Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Transmission of tuberculosis
(Mycobacterium bovis) by possums

A thesis presented
in partial fulfilment of the requirements for the degree of
Doctor of Philosophy
at
Massey University

R Jackson

1995
CHAPTER 3
Page 73, 3rd and 4th sentences should read: Efferent vessels from the tonsil pass directly to the deep cervical lymph node which is drained by the tracheal trunk. The mandibular and parotid lymph nodes drain independently to the superficial cervical lymph node.
Page 75, paragraph 4. Add: For those lymph node measurements not clearly defined in the text, average sizes were calculated from diameters measured at the widest point of the lymph node.
Page 78, last paragraph should read: Efferent vessels. On each side, a large vessel, the tracheal trunk, passed along the ventral surface of the longus colli muscle to a lymphaticovenous connection at the base of each external jugular vein.

CHAPTER 4.
Page 89, 2nd sentence should read: Mycobacterium bovis was not re-isolated from ribbons placed on pasture after 4 days.
Page 96. Add:
Survival on control ribbons
The results of cultures of a control ribbon kept in the laboratory at room temperature in the autumn and of four control ribbons kept at 5 °C are shown in Table 4.1a.

Table 4.1a. Culture test results from control ribbons maintained at room temperature or at 5 °C in the laboratory

<table>
<thead>
<tr>
<th></th>
<th>2 days</th>
<th>4 days</th>
<th>7 days</th>
<th>14 days</th>
<th>28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (room temp, autumn)</td>
<td>nt</td>
<td>tnc</td>
<td>tnc</td>
<td>67 cfu</td>
<td>-</td>
</tr>
<tr>
<td>Control 5 °C autumn</td>
<td>nt</td>
<td>tnc</td>
<td>tnc</td>
<td>tnc</td>
<td>tnc</td>
</tr>
<tr>
<td>Control 5 °C winter</td>
<td>nt</td>
<td>tnc</td>
<td>tnc</td>
<td>tnc</td>
<td>tnc</td>
</tr>
<tr>
<td>Control 5 °C spring</td>
<td>nt</td>
<td>tnc</td>
<td>tnc</td>
<td>tnc</td>
<td>tnc</td>
</tr>
<tr>
<td>Control 5 °C summer</td>
<td>nt</td>
<td>nt</td>
<td>tnc</td>
<td>tnc</td>
<td>+</td>
</tr>
</tbody>
</table>

nt = not tested; tnc = too numerous to count; - = M. bovis not cultured; + = M. bovis cultured; cfu = colony forming units

CHAPTER 5.
Page 115 paragraph 2. The reference, Tyndale-Biscoe (1955), applies to the statement in the first sentence.

CHAPTER 6.
Page 145, paragraph 2. The 4th sentence should read: During postmortem examinations in the studies detailed in Table 6.1, urine, faeces and tracheal washings were collected from randomly selected tuberculous possums with gross lesions of tuberculosis, from which tissues were also taken for bacteriological and/or histopathological examinations.

CHAPTER 8.
Page 204, 2nd last line: “trapping” should read “tracking”.
Abstract

Tuberculosis caused by *Mycobacterium bovis* was diagnosed in 59 of 632 possums (*Trichosurus vulpecula*) individually identified over a 52 month period, during a longitudinal study of the naturally occurring disease in possums at a 21 hectare bush pasture location on a farm at Castlepoint in the Wairarapa. The disease exhibited marked spatial and temporal clustering and was continuously present in the population for the whole period.

The disease had a relatively long duration of up to 22 months and four distinct stages were demonstrated in cross-sectional studies. Among tuberculous possums, prevalences of up to 0.15 (±0.11) were recorded in the first stage prior to development of gross lesions. After dissemination started, the disease showed rapid generalisation to multiple sites by haematogenous and/or lymphatic spread to the next stage when gross lesions were evident, particularly in lung, axillary and inguinal lymphocentres. In the third stage, lesions were disseminated through almost all lung lobes, discharging fistulae were common and kidney, intestine and mammary gland were commonly affected by both gross and microscopic lesions. Behaviour and outward signs of health were unaffected prior to the terminally-ill stage, lasting for up to 2 months.

