 10
 1.4.3. Aeration .. 11
1.4.4. Temperature .. 12
1.4.5. Mechanical Impedance 12
1.4.6. Root Competition ... 13
1.5. Shoot-root Inter-relation 15
1.5.1. Shoot-root Ratio ... 17
1.5.2. Shoot-root Allometric Relationship 18
1.6. Manipulation of Root Systems in order to Control
 Plant Size .. 21
1.6.1. Dwarfing Rootstocks 21
1.6.2. Root Competition ... 22
1.6.3. Soil Compaction ... 22
1.6.4. Root Pruning .. 22
1.6.5. Root Confinement .. 23
1.6.6. Water and Nutrient Management 24
1.7. Possible Mechanisms for Regulating Shoot-root
 Growth Equilibria .. 24
1.7.1. Physical Signals .. 25
1.7.1.1. Turgor Pressure and Water Potential 25
1.7.1.2. Nutrient Molecules 26
1.7.2. Hormonal Signals .. 27

2: SHOOT-ROOT ALLOMETRY IN NASHI SEEDLINGS:
 A PRELIMINARY OBSERVATION

2.1. Introduction .. 33
2.2. Materials and Methods .. 35
2.2.1. Experimental Procedures 35
2.2.2. Experimental Design 38
2.2.3. Collection of Data .. 39
2.2.4. Data Analyses .. 40
2.2.4.1. Mean Analyses and Comparisons 40
2.2.4.2. Estimations of K Values 41
2.2.4.3. Calculation of Relative Growth Rates (RGR) and their Variances 42
3. Results .. 43
 3.1. Differences in Leaf Attributes ... 43
 3.2. Differences in Root Attributes ... 43
 3.3. Progression of Changes in Absolute Growth ... 47
 3.4. Differences in Partitioning of Carbohydrate Reserves and Organ Weight Ratios .. 59
 3.5. Differences in Relative Growth Rates .. 63
 3.6. Differences in Allometric Relationships .. 65

2.4. Discussion ... 70
 2.4.1. Growth of Nashi Trees after Budding ... 70
 2.4.2. Characteristics of Scions and Rootstocks ... 72
 2.4.3. Pattern of Growth Distribution in Young Nashi Trees with Respect to Seasonal Changes ... 72
 2.4.4. Shoot-root Ratios of Young Nashi Trees after Budding 73
 2.4.5. Allometric Relationships of Young Nashi Trees after Budding 73

