Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
AN ASSESSMENT OF THE NITROGEN FERTILIZER REQUIREMENTS OF WINTER CABBAGES
(Brassica oleracea var. capitata L.)

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University

ROBERTO REGINALDO BONOAN
1990
ABSTRACT

The increasing costs of N fertilizers and the danger of creating environmental pollution due to excessive N fertilisation practices create a need for more efficient N fertilisation of vegetable crops. This present study was conducted with the main objective of assessing the N fertilizer requirements of winter cabbages on a coarse loamy mixed mesic Dystric Eutrochrept soil and consequently developing a model which would assist in predicting N fertilizer requirements over a wider area.

Glasshouse and field experiments were conducted to assess the utility of soil and plant (sap) tests for assisting in determining the N fertilizer requirements of winter cabbages. The concentrations of NO$_3$-N and NH$_4$-N in either the xylem or petiole sap of cabbages were found to be influenced by several factors such as leaf position, time of day, sample storage time, plant age and form of fertilizer N.

A large field trial indicated that at 4 sampling dates (50, 60, 80 and 90 days after transplanting; DAT) and prior to sidedressing, xylem (R2 = 0.73**) and petiole (R2 = 0.86**) sap were strongly correlated to extractable NO$_3$-N and NH$_4$-N in the soil to a depth of 30 cm. Nitrate-N levels in xylem sap at 60 and 80 DAT and petiole sap at 50, 60 and 80 DAT were good predictors of harvestable fresh head yield. Maximum marketable fresh head yield (55 t/ha) was achieved with an initial N application of 300 kg N/ha over a growing period of 150 days in which 448 mm of drainage was estimated. At heading, on the 300 kg N ha$^{-1}$, soil mineral N levels were 75 kg N ha$^{-1}$, xylem sap concentration was 333 µg NO$_3$-N ml$^{-1}$ and 1651 µg NO$_3$-N ml$^{-1}$ in the petiole sap. This critical value for petiole sap is higher than that reported in the literature for cabbages. At petiole sap levels below the critical value, sidedressing with 100 kg N/ha as urea was required to achieve a similar yield as found with an initial application of 300 kg N ha$^{-1}$ as calcium ammonium nitrate.

In a small scale field experiment, plant recovery (62-65%) of sidedressed...
\(^{15}\)N labelled urea N did not differ between sidedressing rates (100 and 200 kg N). Total recovery of \(^{15}\)N in the plant and soil was considered high (114 ± 0.9% and 90 ± 1.1%) for the respective rates.

Using the data obtained from the field trials, a simple model termed a "sidedressing model" was developed. The model specifically determines the amount of N fertilizer needed to be applied as a sidedressing at a critical time (heading) to obtain maximum yield. The model was validated, using the data from another N fertilizer field trial conducted in the following year. The model successfully predicted whether N sidedressing is required or not but only a limited validation could be made of the prediction rates.

The limitation of the sidedressing model of being site and season specific can be reduced by using simple submodels to predict the measured component which assessed N in cabbages at heading (\(N_h\)). One submodel used (the heat unit model) was modified by including data from 2-year trial results, to predict \(N_h\) and also provided a prediction of N uptake at maturity (\(N_y\)). Although not able to be validated in this study, the model shows potential for use by environmental administrators in predicting the likely effects of various growers practices in relation to identifying problems associated with NO\(_3\)-N in drinking water and in edible cabbage heads.
I am extremely grateful to:

Dr Paul Gregg and Dr Mike Hedley for their supervision, guidance, patience and friendship during my studies.

Other members of the Soil Science Department for valuable discussions and assistance during the work.

Dr Santiago Obien, director of the Philippine Rice Research Institute, for the encouragement to pursue postgraduate studies.

Ms Lee Heng and Mr Wichien Chatupote for assistance with computer work and final preparation of this thesis. Mr Donald Tambunan and other postgraduate students and all technicians in the Department for help with glasshouse and field work.

All Filipino friends particularly Mr and Ms Angel Carambas.

The Ministry of External Relations and Trade of New Zealand for the scholarship grant.

The National Tobacco Authority of the Philippines for the study leave.

