Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECTS OF RDI ON APPLE TREE (cv. Royal Gala) GROWTH, YIELD AND FRUIT QUALITY IN A HUMID ENVIRONMENT

A thesis presented in partial fulfilment of the requirements for the degree of Doctor in Philosophy in Horticulture at Massey University

Gladys Durand
November, 1990
To my Beloved Son Kahlil
who fills my life with joy

and In Memory of my Husband.
ABSTRACT

The feasibility of using Regulated Deficit Irrigation in the humid environment of New Zealand was evaluated on trees of apple cv. Royal Gala (*Malus domestica* Borkh.). The study was carried out in a glasshouse experiment and a field experiment. In the glasshouse experiment, it was evaluated the pattern of soil water extraction by the winter mutant of lucerne (*Medicago sativa sensu lato*) ASR13R from a 'synthetic' soil layered in the same way that it occurs in the research orchard, under trickle and sprinkler irrigation. Results indicated that lucerne extracted soil water at a high rate and explored deep areas of soil.

The field experiment was conducted during two consecutive seasons (1987-1989). Lucerne as under tree cover and black polyethylene mulch were compared with conventional herbicide strip to control excess of water in the root zone of the crop that would otherwise promote vegetative growth. These treatments were applied in combination with an irrigation schedule divided into three Phases. In Phase I, water was withheld, in Phase II RDI was compared with full irrigation, and during Phase III which coincided with the rapid fruit growth, all treatments received the full irrigation rate. During the first season, RDI and full irrigation treatments were based on 25% and 100% replacement EPS (evaporation in the planting square) respectively. In the second season, after a 50% of the soil water content in the top 600 mm of soil, between Drainage Upper Limit and the Lower Limit was reached, full irrigation treatments were replenished to the DUL, while RDI treatments received 25% of that amount. Results showed that under the conditions of this study evaluation of crop water requirements based on soil moisture measurements was more reliable than those based on pan evaporation.

The degree of reduction of summer pruning obtained under lucerne X RDI treatment,
reflected levels of soil and plant water deficit similar to those obtained in arid environments. Results confirmed my hypothesis that by using lucerne as under tree cover, a RDI strategy can be used in this environment. In contrast, black plastic mulch appeared to maintain soil moisture rather than prevent its accumulation. Nevertheless, effects were obtained which reflected positively in fruit growth and yield. Similar results were obtained under the control treatment, although it was less effective for in reducing tree vigour. The latter treatment, however, can be implemented in most orchards at no cost and generate important savings.

Apple fruit growth proved to be relatively insensitive to water deficit imposed during early stages of growth, whereas vegetative growth was checked. Restoring full irrigation to coincide with rapid fruit growth stimulated growth of RDI fruits resulting in higher yield under control and plastic X RDI. Lucerne showed higher rates of water use that were not compensated by the irrigation which affected fruit growth and size. Results showed that fruits from RDI treatments were firmer, accumulated higher T.S.S. and had lower bruise susceptibility than fruits from fully irrigated treatments. Fruit quality remained higher after 10 weeks of cool storage.
ACKNOWLEDGMENTS

I am greatly indebted to Professor David Chalmers for the tremendous effort and time he spent in guiding this work and preparing the manuscript. Thanks for his constant moral support and the encouragement to venture in the applied Plant Physiology field.

Gratitude is extended to Dr. Brent Clothier, DSIR for his invaluable assistance with the soil data:

Thanks to the New Zealand Government, Ministry of External Relations and Trade, Venezuelan Government and mainly to Massey University for the scholarship grant;

Grateful acknowledgments are due to Dr. Hugo Varela for all the efforts in solving the most complicated computer programming of this work and for his "latin" friendship.

I am very grateful to the staff and postgraduate students, Department of Horticultural Science at Massey University, for their help throughout this study.

Special thanks are extended to Simon Cayzer and Andrew Saunders for their assistance during the field work and to Bruce MacKay and Dr. Preston Andrew for their constructive comments and suggestions.

Thanks to all the staff of Fruit Crop Unit for their enormous help during the experimental work.

Thanks to the Filipino and Singaporean communities and all my friends in New Zealand, for "replacing" my family when far from home.
My deep appreciation goes to my brothers and sisters for their great moral support and love, and especially to my mother who extended her unfailing love support to me and my work.