3: THE ROLE OF GIBBERELLIC ACID IN GROWTH AND SHOOT-ROOT
ALLOMETRY OF TOMATO SEEDLINGS

3.1. Introduction ... 75
3.2. Materials and Methods .. 77
 3.2.1. Experiment 1 ... 77
 3.2.1.1. Experimental Procedure ... 77
 3.2.1.2. Experimental Design ... 79
 3.2.1.3. Collection of Data .. 80
 3.2.1.4. Data Analyses .. 82
 Mean Analyses and Comparisons ... 82
 Calculation of Ratios of Relative Growth Rates and their Variances 82
 3.2.2. Experiment 2 ... 83
 3.2.2.1. Experimental Procedure and Design ... 83
3.2.2.2. Collection of Data and Data Analyses.......................... 83
3.3. Results... 84
3.3.1. Experiment 1... 84
3.3.1.1. Changes in Leaf Attributes.. 84
 Leaf Area... 84
 Leaf Area Ratio (LAR)... 86
 Specific Leaf Area (SLA)... 86
3.3.1.2. Changes in Absolute Growth................................. 86
 Leaf Dry Weight... 86
 Stem Dry Weight... 86
 Shoot Dry Weight.. 88
 Root Dry Weight... 88
 Whole Plant Dry Weight.. 88
3.3.1.3. Changes in Relative Growth Rates....................... 88
3.3.1.4. Changes in Allometric Relationships Between Shoot and Root System................................. 90
 Leaf-root Allometry (k_L)... 90
 Stem-root Allometry (k_S)... 90
 Shoot-root Allometry (k_T)... 90
3.3.1.5. Changes in Ratios of Relative Growth Rates......... 92
3.3.1.6. Changes in the Distribution of Photoassimilates...... 94
 Leaf Weight Ratio (LWR).. 94
 Stem Weight Ratio (SWR).. 94
 Root Weight Ratio (RWR).. 94
 Shoot-root Ratio... 97
3.3.2. Experiment 2.. 98
3.3.2.1. Morphological Changes.. 98
 Leaf Attributes... 98
 Leaf Area... 98
 Leaf Area Ratio (LAR)... 98
 Specific Leaf Area (SLA)... 98
 Leaf Number and Leaf Size... 101
 Stem Attributes... 101
 Individual Internode Length... 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Shoot Length</td>
<td>103</td>
</tr>
<tr>
<td>Total Lateral Number and Length</td>
<td>103</td>
</tr>
<tr>
<td>3.3.2.2. Changes in Absolute Growth</td>
<td>103</td>
</tr>
<tr>
<td>Leaf Dry Weight</td>
<td>103</td>
</tr>
<tr>
<td>Stem Dry Weight</td>
<td>103</td>
</tr>
<tr>
<td>Shoot Dry Weight</td>
<td>106</td>
</tr>
<tr>
<td>Root Dry Weight</td>
<td>106</td>
</tr>
<tr>
<td>Whole Plant Dry Weight</td>
<td>106</td>
</tr>
<tr>
<td>3.3.2.3. Changes in Relative Growth Rates</td>
<td>106</td>
</tr>
<tr>
<td>Leaf Relative Growth Rate (RGR₇)</td>
<td>106</td>
</tr>
<tr>
<td>Stem Relative Growth Rate (RGRₛ)</td>
<td>109</td>
</tr>
<tr>
<td>Shoot Relative Growth Rate (RGRₚ)</td>
<td>109</td>
</tr>
<tr>
<td>Root Relative Growth Rate (RGRᵣ)</td>
<td>109</td>
</tr>
<tr>
<td>Mean Relative Growth Rate (RGR₇)</td>
<td>110</td>
</tr>
<tr>
<td>3.3.2.4. Changes in Allometric Relationships Between Shoot and Root System</td>
<td>110</td>
</tr>
<tr>
<td>3.3.2.5. Changes in Ratios of Relative Growth Rates</td>
<td>118</td>
</tr>
<tr>
<td>3.3.2.6. Changes in the Distribution of Photoassimilates</td>
<td>118</td>
</tr>
<tr>
<td>Leaf Weight Ratio (LWR)</td>
<td>118</td>
</tr>
<tr>
<td>Stem Weight Ratio (SWR)</td>
<td>121</td>
</tr>
<tr>
<td>Root Weight Ratio (RWR)</td>
<td>121</td>
</tr>
<tr>
<td>Shoot-root Ratio</td>
<td>123</td>
</tr>
<tr>
<td>3.4. Discussion</td>
<td>124</td>
</tr>
<tr>
<td>3.4.1. Plant Responses in Relation to the Site of Application and Various Concentrations of GA₃</td>
<td>124</td>
</tr>
<tr>
<td>3.4.2. Effects of GA₃ on Plant Structures and Growth</td>
<td>125</td>
</tr>
<tr>
<td>3.4.3. Effects of GA₃ on the Allometric Relationships</td>
<td>130</td>
</tr>
</tbody>
</table>

4: THE ROLE OF CYTOKININS IN GROWTH AND SHOOT-ROOT ALLOMETRY OF TOMATO SEEDLINGS

4.1. Introduction | 131 |
4.2. Materials and Methods | 134 |
4.2.1. Experimental Procedure and Design | 134 |
4.2.2. Collection of Data and Data Analyses .. 134
4.3. Results ... 136
4.3.1. Morphological Changes due to BA Application 136

4.3.1.1. Leaf Attributes .. 136

Leaf Area ... 136
Leaf Area Ratio (LAR) ... 136
Specific Leaf Area (SLA) ... 139
Leaf Number .. 139
Leaf Size ... 141

4.3.1.2. Stem Attributes .. 141

Individual Internode Length ... 141
Total Internode Number .. 144
Main Shoot Length ... 144
Total Lateral Length .. 144
Total Shoot Length ... 146
Lateral Number ... 146

