Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
WIRELESS SENSOR NETWORK BASED
SMART HOME FOR ELDER CARE

A thesis presented in partial fulfilment of the requirement for the degree of

DOCTOR OF PHILOSOPHY
In
Electronics Engineering

At
School of Engineering and Advanced Technology,
Massey University,
Manawatu Campus,
New Zealand

ANUROOP GADDAM
2011
Abstract

The proportion of elderly people in any population is growing rapidly creating the need to increase geriatric care and this trend isn’t going to change in the near future. In New Zealand, the median age of the population is projected to rise from 36.6 in 2010 to 43.1 in 2050. This will put tremendous strain on national resources and the cost of elder care is only going to escalate. More and more elderly people are choosing to stay alone, independently, rather than in a retirement village or old people’s home. Such people, often frail and infirm, do however require constant monitoring so that medical help can be provided immediately in times of dire needs.

Considerable research efforts have been focused towards in-home monitoring of elderly people, often using wireless personal area networks. As wireless sensing technology continues to evolve, it is playing an important role in improving the quality of life for elderly people and their families. Wireless sensors based smart home monitoring system provides a safe, sound and secure living environment for the elderly people. A wireless sensors based smart home consists of number of wireless sensors that provide information. The information from the sensors can be used for monitoring elderly people by detecting their abnormal patterns in their daily activities and picking up any unforeseen abnormal condition when occurs.

The thesis is focused on research and developmental issues of an intelligent wireless sensors based smart home and determination of person’s daily activities based on the usage of different appliances. The daily pattern can then be compared to determine the early signs of behavioural pattern change of elderly, which can potentially allow for early medical intervention. While several sensors are readily available off the shelf, making them “intelligent” in the context of a specific application (such as monitoring of the elderly) is always a challenging task. We have developed a framework, dealing with the design intricacies and implementation issues of novel sensors, targeted to achieve a Digital Home specifically for the elderly. This smart home monitoring may circumvent institutionalizing the older persons and can help them live at home in safety and independence.

The design methodology is on the impediments in designing, implementing and testing a wireless sensor network based smart home for monitoring the elderly and to propose an optimal solution to circumvent the impediments. The smart home is based on a few smart and
intelligent sensors, which are developed, fabricated and configured around a wireless ad-hoc network. The system will generate early warning message to care giver, when an unforeseen abnormal condition occurs. It will also, analyse gathered data to determine resident behaviour using optimal number of intelligent sensors. In general terms intelligent sensors, i.e., sensing devices having intelligent aspects, can be considered as an extension of conventional sensors with advanced learning and adaptation capabilities.

The developed monitoring system is used to recognize activities of daily living and life style of elderly person living alone. Even though the monitoring system uses a limited number of sensors, it determines the daily behaviour of the person. The system was installed in residential environments with ease. Moreover, the proposed sensing system presents an alternative to sensors that are perceived by most people as invasive such as cameras and microphones, making the sensors are almost invisible to the user thereby increasing the acceptance level to use the system in a household environment.

The results obtained from this research demonstrate the feasibility to build a system based on wireless sensors, to identify, and possible to distinguish between normal and abnormal situation of an elderly person living alone in a home.
Acknowledgments

Words can never describe my sense of gratitude for my supervisor Professor Subhas Mukhopadhyay. This work would not have been possible without his kind support, expert guidance, the trenchant critiques, and most of all the remarkable patience. I cannot thank him enough for giving me the opportunity to work on this project and providing me the enthusiasm and inspiration.

My sincere thanks to my co-supervisor Dr Xiang Gui, for his guidance and support throughout the academic program.

I sincerely thank Dr Gourab Sen Gupta, my co-supervisor for the earlier part of my PhD study for providing me valuable technical advice and numerous suggestions.

I thank Graduate Research School for awarding me the Doctoral Scholarship and supporting me financially. In my later work, I am particularly indebted to Mr. Suryadevara Nagendra Kumar for his support and help for developing the software. I would like to acknowledge the efforts of Mr Ken Mercer, Mr Colin Plaw, Mr Bruce Collins and Mr Anthony Wade.

Lastly, I would like to thank my family for all their love and encouragement. And most of all for my loving, supportive, encouraging, wife Lydia, whose faithful support during the final stages of this Ph.D., is so appreciated. Thank you.
List of Publications

Journal publications: 2

Chapter in Books: 2

Publications in Conference Proceedings: 9

Chapter 1: Introduction

1.1. Background

1.2. Ageing Population: Statistics and Growth rate

1.3. Increasing Life Expectancy

1.4. Socio-Economic and Health Related Determinants Influenced By Elderly Population Growth

1.5. Elderly Population in New Zealand

1.6. Need for Early Detection of Ageing Changes

1.7. Review of Current Market Situations

1.8. Our Approach and Solution

1.9. Original Contribution of the Thesis

1.10. Organization of the Thesis

1.11. Conclusion

Chapter 2: Literature Review

2.1. Introduction

2.2. Smart homes using Audio – Visual based systems

2.3. Elder Care Based on Wearable Sensors

2.4. Sensors for tracking and monitoring various appliances in a home

2.4.1. Pressure Sensor

2.4.2. Motion / Proximity Sensor

2.4.3. Temperature Sensors
Chapter 6: Experimental Results of the Developed Intelligent Software129

6.1. Introduction...131

6.2. System Installation..132

6.3. System Trails and Evaluation...135

6.3.1. Trial 1...135
 6.3.1.1. Sensor Installation ..135
 6.3.1.2. Real time sensors data ...136
 6.3.1.3. Activity Pattern...137
 6.3.1.4. Active duration of the appliances..138
 6.3.1.5. Wellness Determination of Subject-1...138
 6.3.1.6. Observations..140