Lastly, but most important, to my mother, brothers and sisters for their great moral support.
TABLE OF CONTENTS

ABSTRACT .. ii
ACKNOWLEDGEMENTS .. iv
TABLE OF CONTENTS .. v
LIST OF FIGURES .. xi
LIST OF TABLES ... xv

CHAPTER 1

INTRODUCTION .. 1

CHAPTER 2

REVIEW OF LITERATURE

2.1 NITROGEN FERTILIZER REQUIREMENTS OF CROPS, PARTICULARLY VEGETABLE CROPS ... 3

2.2 DIAGNOSTIC TESTS FOR DETERMINING N FERTILIZER REQUIREMENTS OF CROPS ... 4
 2.2.1 Soil Testing .. 4
 2.2.2 Plant Analysis .. 6
 2.2.2.1 Total N .. 6
 2.2.2.2 Extractable N .. 8
 2.2.2.3 Sap nitrate testing ... 9
 2.2.3 Factors Affecting Nitrate Concentrations in Plants 14
 2.2.3.1 Genetic control .. 14
 2.2.3.2 Light and temperature ... 15
 2.2.3.3 Rate and amount of nitrate supply .. 16
 2.2.3.4 Form of fertilizer N .. 17
 2.2.3.5 Time and method of N application ... 18
 2.2.3.6 Other macronutrients ... 19
 2.2.3.7 Nitrification inhibitors ... 19
 2.2.4 Critical N Levels in Vegetables .. 20

2.3 EFFECT OF FERTILIZER FORM ON GROWTH AND YIELD OF CROPS .. 23
 2.3.1 Effect of N Fertilizer Form ... 23
 2.3.2 Effect of Fertilizer (N/P) Forms ... 25

2.4 FATE OF FERTILIZER N IN SOILS .. 27
 2.4.1 Value of 15N Labelled Fertilizer .. 27
 2.4.2 Fertilizer N Balance Studies ... 28
CHAPTER 3

METHODS OF MEASURING SAP NITRATE CONCENTRATIONS IN CABBAGES

3.1 INTRODUCTION .. 41
3.2 OBJECTIVE .. 42
3.3 MATERIALS AND METHODS ... 42
 3.3.1 Soil .. 42
 3.3.2 Plant Growth .. 42
 3.3.3 Fertilizer Treatments ... 44
 3.3.4 Plant Harvest .. 45
 3.3.5 Plant Analysis .. 45
 3.3.5.1 Petiole sap NO$_3$-N ... 45
 3.3.5.2 Xylem sap NO$_3$-N ... 46
 3.3.5.3 Acetic acid soluble NO$_3$-N 46
 3.3.5.4 Total N in whole plants 48
 3.3.6 Soil Analysis .. 48
 3.3.7 Statistical Analysis .. 48
3.4 RESULTS AND DISCUSSION ... 48
 3.4.1 Effect of N on Yield ... 48
 3.4.2 Effect of N on Total N Uptake 50
 3.4.3 Relationship Between Total Plant N and Plant Sap NO$_3$-N Concentrations and Rate of N Application 52
 3.4.3.1 Effect of N on petiole sap NO$_3$-N 52
 3.4.3.2 Effect of N on xylem sap NO$_3$-N 57
 3.4.3.3 Effect of N on acetic acid soluble NO$_3$-N 60
 3.4.3.4 Effect of N on total N 60
 3.4.4 Effect of N on Soil NO$_3$-N and NH$_4$-N 62
 3.4.5 Relationships Between the Merck Test Strip and the Standard Laboratory Methods of Measuring NO$_3$-N 67
 3.4.6 Comparison of the Methods for Xylem Sap Collection 69
 3.4.7 Relationship Between Plant N Concentrations and Final Yield .. 69
3.5 CONCLUSION .. 73
CHAPTER 4
FACTORS AFFECTING SAP NUTRIENT CONCENTRATIONS IN CABBAGES

4.1 INTRODUCTION ... 75

4.2 OBJECTIVE ... 75

4.3 MATERIALS AND METHODS .. 75

4.4 RESULTS AND DISCUSSION ... 76
4.4.1 Effect of Leaf Position ... 76
4.4.2 Effect of Time of Day .. 79
4.4.3 Effect of Sample Storage Time 81
4.4.4 Effect of Plant Age ... 84
4.4.5 Plant to Plant Variability of Petiole Sap NO₃-N 86