4.3.1.3. Flower Production ... 147

4.3.1.4. Root Attributes .. 147

Root Length .. 147
Root Number .. 147
Root Number per Unit Root Length ... 152
Root Dry Weight per Unit Root Length ... 152

4.3.2. Changes in Absolute Growth .. 153

4.3.2.1. Leaf Dry Weight ... 153

4.3.2.2. Stem Dry Weight ... 153

4.3.2.3. Shoot Dry Weight .. 156

4.3.2.4. Root Dry Weight ... 156

4.3.2.5. Whole Plant Dry Weight ... 158

4.3.3. Changes in Relative Growth Rates .. 158

4.3.4. Changes in Allometric Relationships

Between Shoot and Root System .. 162

4.3.5. Changes in Ratios of Relative Growth Rates 167
4.3.6. Changes in Allometric Relationships Between Leaf and Root Attributes ..169

4.3.7. Changes in the Distribution of Photoassimilates ..175
 4.3.7.1. Leaf Weight Ratio (LWR) ..175
 4.3.7.2. Stem Weight Ratio (SWR) ...178
 4.3.7.3. Root Weight Ratio (RWR) ...178
 4.3.7.4. Shoot-root Ratio ..178

4.4. Discussion ..181
 4.4.1. The Responses of Plants to BA Within the Range of the Concentrations Used181
 4.4.2. Mode of Action of Exogenously-applied Root Cytokinins and Implications of Natural Shoot-Root Interactions ...183
 4.4.3. The Regulation of Shoot-root Allometry and BA ..185
 4.4.4. Leaf and Root Functional Relationships ...188

5: GENERAL DISCUSSION ..192
 5.1. Evaluation of the Effectiveness of Allometric Models as an Approach for Studying the Shoot-root Relationship ...192
 5.2. Gibberellins and Cytokinins in the Control of Shoot Growth and Plant Growth: A Proposed Mechanism ...194

REFERENCES ..198
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Seasonal changes in leaf attributes during second year of growth of nashi trees</td>
<td>44</td>
</tr>
<tr>
<td>2.2.</td>
<td>Seasonal changes in root attributes during second year of growth of nashi trees</td>
<td>45</td>
</tr>
<tr>
<td>2.3.</td>
<td>Seasonal changes in dry weights of plant parts and whole plant during second year of growth of nashi trees</td>
<td>49</td>
</tr>
<tr>
<td>2.4.</td>
<td>Seasonal changes in dry weight distribution during second year of growth of nashi trees expressed as a ratio of plant organ to total plant dry weight or to root dry weight</td>
<td>57</td>
</tr>
<tr>
<td>2.5.</td>
<td>Relative growth rates of organs and whole plant of nashi trees during second year of growth</td>
<td>64</td>
</tr>
<tr>
<td>2.6.</td>
<td>Allometric relationship between shoot and root dry weight (k_T) of nashi trees over the course of second year of growth</td>
<td>67</td>
</tr>
<tr>
<td>2.7.</td>
<td>Allometric relationship between stem and root dry weight (k_S) of nashi trees over the course of second year of growth</td>
<td>67</td>
</tr>
<tr>
<td>3.1.</td>
<td>Sites of application and GA_3 concentrations used in experiment 1</td>
<td>81</td>
</tr>
<tr>
<td>3.2.</td>
<td>Composition of stock and nutrient film solutions in experiments using growth regulators</td>
<td>81</td>
</tr>
<tr>
<td>3.3.</td>
<td>Changes in leaf attributes with time as affected by GA_3 treatments (experiment 1)</td>
<td>85</td>
</tr>
<tr>
<td>3.4.</td>
<td>Changes in dry weight of plant organs and whole plant with time as affected by GA_3 treatments (experiment 1)</td>
<td>87</td>
</tr>
</tbody>
</table>
3.5. Changes in relative growth rate of plant organs and whole plant with time as affected by GA₃ treatments (experiment 1) ... 89

3.6. Changes in allometric relationships between dry weight of shoot and root organs as affected by GA₃ treatments (experiment 1) ... 91