6.3.2. Trial 2...141
 6.3.2.1. Sensor Installation ..141
 6.3.2.2. Activity Pattern...141
 6.3.2.3. Active duration of the appliances..142
 6.3.2.4. Wellness Determination of the Subject-2..142
 6.3.2.5. Observations..144

6.3.3. Trial 3...144
 6.3.3.1. Sensor Installation ..144
 6.3.3.2. Activity Pattern...145
 6.3.3.3. Active duration of the appliances..145
 6.3.3.4. Wellness Determination of the Subject-3..146
 6.3.3.5. Observations..148

6.3.4. Trial 4...148
 6.3.4.1. Sensor Installation ..148
 6.3.4.2. Activity Pattern...148
 6.3.4.3. Active duration of the appliances..149
 6.3.4.4. Wellness Determination of the Subject-4..149
 6.3.4.5. Observations..151

6.4. Issues Encountered...151

6.5. Conclusion...152

Chapter 7: Conclusions and Suggestions for Future Work.................................153

7.1. General Conclusions...153

7.2. Suggestion for Future Work...157

References ...158

Appendix 1..172

Appendix 2..174

Appendix 3..194

Appendix 4..196
List of Figures

Figure 1.1: Developed Countries, Population Share by Age Group 3
Figure 1.2: Life Expectancy around the world ... 4
Figure 1.3: Elderly Population in New Zealand, 1951 – 2050 5
Figure 1.4: System Block Diagram of Patent US06796799 .. 9
Figure 2.1: Structure of the health care system based on wearable sensors 21
Figure 2.3: Body Area Network Architecture of health-care system 22
Figure 2.4: Monitoring physiological parameters by a wireless wearable sensor 23
Figure 2.5: Wireless sensor systems installed in an existing home environment 31
Figure 3.1: Functional block diagram of the system hardware 37
Figure 3.2: Current transformer connections and circuitry 39
Figure 3.3: Algorithm for Current Detection ... 41
Figure 3.4: Core components of the electrical appliance monitoring unit 42
Figure 3.5: Flexi Force® sensor .. 44
Figure 3.6: Resistance Curve Flexi Force® sensor .. 45
Figure 3.7: Conductance Curve Flexi Force® sensor ... 45
Figure 3.8: Electronic circuit of the part of the Bed Monitoring Unit 46
Figure 3.9: Electronic circuit for the four sensors ... 47
Figure 3.10: Force to Voltage characteristics ... 47
Figure 3.11: Experimental Setup with four force sensors 48
Figure 3.12: Sensor response displayed on LCD in grams 49
Figure 3.13: Cells along the X and Y axes ... 50
Figure 3.14: Response of Sensor 1 ... 51
Figure 3.15: Response of Sensor 2 ... 52
Figure 3.16: Response of Sensor 3 ... 52
Figure 3.17: Response of Sensor 4 ... 53
Figure 3.18: Combined results of all the four sensor outputs 54
Figure 3.19: Zone Allocation .. 54
Figure 3.20: Schematic of Bed Monitoring the sensor unit 58
Figure 3.21: Fabricated prototype of Bed Monitoring Unit 59
Figure 3.22: Core components of Water-use Monitoring Unit 61
Figure 3.23: Square pulse output of the flow sensor .. 61
Figure 6.10: β2 values during one week test run of the system.........................144
Figure 6.11: Percentage use of different appliances at subject-3 house..................145
Figure 6.12: β2 values during one week test run of the system............................147
Figure 6.13: Subject-4 Real-time sensor activity status..148
Figure 6.14: Percentage use of different appliances at subject-4 house..................149
Figure 6.15: β2 values during one week test run of the system............................151
List of Tables

Table 1.1: Percentage of Population in Older Ages by Region, 2008, 2020, and 2040...........2
Table 3.1: Experimental observation of locating the weight...55
Table 3.2: Location of the weight...56
Table 3.3: Radio Communication - Hex Values...69
Table 4.1: Comparison of some of the technologies for Wireless Sensor Network............77
Table 4.2: Collected data - Indoor-(No clear line of sight)...90
Table 4.3: Reliability Drop vs. Distance...91
Table 4.4: Experimental results with inhabitant lying on bed.......................................96
Table 4.5: Experimental values of load current and output voltage for different appliances..98
Table 5.1: Channels scan times of coordinator...111
Table 5.2: Activity Annotation and Labelling..122
Table 5.3: Frequency of sensor unit usage for determining an optimal number of sensors required for activity recognition...129
Table 6.1: Sensor ID and Types of Sensors...132
Table 6.2: Wellness function β_1 measurement for subject-1.................................138
Table 6.3: Maximum active duration of the appliances during one week trial run........139
Table 6.4: Subject-1 active duration of the appliances during one week testing phase.....139
Table 6.5: Wellness function β_1 measurement for subject-2.................................142
Table 6.6: Maximum active duration of the appliances during one week trial run........143
Table 6.7: Maximum active duration & β_2 values during a week of testing phase........143
Table 6.8: Wellness function β_1 measurement for subject-3.................................146
Table 6.9: Maximum active duration of the appliances during one week trial run........146
Table 6.10: Subject-3 maximum active duration of the appliances and β_2 values during one week testing phase...147
Table 6.11: Wellness function β_1 measurement for subject-4.................................149
Table 6.12: Subject-4 maximum active duration of the appliances during one week trial run...150
Table 6.13: Subject-4 maximum active duration of the appliances and β_2 values during one week testing phase.