In common with other marsupials studied to date and in contrast with most eutherians, there are no popliteal lymph nodes and efferent drainage from the inguinal lymphocentre passes directly to the deep axillary group of lymph nodes via an inguinoaxillary trunk. All subcutaneous lymph drainage passes through either the superficial cervical or the axillary lymphocentres before entering the venous system.

Studies of survival of *Mycobacterium bovis* organisms in different natural habitats showed a relatively short period of survival of *M. bovis* outside hosts and support a conclusion that environmental contamination of pasture, particularly in summer months, may be relatively unimportant in the epidemiology of tuberculosis in cattle, deer and possums.

The weight of evidence favours transmission of infection by the respiratory route and it would seem that transmission of tuberculosis between possums occurs through two major and one minor pathway. The first major pathway is pseudo-vertical transmission from mother to joey during the rearing process. The second major transmission mechanism is direct horizontal transmission
among adult possums with available evidence suggesting that this takes place around the locality where a possum dens, probably during competition and threat/agonistic behaviour and during courting and mating activity. The third and probably least important pathway is indirect transmission among mature possums.

None of three ELISA assays reliably detected possums infected with tuberculosis and poor test performance was exacerbated by inconsistency between results from serially collected samples from known tuberculous possums.
I undertook this postgraduate training mainly to better equip me for solving problems in a logical and systematic manner, and to help me make sense of complex issues. I was very fortunate to be given an opportunity to work on a high profile project by my chief supervisor, Professor Roger Morris, who was willing to take on a "bush vet" who scarcely knew the difference between a mean and a median. I am very grateful to him, not just for that opportunity, but also for his generous assistance and responsiveness to needs throughout the study period and for his counsel through my transition from practice to research.

My other supervisors, Dr. Geoff de Lisle and Associate Professor Roger Marshall have constantly encouraged me and given of their time and expertise willingly and I am grateful to them both.

Life within the epidemiology group at Massey University under Professor Morris has been exciting and challenging and has given me a lot of fun and pleasure. All of the postgraduate students and staff in this group have been enthusiastic and loyal and supportive of one another. I thank them all very sincerely for their assistance at various times.

Within the group, Dr. Dirk Pfeiffer has guided me over and around many of the "brick walls" thrown up by analytical techniques and I have particularly enjoyed our many discussions about epidemiological issues.

The long term nature of longitudinal studies makes them more prone to problems than short term studies. We had our share of problems at Castlepoint, but none became serious, and a large part of the smooth running of the study was due to the good sense and friendly cooperation of my good friends Ron Goile, manager of Waio and his partner, Donna Lewis, both of whom have made an outstanding contribution to the longitudinal study. Thanks are also due to Bill Maunsell, the owner of Waio, who has made a quiet but considerable contribution by making his property available for the work.

The use of the library at Massey University has given me much pleasure over the past five years, but the greatest pleasure came from the human resource within the Faculty of Veterinary Science,
which shared its talents and knowledge willingly. Fiona Dickinson, secretary to Professor Morris, is a great exponent of all things pertaining to word processing and document layout, and she in particular has answered numerous requests for help and guidance in the preparation of this thesis and other reports.

The nature of my studies carried with it a high ethical cost in terms of use of animals. I trust that I used them wisely and was not wasteful in the extraction and use of information from them.

I am unable to adequately express my feelings for the most outstanding person of all. June and I have now been married for 37 years and her loyalty and support for me have been remarkable. It can't have been much fun helping me go round the trap lines on occasions in foul weather, or scribing for me in a cold shelter and then facing a waist deep evening return through Flagstaff Creek in mid-winter in Westland. Such is the mettle and loyalty of June, which she constantly has demonstrated throughout our life together. Our children too have been highly supportive of us in this venture and I am grateful to them for that. We miss our friends from Alexandra very much and thank them for continuing their friendship with us over time and distance.