3.7. Changes in ratios of relative growth rates with time as affected by GA₃ treatments (experiment 1) ... 93

3.8. Changes in dry weight distribution with time as affected by GA₃ treatments, expressed as a ratio of plant organ to total plant dry weight and shoot-root ratio (experiment 1) .. 95

3.9. Changes in leaf attributes with time as affected by GA₃ treatments (experiment 2) .. 99

3.10. Changes in internode length with time as affected by GA₃ treatments (experiment 2) .. 102

3.11. Changes in stem attributes with time as affected by GA₃ treatments (experiment 2) .. 104

3.12. Changes in dry weight of plant organs and whole plant with time as affected by GA₃ treatments (experiment 2) ... 105

3.13. Changes in allometric relationship between leaf and root dry weight (kₐ) with time as affected by GA₃ treatments (experiment 2) ... 111

3.14. Changes in allometric relationship between stem and root dry weight (kₛ) with time as affected by GA₃ treatments (experiment 2) ... 113

3.15. Changes in allometric relationship between shoot and root dry weight (kₜ) with time as affected by GA₃ treatments (experiment 2) ... 115

3.16. Changes in ratios of relative growth rates with time as affected by GA₃ treatments (experiment 2) ... 119

3.17. Changes in dry weight distribution with time as affected by GA₃ treatments, expressed as a ratio
of plant organ to total plant dry weight and
shoot-root ratio (experiment 2) ... 120

4.1. Changes in leaf attributes with time as affected
by root application of 6-N-benzylaminopurine .. 137

4.2. Changes in internode length with time as affected
by root application of 6-N-benzylaminopurine .. 142

4.3. Changes in stem attributes with time as affected
by root application of 6-N-benzylaminopurine .. 145

4.4. Effects of 6-N-benzylaminopurine on
inflorescences and development of flower truss of
tomato seedlings .. 148

4.5. Changes in root attributes with time as affected
by root application of 6-N-benzylaminopurine .. 149

4.6. Changes in dry weight of plant organs and whole
plant with time as affected by root application
of 6-N-benzylaminopurine .. 154

4.7. Changes in allometric relationships between dry
weight of shoot and root organs as affected by
root application of 6-N-benzylaminopurine .. 163

4.8. Changes in ratios of relative growth rates with
time as affected by root application of 6-N-
benzylaminopurine .. 168

4.9. Changes in allometric relationships between leaf
and root attributes as affected by root
application of 6-N-benzylaminopurine .. 170

4.10. Changes in dry weight distribution with time as
affected by root application of 6-N-
benzylaminopurine, expressed as a ratio of plant
organ to total plant dry weight and shoot-root ratio 176
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nashi experimental layout</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Temporal changes in root volume of nashi trees during the first two years after budding</td>
<td>48</td>
</tr>
<tr>
<td>2.3</td>
<td>Temporal changes in leaf dry weight of nashi trees during the first two years after budding</td>
<td>51</td>
</tr>
<tr>
<td>2.4</td>
<td>Temporal changes in stem dry weight of nashi trees during the first two years after budding</td>
<td>52</td>
</tr>
<tr>
<td>2.5</td>
<td>Temporal changes in shoot dry weight of nashi trees during the first two years after budding</td>
<td>53</td>
</tr>
<tr>
<td>2.6</td>
<td>Temporal changes in root dry weight of nashi trees during the first two years after budding</td>
<td>54</td>
</tr>
<tr>
<td>2.7</td>
<td>Temporal changes in total dry weight of nashi trees during the first two years after budding</td>
<td>55</td>
</tr>
<tr>
<td>2.8</td>
<td>Temporal changes in shoot-root ratio of nashi trees during the first two years after budding</td>
<td>61</td>
</tr>
<tr>
<td>2.9</td>
<td>Temporal changes in stem-root ratio of nashi trees during the first two years after budding</td>
<td>62</td>
</tr>
<tr>
<td>2.10</td>
<td>Allometric relationship between shoot and root dry weight ((k_T)) of nashi trees over the course of second year of growth</td>
<td>68</td>
</tr>
<tr>
<td>2.11</td>
<td>Allometric relationship between stem and root dry weight ((k_S)) of nashi trees over the course of second year of growth</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of the aeroponic system</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Changes in the proportion of photoassimilates partitioned into tomato seedling organs when supplied via the roots and or the shoot with (GA_3) at varying concentrations (experiment 1); (a) leaf weight ratio, (b) stem weight ratio,</td>
<td></td>
</tr>
</tbody>
</table>
3.3. Changes in relative growth rate of tomato
seedling organs and whole plant when supplied via
the roots or the shoot with GA₃ at varying
concentrations (experiment 2); (a) RGRₐ, (b) RGRₛ
and (c) RGRₜ ... 107