Finally, I give thanks to the Lord Jesus who guided my steps to the stage where I am.
TABLE OF CONTENTS

ABSTRACT .. i
ACKNOWLEDGMENTS .. iii
LIST OF TABLES ... xiv
LIST OF FIGURES ... xvii

CHAPTER ONE. LITERATURE REVIEW... 1

1.1. Introduction ... 1
1.2. Irrigation. ... 2
1.2.1. Introduction. ... 2
1.2.2. Irrigation Methods. .. 3
1.2.3. Crop Water Requirements. ... 4
1.2.3.1. Methods of Estimating Evapotranspiration .. 5
1.2.3.1.1. Water Balance Methods... 6
1.2.3.1.2. Micrometeorological Methods. .. 9
1.2.3.1.3. Plant Physiological Methods. ... 9
1.2.3.1.3.1. Chamber Methods .. 9
1.2.3.1.3.2. Tracer Techniques. ... 10
1.2.3.1.3.3. Other Plant Physiological Methods. ... 11
1.2.3.2. Modelling of Evapotranspiration. .. 11
1.2.3.2.1. Models for Potential and Reference ET. .. 11
1.2.3.2.1.1. Process Oriented Models ... 11
1.2.3.2.1.1.1. Combination Equation Models .. 11
1.2.3.2.1.1.2. Net Radiation Models... 12
1.2.3.2.1.1.2. Correlation Based Models .. 13
1.2.3.2.1.1.2.1. Radiation Model .. 13
1.2.3.2.1.1.2.2. Temperature Model ... 14
1.2.3.2.1.1.2.3. Humidity Models .. 14
1.2.3.2.1.1.2.4. Evaporation Models .. 15
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.3.2.2. Models for Actual Evapotranspiration</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3.2.2.1. Correlation Based Models</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3.2.2.1.1. Models Based on Crop Coefficient</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3.2.2.1.2. Models Based on Soil Water Deficit</td>
<td>16</td>
</tr>
<tr>
<td>1.2.3.2.2.2. Process Oriented Models</td>
<td>17</td>
</tr>
<tr>
<td>1.2.3.2.2.2.1. Models Based on Surface Resistance</td>
<td>17</td>
</tr>
<tr>
<td>1.2.3.2.2.2.2. Models Based on the Root Extraction Function</td>
<td>17</td>
</tr>
<tr>
<td>1.2.3.3. Estimation of Irrigation Requirements</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3.3.1. Allowable Soil Water Depletion</td>
<td>19</td>
</tr>
<tr>
<td>1.2.3.3.2. Allowable Evapotranspiration Deficit</td>
<td>20</td>
</tr>
<tr>
<td>1.2.3.3.3. Plant Approach</td>
<td>21</td>
</tr>
<tr>
<td>1.2.3.3.3.1. Allowable Leaf Water Potential Depression</td>
<td>21</td>
</tr>
<tr>
<td>1.2.3.3.3.2. Foliage-Air Temperature Difference</td>
<td>22</td>
</tr>
<tr>
<td>1.2.3.3.3.3. Plants as Indicators of Water Stress</td>
<td>22</td>
</tr>
<tr>
<td>1.2.3.3.3.4. Phenological Variation in Crop Sensitivity to Water Stress</td>
<td>23</td>
</tr>
<tr>
<td>1.2.3.3.5. Development of the Concept of Regulated Deficit Irrigation</td>
<td>25</td>
</tr>
<tr>
<td>1.2.3.4. Irrigation Timing</td>
<td>30</td>
</tr>
<tr>
<td>1.3. Soil Water Regime</td>
<td>33</td>
</tr>
<tr>
<td>1.3.1. Introduction</td>
<td>33</td>
</tr>
<tr>
<td>1.3.2. Soil Water Availability</td>
<td>33</td>
</tr>
<tr>
<td>1.3.3. Water Distribution in the Soil</td>
<td>35</td>
</tr>
<tr>
<td>1.3.4. Soil Water Storage and Water Extraction</td>
<td>36</td>
</tr>
<tr>
<td>1.3.5. Controlling the Soil Water Budget</td>
<td>37</td>
</tr>
<tr>
<td>1.4. Plant Responses to Water Deficits</td>
<td>39</td>
</tr>
<tr>
<td>1.4.1. Leaf Water Potential</td>
<td>39</td>
</tr>
<tr>
<td>1.4.1.1. Diurnal Pattern</td>
<td>39</td>
</tr>
<tr>
<td>1.4.1.2. Seasonal Changes</td>
<td>40</td>
</tr>
<tr>
<td>1.4.1.2.1. Pattern Related to Soil Moisture</td>
<td>40</td>
</tr>
<tr>
<td>1.4.1.2.2. Pattern Related to Phenological Phase</td>
<td>42</td>
</tr>
</tbody>
</table>
1.4.2. Stomatal Resistance, Conductance and Transpiration..43
1.4.3. Stem Water Potential...45
1.4.4. Growth..46
1.4.4.1. Vegetative Growth..46
1.4.4.1.1. Root..46
1.4.4.1.2. Stem and Shoot...47
1.4.4.1.3. Reproductive Growth..48
1.4.4.1.3.1. Fruit Set...48
1.4.4.1.3.1. Fruit Growth and Yield..49
1.4.5. Fruit Quality...52
1.4.5.1. Total Soluble Solids and Acidity...52
1.4.5.2. Fruit Size...53
1.4.5.3. Colour..55
1.4.5.4. Firmness..55
1.4.5.5. Bruise Resistance...57
1.4.5.6. Keeping Quality and Incidence of Disorders.............................57
1.4.6. Relative Sensitivity to Water Deficit..58
1.4.6.1. Physiological Processes...58
1.4.6.2. Assimilate Partitioning..59
1.4.6.2.1. Sink Growth...59
1.4.6.2.2. Sink Metabolism...60
1.4.6.2.3. Regulation of Growth and Assimilate Partitioning in Fruit Trees........61
1.4.6.2.3.1. Role of Root Growth in Control of Vegetative Growth and Assimilate Partitioning..62
1.4.6.2.3.2. Role of Fruit in Assimilate Partitioning...............................64
1.4.7. Use of Water Deficit to Manipulate Plant Growth..........................65
1.4.7.1. Manipulation of Root Growth...65
1.4.7.2. Differential Sensitivity of Competing Physiological Processes to Water Deficits...67
CHAPTER TWO. GENERAL MATERIALS AND METHODS