Ron Jackson,
Department of Veterinary Clinical Sciences,
Massey University,
New Zealand.

18 August 1995
Table of Contents

Abstract .. i
Acknowledgements .. iii
Table of Contents ... v
List of Tables ... xiii
List of Figures ... xvii

CHAPTER 1 Introduction .. 1

CHAPTER 2 Tuberculosis caused by Mycobacterium bovis in New Zealand 3

PROGRESS AND CURRENT STATUS .. 5
Testing regimes .. 8
Animal Health Board strategic plan 10
Control costs and funding .. 11

THE CASE FOR TUBERCULOUS POSSUMS BEING A SOURCE
OF TUBERCULOSIS FOR CATTLE .. 13
Evidence from tuberculin testing 14
The incidence of cattle tuberculosis following possum poisoning operations 15
Restriction endonuclease typing of M. bovis .. 15
Persistence of tuberculosis in possum populations 16
Analogy with badgers in the U.K. and Eire 16
Why possums? ... 16
Summary ... 17

THE ROLE OF POSSUMS IN THE EPIDEMIOLOGY OF
TUBERCULOSIS IN DEER ... 18

THE EPIDEMIOLOGY OF TUBERCULOSIS IN POSSUMS 20
Introduction ... 20
Disease investigations .. 21
Experimental infection studies ... 21
Cross-sectional studies .. 22
Limitations of cross-sectional study design 24
Disease transmission ... 25

A SUMMARY OF ECOLOGY OF THE POSSUM IN
NEW ZEALAND AND ITS INFLUENCE ON TUBERCULOSIS

CONTROL POLICIES .. 28
Classification .. 28
Introduction into New Zealand .. 30
Early concern .. 31
Reasons for success .. 32
Basic Physiology of the possum 33
Body size and energy loss ... 34
Ecology .. 36
Population dynamics 36
General population structure 37
 Age structure 37
 Sex ratio ... 38
 Body size ... 40
 Population density 41
 Reproduction 42
 Home range, dispersal, emigration and immigration 44
 Juvenile mortalities 46
 Adult mortalities 46
 Territorial defence, spacing, and social behaviour 47
 Behaviour and territorial defence 50

TUBERCULOSIS IN OTHER ANIMALS AND THEIR IMPORTANCE AS SOURCES OF INFECTION ... 53
 Introduction 53
 Herbivores .. 53
 Deer ... 53
 Introduction 53
 Pathology 55
 Epidemiology 55
 Ecological factors 57
 Sheep .. 59
 Goats .. 59
 Rabbits and hares 60
 Horses ... 60
 Flesh eating animals 60
 Pigs .. 60
 Cats .. 62
 Ferrets, Stoats and Weasels 63
 Hedgehogs and Rats 64

THE CURRENT SITUATION AND IMPLICATIONS FOR LONG TERM CONTROL ... 66
 Introduction 66
 Implications for long term control 67

CHAPTER 3 A study of the topography of the lymphatic system of the Australian brushtail possum (Trichosurus vulpecula) 71

SUMMARY ... 73

INTRODUCTION ... 73

MATERIALS AND METHODS 74

RESULTS .. 75
 Head and neck 77
 Parotid lymphocentre 77
Mycobacterium bovis

DISCUSSION

INTRODUCTION

ACKNOWLEDGMENTS

MATERIALS

ABSTRACT

CHAPTER

ABDOMEN

PELVIC LIMB, TAIL AND MAMMARY GLAND

ABDOMEN AND ABDOMINAL VISCERA

PECTORAL LIMB, SUPERFICIAL THORAX AND ABDOMEN

DISCUSSION

ACKNOWLEDGMENTS

CHAPTER 4 A study of environmental survival of Mycobacterium bovis in selected locations in New Zealand

ABSTRACT

INTRODUCTION

MATERIALS AND METHODS

Substrate material preparation
Timing of studies, test material collection and subsequent bacteriological examinations
Bacteriology
RESULTS