3.3.(cont.) Changes in relative growth rate of tomato
seedling organs and whole plant when supplied via
the roots or the shoot with GA₃ at varying
concentrations (experiment 2); (d) RGRₐ and
(e) RGRₜ ... 108

3.4. Changes in allometric relationship between leaf
and root dry weight (kₗ) of tomato seedlings when
supplied via the roots or the shoot with GA₃ at
varying concentrations (experiment 2) 112

3.5. Changes in allometric relationship between stem
and root dry weight (kₛ) of tomato seedlings when
supplied via the roots or the shoot with GA₃ at
varying concentrations (experiment 2) 114

3.6. Changes in allometric relationship between shoot
and root dry weight (kₜ) of tomato seedlings when
supplied via the roots or the shoot with GA₃ at
varying concentrations (experiment 2) 116

3.7. Changes in the proportion of photoassimilates
partitioned into tomato seedling organs when
supplied via the roots or the shoot with GA₃ at
varying concentrations (experiment 2); (a) leaf
weight ratio, (b) stem weight ratio, (c) root
weight ratio and (d) shoot-root ratio 122

4.1. Changes in leaf attributes of tomato seedlings
when supplied via the roots with 6-N-
benzylaminopurine at varying concentrations;
(a) leaf area, (b) leaf area ratio and (c) specific leaf area 138
4.1. (cont.) Changes in leaf attributes of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations; (d) leaf number and (e) leaf size .. 140

4.2. Changes in root attributes of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations; (a) root length, (b) root number, (c) root number per unit length and (d) root dry weight per unit length .. 150

4.3. Changes in dry weight of tomato seedling organs and whole plant when supplied via the roots with 6-N-benzylaminopurine at varying concentrations; (a) leaf d. wt., (b) stem d. wt. and (c) shoot d. wt. .. 155

4.3. (cont.) Changes in dry weight of tomato seedling organs and whole plant when supplied via the roots with 6-N-benzylaminopurine at varying concentrations; (d) root d. wt. and (e) whole plant d. wt. .. 157

4.4. Changes in relative growth rate of tomato seedling organs and whole plant when supplied via the roots with 6-N-benzylaminopurine at varying concentrations; (a) RGR_L, (b) RGR_S and (c) RGR_T ... 159

4.4. (cont.) Changes in relative growth rate of tomato seedling organs and whole plant when supplied via the roots with 6-N-benzylaminopurine at varying concentrations; (d) RGR_R and (e) RGR_W ... 161

4.5. Changes in allometric relationship between leaf and root dry weight (k_L) of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations .. 164

4.6. Changes in allometric relationship between stem and root dry weight (k_S) of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations .. 165
4.7. Changes in allometric relationship between shoot and root dry weight (kT) of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations ... 166

4.8. Changes in linear relationship between leaf area and root number of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations ... 171

4.9. Changes in linear relationship between leaf area and root length of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations ... 172

4.10. Changes in linear relationship between leaf number and root number of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations ... 173

4.11. Changes in linear relationship between leaf number and root length of tomato seedlings when supplied via the roots with 6-N-benzylaminopurine at varying concentrations ... 174

4.12. Changes in the proportion of photoassimilates partitioned into tomato seedling organs when supplied via the roots with 6-N-benzylaminopurine at varying concentrations; (a) leaf weight ratio, (b) stem weight ratio, (c) root weight ratio and (d) shoot-root ratio ... 177

4.13. The sequential events illustrated as if cytokinin and auxin had been produced in homeostatic manner and thereby k values would have been correspondingly changed. .. 190