2.1. Introduction ... 70
2.2. Plant Material ... 70
2.3. Environment ... 71
2.3.1. Climate ... 71
2.3.2. Soil .. 71
2.4. Field Trials ... 73
2.4.1. Experimental Layout ... 73
2.4.1.1. Soil Management Treatments 75
2.4.1.2. Irrigation Strategies ... 75
2.5. Data Collection ... 76
2.5.1. Collection of Soil Moisture Data 76
2.5.1.1. Field Calibration ... 76
2.5.1.2. Field Data .. 76
2.5.2. Collection of Plant Data .. 79
2.5.2.1. Trunk Circumference ... 79
2.5.2.2. Shoot Length ... 79
2.5.2.3. Fruit Data .. 79
2.4.2.4. Plant Water Status Data ... 80
2.4.2.5. Data Analysis ... 81

CHAPTER THREE. GLASSHOUSE EXPERIMENT: INTERACTION BETWEEN IRRIGATION METHOD AND LUCERNE ON SOIL WATER REGIME. 82

3.1. Introduction ... 82
3.2. Materials and Methods .. 83
3.2.1. The Soil Profile .. 83
3.2.2. Irrigation ... 83
3.2.2.1. Sprinkler Irrigation ... 83
3.2.2.2. Trickle Irrigation ... 84
3.3. Results ... 84
3.3.1. Soil Water Content .. 84
3.3.1.1. Sprinkler Irrigation .. 84
3.3.1.2. Trickle Irrigation ... 86
3.3.1.3. Comparison Between Irrigation Systems in
Relation to Drainage .. 87
3.3.2. Soil Water Storage (W) 89
3.3.2.1. Sprinkler Irrigation .. 89
3.3.2.2. Comparison Between Irrigation Systems in
Relation to Root Water Extraction 92
3.3.2.3. Trickle Irrigation ... 92
3.3.3. Soil Water Balance .. 96
3.3.1. Water Use Efficiency ... 98
3.4. Discussion ... 98