- Culture results .. 95
- Survival probabilities of *M. bovis* organisms on pasture, a forest floor and in dens over all seasons .. 97
- Association between seasons and survival of *M. bovis* organisms on pasture, a forest floor and den locations 99
- Survival on pasture .. 99
- Survival on forest floor ... 99
- Survival in dens ... 100
- Location and weather effects .. 102

DISCUSSION ... 105

ACKNOWLEDGMENTS .. 107

CHAPTER 5 Naturally occurring tuberculosis caused by *Mycobacterium bovis* in brushtail possums (*Trichosurus vulpecula*):

I. An epidemiological analysis of lesion distribution 109

ABSTRACT ... 111

INTRODUCTION .. 112

MATERIALS AND METHODS ... 114

- Necropsy and data recording procedures .. 115
- Selection of specimens for bacteriology ... 115
- Bacteriology and histopathology .. 116
- Waio studies; March 1992, July and September 1993 116
- Statistical Analysis .. 116

RESULTS ... 117

- Point prevalence studies .. 117
- Distribution of gross and microscopic lesions 120
- Test for symmetry of lesion distribution between both sides of the body ... 123
- Association between number of lesioned sites per individual and individual characteristics ... 123
- Associations between occurrence of lesions of tuberculosis among specific body regions ... 125
- Terminally ill possums ... 126
- Tuberculous possums with no gross lesions at necropsy 129
- Comparisons between tuberculous and non-tuberculous possums 130
- Comparison of distribution of lesions in lymph nodes and lymphocentres by sex ... 131
- Comparisons between distributions of gross lesions in possums in this series of studies and previous studies 131

DISCUSSION .. 133

ACKNOWLEDGMENTS ... 138
CHAPTER 6 Naturally occurring tuberculosis caused by
Mycobacterium bovis in brushtail possums (*Trichosurus vulpecula*):

III Routes of infection and excretion 141

ABSTRACT ... 143

INTRODUCTION .. 144

MATERIAL AND METHODS ... 145
 Bacteriology .. 145

RESULTS .. 147
 Recovery of *M. bovis* from tracheal washings, urine, faeces and pouch young of
 tuberculous possums ... 147
 Occurrence of fistulae draining tuberculous lymph nodes to the exterior 148
 Disease characteristics in tuberculous possums with lesion distributions
 consistent with early stage disease .. 150
 Lesion distributions in tonsils, deep cervical lymph nodes and gastric and
 mesenteric lymphocentres (non-terminally ill possums only) 151

DISCUSSION .. 152

ACKNOWLEDGMENTS ... 157

CHAPTER 7 Serological tests for the diagnosis of tuberculosis in
possums: Evaluation of three enzyme-linked
immunosorbent assays ... 159

ABSTRACT ... 161

INTRODUCTION .. 162

MATERIALS AND METHODS ... 163
 Collection of blood samples ... 163
 Evaluation ... 164

RESULTS .. 165
 Test evaluation using cutoffs derived from mean plus 2.57 x standard
 deviation values ... 165
 Evaluation of agreement between tests using Kappa .. 167
 Evaluation of agreement between tests using
 Receiver Operating Characteristic curves .. 168
 Correlations between test absorbance indexes ... 169
 Lesion frequencies and ELISA test results ... 171
 Application of the BLOC K assay to sera from the Castlepoint longitudinal study 176
 Application of the MPB70 assay to sera from the Castlepoint longitudinal study 179

DISCUSSION .. 181
ACKNOWLEDGMENTS ... 184

CHAPTER 8 A longitudinal study of tuberculosis in possums and cattle ... 185

INTRODUCTION .. 187

MATERIALS AND METHODS .. 188
 Data analysis ... 191

POSSUM ECOLOGY .. 193
 Trapping statistics ... 193
 Reproduction ... 196
 Population dynamics ... 201
 General body condition ... 203
 Denning ... 204
 Immigration and a comparison of known locally recruited possums and immigrants 206
 Dispersal .. 207