4.14. Possible sequence of events induced by BA application as indicated by the results. .. 191
LIST OF PLATES

2.1. Relative size of the three nashi rootstocks, at 15 months old, prior to budding ... 36
3.1. Layout of the experiments using growth regulators ... 78
3.2. Morphological changes of tomato shoots treated with GA3 ... 100
4.1. Abnormal morphology of tomato root systems, when roots were exposed to continual application of BA at 2.2 $\times 10^{-6}$ M for 8 weeks ... 151
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Benzyaminopurine.</td>
</tr>
<tr>
<td>d.wt.</td>
<td>Dry weight (g).</td>
</tr>
<tr>
<td>GA(s)</td>
<td>Gibberellins.</td>
</tr>
<tr>
<td>GA₃</td>
<td>Gibberellic acid.</td>
</tr>
<tr>
<td>k</td>
<td>Allometric value or allometric constant or allometric coefficient (the slope of a regression of ln y = ln a + k ln x, where y is either leaf, stem or shoot dry weight and x is root dry weight).</td>
</tr>
<tr>
<td>kₖL</td>
<td>Allometric value for the regression line of ln (leaf d. wt.) = ln a + kₖL ln (root d. wt.).</td>
</tr>
<tr>
<td>kₕS</td>
<td>Allometric value for the regression line of ln (stem d. wt.) = ln a + kₕS ln (root d. wt.).</td>
</tr>
<tr>
<td>kₕT</td>
<td>Allometric value for the regression line of ln (shoot d. wt.) = ln a + kₕT ln (root d. wt.).</td>
</tr>
<tr>
<td>LA</td>
<td>Total leaf area (cm²).</td>
</tr>
<tr>
<td>LAR</td>
<td>Leaf area ratio (ratio of total leaf area to whole plant dry weight, cm².mg⁻¹).</td>
</tr>
<tr>
<td>LWR</td>
<td>Leaf weight ratio (ratio of total leaf dry weight to whole plant dry weight, in percentage).</td>
</tr>
<tr>
<td>RWR</td>
<td>Root weight ratio (ratio of total root dry weight to whole plant dry weight, in percentage).</td>
</tr>
<tr>
<td>RGR(s)</td>
<td>Mean relative growth rate (refer to page 42, g.g⁻¹.day⁻¹).</td>
</tr>
<tr>
<td>RGRₖL</td>
<td>Relative growth rate of total leaf dry weight (g.g⁻¹.day⁻¹).</td>
</tr>
<tr>
<td>RGRₖS</td>
<td>Relative growth rate of total stem dry weight (g.g⁻¹.day⁻¹).</td>
</tr>
<tr>
<td>RGRₖT</td>
<td>Relative growth rate of total shoot dry weight (g.g⁻¹.day⁻¹).</td>
</tr>
<tr>
<td>RGRₖR</td>
<td>Relative growth rate of total root dry weight (g.g⁻¹.day⁻¹).</td>
</tr>
<tr>
<td>RGRₖW</td>
<td>Relative growth rate of whole plant dry weight (g.g⁻¹.day⁻¹).</td>
</tr>
<tr>
<td>RGRₖLR</td>
<td>Ratio of leaf to root relative growth rate (RGRₖL/RGRₖR).</td>
</tr>
<tr>
<td>RGRₖSR</td>
<td>Ratio of stem to root relative growth rate (RGRₖS/RGRₖR).</td>
</tr>
<tr>
<td>RGRₖTR</td>
<td>Ratio of shoot to root relative growth rate (RGRₖT/RGRₖR).</td>
</tr>
</tbody>
</table>
RGR_{SL} = \text{Ratio of stem to leaf relative growth rate (RGR_{S}/RGR_{L}).}
se = \text{Standard error of mean, unless stated otherwise.}
shoot = \text{Over-ground part of plants, consisting of stem and leaves (g).}
SLA = \text{Specific leaf area (ratio of total leaf area to whole leaf dry weight, cm}^2\text{.mg}^{-1}).
SWR = \text{Stem weight ratio (ratio of total stem dry weight to whole plant dry weight, in percentage).}