CHAPTER FOUR. SEASON 1987-1988 101

4.1. Introduction .. 101
4.2. Objectives ... 102
4.3. Materials and Methods .. 102
4.3.1. Weather .. 102
4.3.2. Prediction of ET Crop by Pan Evaporation 103
4.3.3. Irrigation .. 104
4.3.4. Estimation of Net Water Input 105
4.3.5. Predicted Water Deficit 105
4.3.6. Soils ... 106
4.3.6.1. Stored Soil Water ... 106
4.3.6.2. Soil Water Volume ... 106
4.3.7. Collection of Plant Data 107
4.3.7.1. Plant Water Status ... 107
4.3.7.2. Photosynthetic Rate and Stomatal Conductance

Page 107

4.3.7.3. Shoot Data

Page 107

4.3.7.4. Fruit Data

Page 108

4.4. Results

Page 108

4.4.1. Weather Season 1987-1988

Page 108

4.4.1.1. Phase I

Page 108

4.4.1.2. Phase II

Page 108

4.4.1.3. Phase III

Page 108

4.4.3. Accumulated Predicted Water Deficit

Page 110

4.4.4. Soil Moisture

Page 110

4.4.4.1. Volumetric Water Content

Page 110

4.4.4.1.1. Volumetric Water Content in Phase I

Page 115

4.4.4.2. Effects of Treatments on Total Soil Water Storage

Page 116

4.4.4.2.1. Phase I

Page 116

4.4.4.2.2. Phase II

Page 121

4.4.4.2.3. Phase III

Page 123

4.4.4.3. Accumulated Soil Water Deficit

Page 123

4.4.4.3.1. Phase I

Page 123

4.4.4.3.2. Phase II

Page 124

4.4.4.3.3. Phase III

Page 129

4.4.4.3.4. Relationship Between Cumulative Predicted ET and Cumulative Soil Water Deficit Measured

Page 130

4.4.4.4. Effect of Treatments on Pattern of Water Extraction

Page 131

4.4.4.4.1. Pattern with Depth

Page 131

4.4.4.4.2. Pattern with Distance From the Tree

Page 131

4.4.5. Diurnal Pattern of Leaf Water Potential

Page 135

4.4.6. Effects of Treatments on Diurnal Pattern of Photosynthesis

Page 136
CHAPTER FIVE. SEASON 1988-1989

5.1. Introduction ... 160
5.2. Objectives ... 160
5.3. Materials and Methods .. 160
5.3.1. The Weather .. 160
5.3.2. Irrigation Strategies ... 161
5.3.3. Estimation of Total Water Input .. 163
5.3.4. Soils .. 163
5.3.5. Collection of Plant Data .. 164
5.3.5.1. Shoot Growth ... 164
5.3.5.2. Fruit Growth .. 164
5.3.5.3. Plant Water Status ... 164
5.3.5.3.1. Leaf Water Potential (Ψ_l) .. 164
5.3.5.3.2. Stem Water Potential (Ψ_s) 165
5.4. Results .. 165
5.4.1. Weather Season 1988-1989 165
5.4.1.1. Phase I ... 165
5.4.1.2. Phase II ... 165
5.4.1.3. Phase III ... 167
5.4.2. Soil Moisture .. 167
5.4.2.1. Volumetric Water Content 167
5.4.2.2. Effects of Treatments on Total Soil Water Storage ... 168
5.4.2.2.1. Phase I .. 168
5.4.2.2.2. Phase II ... 173
5.4.2.2.3. Phase III ... 174
5.4.2.3. Accumulated Soil Water Deficit ... 174
5.4.2.3.1. Phase I .. 174
5.4.2.3.2. Phase II ... 175
5.4.2.3.3. Phase III .. 179
5.4.2.4. Effects of Treatments on Pattern of Extraction with Depth ... 180
5.4.3. Effect of Treatments on Seasonal Pattern of Leaf Water Potential ... 182
5.4.3.1. Phase I ... 182
5.4.3.2. Phase II ... 182
5.4.3.3. Phase III ... 188
5.4.4. Stem Water Potential (ψ_s) .. 189
5.4.5. Effects of Treatments on Vegetative Growth ... 192
5.4.5.1. Trunk Cross Sectional Area (TCSA) 192
5.4.5.2. Shoot Length ... 194
5.4.6. Effects of Treatments on Fruit Growth 194
5.4.6.1. Phase I and Phase II ... 194
5.4.6.2. Phase III ... 196
5.4.6.3. Yield ... 198
5.4.6.4. Effects on Fruit Quality 202
5.4.6.4.1. Fruit Size ... 202
5.4.6.4.2. Flesh Firmness..202
5.4.6.4.3. Solids Soluble..205
5.4.6.4.4. Bruise Resistance..206
5.5. Discussion...207