TUBERCULOSIS EPIDEMIOLOGY .. 208
 Descriptive epidemiology .. 208
 Pathology observations .. 213
 Survival of possums .. 213
 Temporal dynamics of tuberculosis infection 218
 Epidemiological analysis based on restriction endonuclease patterns of *Mycobacterium bovis* 224

TUBERCULOSIS IN OTHER ANIMALS AT CASTLEPOINT 231
 Cattle ... 231
 Goats ... 231
 Sheep .. 232
 Ferrets ... 232
 Pigs .. 232

DISCUSSION .. 233
 TUBERCULOSIS EPIDEMIOLOGY .. 237
 Prevalence and incidence .. 237
 Disease occurrence in mothers and their offspring ... 238
 Age and sex distribution of disease ... 240
 Time of death or disease for different categories of possums .. 241
 Temporal dynamics of the disease ... 242
 Spatial dynamics of the disease ... 243
 Tuberculosis in cattle at the study site ... 244
CHAPTER 9 General Discussion .. 247

GENERAL DISCUSSION .. 249
Stages of tuberculosis in possums .. 249
Modes of transmission of tuberculosis among possums 251
Opportunities for transmission of tuberculosis among possum other than by the pseudovertical mode .. 255
A summary of hypotheses about transmission of tuberculosis between possums . 257
Comparisons between Australia and New Zealand .. 258

Bibliography ... 261

Appendix .. 277

TECHNIQUE FOR POST-MORTEM EXAMINATION OF POSSUMS FOR THE DETECTION OF TUBERCULOSIS ... 277
External examination .. 277
Internal examination .. 277
Macroscopic appearance of tuberculous lesions .. 279
Collections of specimens for subsequent culture for M. bovis 279
Collection of specimens for subsequent histopathology 280
Facilities for autopsies ... 280
Equipment .. 280
Disposal of carcasses and disposable equipment .. 281
Protection of operators engaged in handling tuberculous possums and tissues 282
List of Tables

Table 2.1. Number of cattle reactors, lesion-non-tested cattle, and movement control (MC herds with cattle reactor incidence rates (%) for STCAs and Surveillance Areas of New Zealand for the testing seasons 1985/6 to 1992/93. ... 7

Table 4.1. Numbers of positive, negative and contaminated culture test results from ribbons replicated at each of 3 sites on pasture, a forest floor and in dens and number of samples not tested ... 95

Table 4.2. Group medians, means and Log Rank statistics from comparison of survival probabilities of *M. bovis* organisms on pasture, forest floor and in dens over 4 seasons calculated using 7-day test results as first measurements ... 97

Table 4.3. Group medians, means and Log Rank statistics from comparison of survival probabilities of *M. bovis* organisms on pasture, forest floor and in dens during spring summer and winter using 4-day test results as first measurements ... 98

Table 4.4. Log Rank statistics from comparisons of between season survival probabilities of *M. bovis* organisms in dens using 7-day test results as first measurements ... 101

Table 4.5. Log Rank statistics from comparisons of between season survival probabilities of *M. bovis* organisms in dens calculated using 4-day test results as first measurements ... 102

Table 4.6. Cox's proportional hazard regression model for survival of *M. bovis* ... 103

Table 5.1. Summary of prevalences from field surveys ... 118

Table 5.2. Prevalences of gross lesions and gross and microscopic lesions at body sites in 73 tuberculous possums with gross or microscopic lesions of tuberculosis ... 119

Table 5.3. Prevalences of gross lesions and gross plus microscopic lesions at grouped anatomical sites in 73 possums with lesions of tuberculosis ... 121

Table 5.4. McNemar's Chi-squared test values for symmetry of lesion distributions ... 123

Table 5.5. Summary results from initial simple Poisson regression screening analyses for number of lesions per individual ... 124

Table 5.6. Unweighted Poisson regression of number of lesions per individual for 73 cases ... 125

Table 5.7. Analysis of deviance for goodness of fit in predicting lesion numbers ... 125
Table 5.8. Relative risk values for associations between response and design variables in predicting number of lesions per individual .. 126
Table 5.9. Summary statistics for frequency of gross and gross plus microscopic lesions per individual in terminally ill tuberculous possums .. 127
Table 5.10. Results of histopathology and culture tests for tuberculosis carried out on necropsy negative (NN) possums .. 130
Table 5.11. Summary results from initial logistic regression screening analyses for presence of tuberculosis .. 131
Table 5.12. Comparison of frequency of gross lesion occurrence in studies reported here with values from previously reported studies 132
Table 6.1. Results of culture tests for *M. bovis* from tracheal washings, urine and faeces of tuberculous possums ... 147
Table 6.2. Summary statistics for frequency of gross plus microscopic lesions per individual in 71 possums with and without discharging fistulae 148
Table 6.3. Summary statistics for number of lung lobes containing lesions in individual possums with and without discharging fistulae 149
Table 6.4. Distributions of gross plus microscopic lesion sites in possums in which four or fewer lesion sites were detected .. 150
Table 7.1. Cross-sectional study sera tested. Table showing numbers of sera from possums with positive diagnoses of tuberculosis and the origins of 251 sera classified by study location and diagnostic criteria used for postmortem examination ... 163
Table 7.2. Absorbance index means, standard deviations and cut-off points derived from tests on sera from a non-diseased possum population in Northland with 95% confidence intervals shown in parentheses 165
Table 7.3. Summary test results from possums for which the diagnostic criterion was detailed necropsy using cutoff points calculated from tests on sera from a non-diseased possum population in Northland 167
Table 7.4. Test agreement between CF and MPB70 tests for the sample of 119 possums using cut-off points derived from a non-diseased possum population in Northland 168
Table 7.5. Comparison of areas under the curves for CF, MPB70 and Block assays ... 169
Table 7.6. Summary of test results from possums for which the diagnostic criterion was detailed necropsy using cut-off points derived from ROC curves at the point of the lowest index value with a corresponding specificity equal to 1.0 .. 169
Table 7.7. Correlations between test absorbance indexes for tuberculous and non-tuberculous possums diagnosed by detailed necropsy 170

Table 7.8. Summary statistics for frequency of gross and gross plus microscopic lesion sites per individual possum tested by MPB70 and CF ELISAs 171

Table 7.9. Summary statistics for frequency of gross and gross plus microscopic lesion sites per individual possum tested by the BLOCK assay 171

Table 7.10. Results from Wilcoxon rank-sum tests of equality of medians of numbers of gross and numbers of gross plus microscopic lesion sites in tuberculous possums categorised by positive and negative test results 171

Table 7.11. Testing histories of nine tuberculous possums which were identified as positive by the BLOCK assay 177/178

Table 7.12. Testing histories of eight confirmed tuberculous possums which were identified as positive by the MPB70 ELISA 180

Table 8.1. Number of possums caught in yearly time periods between February 1990 and January 1993 classified by sex and maturity 195

Table 8.2. Number of rearing episodes per possum for 157 individual female possums over a 52 month period from April 1989 to July 1993 197

Table 8.3. Summary Jolly-Seber statistics for survival probability between successive visits, population size and immigration plus births for each month from and including visits 5 to 50 201

Table 8.4. Survival functions $S(t)$ for non-tuberculous possums which remained in the study (N = 76 failed, 205 censored), non-tuberculous possums which disappeared (N = 243 failed) and tuberculous possums (N = 43 failed, one censored) 216
List of Figures

Figure 2.1. Map of New Zealand showing areas endemic for Tb and Special Tuberculosis Control Areas (September 1991) courtesy P. Livingstone .. 7

Figure 2.2. Areas of Endemic Tb (shaded black) in New Zealand 1995 7

Figure 3.1.a-b. (a) Superficial body regions from which lymph drains directly to 1, parotid lymph nodes; 2, deep axillary lymph nodes; 3, inguinal lymphocentres; 4, superficial axillary lymph nodes; 5, mandibular lymph nodes. (b) I, Superficial body regions from which lymph drains directly or indirectly to the superficial cervical lymph nodes; II, Superficial body regions from which lymph drains directly or indirectly to the deep axillary lymph nodes. .. 76