CHAPTER SIX. GENERAL DISCUSSION..211

6.1. Soil Management...211
6.2. Irrigation Scheduling..213

6.3. Sensitivity to Water Stress at Different Crop Stages..............215
6.3. Regulated Deficit Irrigation Effects on Fruit Quality.............217

REFERENCES...218
LIST OF TABLES

Table 3.1. Water content (θ) profile during a drying cycle after irrigation with point emitters. ... 87
Table 3.2. Water content (θ) profile at time drainage initiated and ceased as measured with the neutron probe. 88
Table 3.3. Soil water storage change between soil depth intervals during extraction periods of sprinkler and trickle irrigation. ... 95
Table 3.4. Comparison between regression lines for soil water storage (W) over time after sprinkler and trickle irrigation. 97
Table 4.1. Climatic data for Palmerston North during season 1987-88 (Summary by periods). .. 103
Table 4.2. Irrigation treatments during season 1987-1988. 105
Table 4.3. Changes in soil water content (θ) during Phase I. 116
Table 4.4. Changes in total soil water storage (W) during Phase I. .. 120
Table 4.5. Changes in total soil water storage (W) during Phase II. .. 121
Table 4.6. Accumulated soil water deficit over the planting square (ΔW) during Phase I. .. 124
Table 4.7. Accumulated soil water deficit (ΔW) over the planting square during Phase II. .. 125
Table 4.8. Accumulated soil water deficit (ΔW) over the planting square during Phase III. .. 129
Table 4.9. Determination coefficients (r²) for cumulative predicted ET to cumulative soil water deficit measured. 130
Table 4.10. Effects of treatments on percentage of water extracted from different depths in the root zone

Table 4.11. Absolute and relative trunk cross sectional area (TCSA) increase during season 1987-1988

Table 4.12. Effect of treatments on fruit growth rate (cm³·day⁻¹) during Phase I

Table 4.13. Effect of treatments on fruit growth rate (cm³·day⁻¹) during selected periods of Phase II

Table 4.14. Effect of treatments on fruit growth rate (cm³·day⁻¹) during selected periods of Phase III

Table 4.15. Effect of treatments on yield during the season 1987-1988

Table 4.16. Effects of treatments on yield (kg/unit) by class size of the season 1987-1988

Table 4.17. Effects of soil and irrigation management treatments on fruit quality

Table 5.1. Climatic data for Palmerston North during 1988-89 season

Table 5.2. Drainage upper limit (DUL) and lower limit (LL) of volumetric soil water content (θ) in Massey Orchard

Table 5.3. Changes in soil water content (θ) during Phase I

Table 5.4. Changes in total soil water storage (W) during Phase I

Table 5.5. Accumulated soil water deficit, ∆W (mm) over the planting square during Phase I

Table 5.6. Effects of treatments on the percent of water extracted from different depths in the root zone

Table 5.7. Effects of treatments on leaf water potential during Phase II

Table 5.8. Midday leaf water potential (Ψₘ) during Phase III

Table 5.9. Absolute and relative growth of trunk cross sectional area (TCSA) during season 1988-1989
Table 5.10. Total absolute and relative growth of trunk cross sectional area (TCSA) during the experiment. 193
Table 5.11. Effect of treatments on yield during the season 1988-1989. .. 200
Table 5.12. Effect of treatments on yield during the experiment (1987-1989). .. 201
Table 5.13. Effect of soil and irrigation management treatments on fruit quality during the season 1988-1989. 203
Table 5.14. Effect of soil and irrigation management treatments on fruit quality during the experiment 1987-1989. 204
LIST OF FIGURES