Figure 3.2. Diagrammatic representation of the superficial lymph nodes and the deep cervical lymphocentre and their efferent pathways in the brushtail possum. .. 77

Figure 4.1. Survival probabilities of M. bovis organisms on pasture, forest floor and in dens, calculated using aggregated data from spring, summer autumn and winter, with 7-day test results as first measurements. 97

Figure 4.2. Survival probabilities of M. bovis organisms on pasture, forest floor and in dens during spring, summer and winter, calculated using 4-day test results as first measurements. .. 98

Figure 4.3. Survival probabilities of M. bovis organisms on forest floor during winter, spring and summer calculated using 4-day test results as first measurements. .. 100

Figure 4.4. Survival probabilities of M. bovis organisms in dens during autumn, winter, spring and summer calculated using 7-day test results as first measurement data. .. 101

Figure 4.5. Survival probabilities of M. bovis organisms in dens during winter, spring and summer calculated using 4-day test results as first measurement data. .. 102

Figure 4.6. Daily minimum temperatures on pasture, forest floor and in dens during spring (4.6a), summer (4.6c) and winter (4.6b) and daily mean temperatures at the study site at those times (4.6d). .. 104

Figure 5.1. Frequency of number of sites containing gross lesions per individual in 73 tuberculous possums. .. 122

Figure 5.2. Frequency of number of sites containing gross and/or microscopic lesions per individual in 73 tuberculous possums. .. 122
Figure 5.3. Box plot of distributions of gross lesions of cross-sectional and terminally ill groups of possums. 128
Figure 5.4. Box plot of distributions of gross plus microscopic lesions of cross-sectional and terminally-ill groups of possums. 128
Figure 6.1. Box plot of number of gross plus microscopic lesion sites in tuberculous possums with and without discharging fistulae 148
Figure 6.2. Box plot of number of lung lobes with lesions in tuberculous possums with and without discharging fistulae 149
Figure 7.1. Receiver-operating characteristic curves for Culture Filtrate, BLOCK and MPB70 assays 168
Figure 7.2a Scatter plot of \log_{10} MPB70 indexes and \log_{10} CF indexes of tuberculous and non-tuberculous possums 170
Figure 7.2b Scatterplot of \log_{10} MPB70 and \log_{10} CF indexes in non-tuberculous possums. $r = +0.34$ 170
Figure 7.2c. Scatterplot of \log_{10} MPB70 and \log_{10} CF indexes in tuberculous possums. $r = +0.71$ 170
Figure 7.3. Histograms showing frequencies of positive and negative CF ELISA sera categorised by number of gross lesion sites per individual 173
Figure 7.4. Histograms showing frequencies of negative and positive CF ELISA sera categorised by the number of gross plus microscopic (total) lesion sites per individual 173
Figure 7.5. Histograms showing frequencies of positive and negative MPB70 ELISA sera categorised by the number of gross lesions sites per individual 174
Figure 7.6. Histograms of frequencies of negative and positive MPB70 ELISA sera categorised by the number of total lesion sites per individual 174
Figure 7.7. Histograms showing frequencies of positive and negative Block assay sera categorised by the number of gross lesions per individual. 175
Figure 7.8. Histograms of frequencies of positive and negative Block assay sera categorised by the number of total lesions per individual 175
Plate 8.1 The middle region of the northern side of the study site where possum density and tuberculosis prevalence was high 189
Plate 8.2 The manuka clad souther side of the study site 190
Figure 8.1. Trapcatch statistics 193
Figure 8.2. Individuals captured and individuals clinically examined at monthly visits ... 194

Figure 8.3. Relative frequency of ages of female and male possums for which death was recorded. ... 196

Figure 8.4. Temporal distributions of births and periods of rearing pouch young in possums ... 197