2.1. Monthly water balance for Palmerston North, New Zealand. ... 72
2.2. (a) Retentivity curve for the three textural elements of the Manawaru fine sandy loam and (b) field calibration of neutron probe at Massey orchard. ... 74
2.3. Layout of drip emitters and access tubes for neutron probe measurements. ... 77
3.1. Profiles of water content of a "synthetic" soil analogue of Manawaru fine sandy loam under sprinkler irrigation. 85
3.2. Changes in the amount of water stored between 0-350, 350-550, 550-750 and 750-950 mm depths of a "synthetic" soil profile during the extraction period following irrigation by sprinkler... 90
3.3. Changes in the amount of water stored between the depths 0-350, 350-550, 550-750 and 750-950 mm depths of a "synthetic" soil profile during a drying cycle after sprinkler irrigation.. 91
3.4. The proportion of water extracted from layers between 0-350, 350-550, 550-750 and 750-950 mm depth during a drying cycle after sprinkler irrigation... 93
3.5. The proportion of water extracted from layers between 0-350, 350-550, 550-750 and 750-950 mm depth during a drying cycle after trickle irrigation... 94
4.2. Cumulative water deficit/surplus predicted for plastic treatments during the growing season 1987-1988............................. 111
4.3. Cumulative water deficit/surplus predicted for control
4.4. Cumulative water deficit/surplus predicted for lucerne treatments during the growing season 1987-1988

4.5. Typical soil water content profiles obtained under (a) plastic, (b) control and (c) lucerne treatments respectively during Phase I (day 36 *, day 59 +).

4.6. Seasonal pattern of soil water stored (W) under plastic treatments, estimated by the neutron probe.

4.7. Seasonal pattern of soil water stored (W) under control treatments, estimated by the neutron probe.

4.8. Seasonal pattern of soil water stored (W) under lucerne treatments, estimated by the neutron probe.

4.12. Pattern of soil water extraction with distance from the tree for treatments during a selected period.

4.13. Diurnal pattern of leaf water potential (ΨL) for all the treatments during days 53, 82, 123 and 148 after full bloom.

4.14. Diurnal pattern of photosynthesis rate for all treatments during days 53, 82, 123 and 148 after full bloom.

4.15. Diurnal pattern of leaf conductance for all treatments during days 53, 82, 123 and 148 after full bloom.

4.16. Accumulated shoot growth for all the treatments from day 48 to 106 after full bloom.

4.17. Ratio between fruit growth rate of RDI treatments to the respective full irrigation treatment.
4.18. Cubic fit for fruit growth rate during growing season 1987-1988 ... 145

5.1. Daily water balance during growing season 1988-1989 .. 166

5.2. Seasonal pattern of soil water stored (W) under plastic treatments, estimated by the neutron probe. 170

5.3. Seasonal pattern of soil water stored (W) under control treatments, estimated by the neutron probe. 171

5.4. Seasonal pattern of soil water stored (W) under lucerne treatments, estimated by the neutron probe. 172

5.5. Cumulative soil water deficit obtained under plastic treatments during the growing season 1988-1989 176

5.6. Cumulative soil water deficit obtained under control treatments during the growing season 1988-1989 177

5.7. Cumulative soil water deficit obtained under lucerne treatments during the growing season 1988-1989 178

5.8. Seasonal pattern of predawn (Ψ_{Lp}) and midday (Ψ_{Lm}) leaf water potential for plastic treatments 183

5.9. Seasonal pattern of predawn (Ψ_{Lp}) and midday (Ψ_{Lm}) leaf water potential for control treatments 184

5.10. Seasonal pattern of predawn (Ψ_{Lp}) and midday (Ψ_{Lm}) leaf water potential for lucerne treatments 185

5.11. Seasonal pattern of predawn stem water potential (Ψ_s) of control X full irrigation and lucerne X RDI treatments ... 190

5.12. Seasonal pattern of midday stem water potential (Ψ_s) of control X full irrigation and lucerne X RDI treatments ... 191

5.13. Accumulated shoot growth for all the treatments from day 47 to 104 after full bloom .. 195

5.14. Ratio fruit growth rate of RDI treatments to the respective full irrigation treatments .. 195
5.15. Change in fruit volume of Royal Gala apple trees as affected by treatments during the season 1988-1989. 199
5.12. Seasonal pattern of midday stem water potential (Ψ_s) of control X full irrigation and lucerne X RDI treatments.

5.13. Accumulated shoot growth for all the treatments from day 47 to 104 after full bloom.

5.14. Ratio fruit growth rate of RDI treatments to the respective full irrigation treatments.

5.15. Change in fruit volume of Royal Gala apple trees as affected by treatments during the season 1988-1989.