Figure 8.5. Relative frequency of periods between successive births measured in 30 day interval periods ... 198

Figure 8.6. Changes in mean bodyweight and mean testicle size following independence in male possums identified as pouch young ... 199

Figure 8.7. Distributions of the proportion of immature possums to mature possums in the catch of new possums each month aggregated over four years ... 200

Figure 8.8. Temporal dynamics of Jolly-Seber population parameters for the possum population from visit number 5 to visit number 50 ... 201

Figure 8.9. Temporal dynamics of Jolly-Seber population parameters for the possum population from visit 5 to visit 50 showing the relationship between immigration/births and disappearance ... 202

Figure 8.10. Temporal pattern of average body weights of mature male and female and immature possums over 52 months ... 203

Figure 8.11. Temporal patterns of body weight of adult male and female possums (note restricted range of values shown on the Y axis) ... 204

Figure 8.12. Scatterplot of den site tracking effort (N = 818 occasions) and the number of different dens (N = 595 den sites) used by individual possums ... 205

Figure 8.13. Captures of new possums stratified by age groups ... 206

Figure 8.14. Aggregated 36 month data showing the number of months for which possums were captured after initial capture depending on month of capture ... 207

Figure 8.15. New cases of tuberculosis over the first 45 months of the study, stratified by age and sex (no new cases were recorded between visits 46 and 52) ... 209

Figure 8.16a. Temporal distribution of incident cases of tuberculosis in mature females without pouch young present ... 210

Figure 8.16b. Temporal distribution of incident cases of tuberculosis in mature females with pouch young present ... 211
Figure 8.17. Estimated survivor functions for possums which died from misadventure and possums which were not lost to follow-up 215

Figure 8.18. Kaplan-Meier survivor functions for infected and non-infected possums .. 216

Figure 8.19. Estimated survivor function curves of groups of possums stratified by sex and tuberculosis infection status 217

Figure 8.20. Incidence and prevalence of tuberculosis in possums at Castlepoint from April 1989 to July 1993 218

Figure 8.21a. Average monthly point prevalences calculated from data from all 52 months of the study period under consideration 219

Figure 8.21b. Average monthly point prevalences for males and females calculated from data for all 52 months of the study, using the numbers of male and female possums clinically examined at each visit for calculation of the denominators 220

Figure 8.22a. Average monthly cumulative incidences calculated from the 52 months of the period under consideration 221

Figure 8.22b. Average monthly cumulative incidences for males and females calculated from data for all 52 months of the study period 221

Figure 8.22c. Number of mature male and mature female incident cases of tuberculosis at each month 223

Figure 8.22d. Number of total male and total female incident cases of tuberculosis at each month 223

Figure 8.23. Temporal distribution of restriction endonuclease types of Mycobacterium bovis isolates 224

Figure 8.24a. Trap sites at which tuberculous possums were caught during the study period 225

Figure 8.24b. Trap sites at which tuberculous possums were never caught during the study period 225

Figure 8.25. Spatial distribution of capture sites plus den sites used by tuberculous possums infected with particular restriction endonuclease types of Mycobacterium bovis isolates, based on capture site data taken from the period of four months prior to time of diagnosis of tuberculosis to time of death 226

Figure 8.26. Spatial distribution of restriction endonuclease types of Mycobacterium bovis isolates based solely on capture site data from four months prior to time of diagnosis of tuberculosis to time of death 227
Figure 8.27. Spatial and temporal distribution of restriction endonuclease Type 4 over 52 months of the study based on locations of den sites used by possums infected with that type ... 228

Figure 8.28. Spatial and temporal distribution of restriction endonuclease Type 4a over 52 months of the study based on locations of den sites used by possums infected with that type ... 229

Figure 8.29. Spatial and temporal distribution of restriction endonuclease Type 4b over 52 months of the study based on locations of den sites used by possums infected with that type ... 230

Figure 8.30 Spatial and temporal distribution of restriction endonuclease Type 10 over 52 months of the study based on locations of den sites used by possums infected with that type ... 230