4.5 CONCLUSION ... 87

CHAPTER 5
INFLUENCE OF FERTILIZER FORMS ON SAP NUTRIENT CONCENTRATIONS AND YIELD OF WINTER CABBAGES

5.1 INTRODUCTION ... 88

5.2 OBJECTIVES ... 89

5.3 MATERIALS AND METHODS ... 89
5.3.1 Laboratory Experiment .. 89
5.3.1.1 Preparation of PAPR ... 89
5.3.1.2 Preparation of N/PAPR ... 90
5.3.1.3 Moisture content of the fertilizers 91
5.3.1.4 Total N and P contents of the fertilizers 94
5.3.1.5 Solubility of the fertilizers 94
5.3.2 Glasshouse Experiment (1987) 95
5.3.3 Field Experiment (1988) .. 100

5.4 RESULTS AND DISCUSSION .. 101
5.4.1 Glasshouse Experiment .. 101
5.4.1.1 Effect of N fertilizer form on NO₃⁻ and NH₄-N concentration in xylem sap 101
5.4.1.2 Effect of P fertilizer form on NO₃⁻ and NH₄-N concentration in xylem sap 104
5.4.1.3 Effect of N fertilizer form on PO₄-P concentration in xylem sap 107
5.4.1.4 Effect of fertilizer form (N/P) on PO₄-P concentration in xylem sap 107
5.4.1.5 Effect of straight N and straight P fertilizer form on dry matter yield 109
CHAPTER 6

PREDICTING NITROGEN FERTILIZER REQUIREMENTS OF WINTER CABBAGES BY PLANT (SAP) AND SOIL TESTS

6.1 INTRODUCTION ... 127

6.2 OBJECTIVE .. 128

6.3 MATERIALS AND METHODS 128
6.3.1 Sap Sampling Techniques .. 131
6.3.2 Soil Measurements .. 131
6.3.3 N Depletion Zone Around the Roots of a Cabbage Plant .. 132
6.3.4 Meteorological Data .. 132

6.4 RESULTS AND DISCUSSION 132
6.4.1 Meteorological Conditions 132
6.4.2 Effect of N Sidedressing on Xylem Sap NO₃-N 134
6.4.3 Effect of Sidedressing on Petiole Sap NO₃-N 134
6.4.4 Soil NO₃- and NH₄-N Concentrations 137
6.4.5 N Depletion Zone Around the Roots of a Cabbage Plant .. 140
6.4.6 Correlation of Soil and Sap Tests 145
6.4.7 Relationships Between Sap N Concentration and Harvestable Fresh Head Yield 148
6.4.8 Critical Plant Sap NO₃-N Concentrations 153
6.4.9 Effect of N Rates on Cabbage Head Yield and N Uptake .. 159
6.4.10 Effect of Sidedressing on Marketable Fresh Head Yield .. 159

6.5 CONCLUSION .. 159
CHAPTER 7

EFFICIENCY OF 15N LABELLED UREA FERTILIZER APPLIED AS A SIDEDRESSING TO WINTER CABBAGES

7.1 INTRODUCTION..162

7.2 OBJECTIVE...162

7.3 MATERIALS AND METHODS...162

7.3.1 Sampling and Analytical Procedures...163

7.3.1.1 Plant..163

7.3.1.2 Soil..165

7.3.1.3 Soil solutions..165

7.3.1.4 15N analysis..165

7.4 RESULTS AND DISCUSSION..166

7.4.1 Yield, N concentrations and N Uptake..166

7.4.2 Recovery of Labelled Fertilizer N in the Plant...167

7.4.3 Recovery of Labelled Fertilizer N in the Soil..174

7.4.4 Balance of Applied Labelled Fertilizer N..176

7.4.5 Extrapolation of Results From 15N Plot to the Main Trial...............................180

7.5 CONCLUSION..180

CHAPTER 8

MODELLING THE NITROGEN FERTILIZER REQUIREMENTS OF WINTER CABBAGES

8.1 INTRODUCTION..185

8.2 GENERAL METHODOLOGY...185

8.3 RESULTS AND DISCUSSION..186

8.3.1 The Sidedressing Model...186

8.3.2 Development of the Model...187

8.3.2.1 Nitrogen demand (N_d, N_m)..187

8.3.2.2 Nitrogen supply (N_s, N_m)...188

8.3.2.3 Efficiency of plant uptake (E_s, E_r)...189

8.3.3 Validation of the Sidedressing Model...189

8.3.4 Discussion of Validation..192

8.3.5 Possibilities for Improving the Model...198

8.3.5.1 Predicting N_m...198

8.3.5.2 Predicting N_s...217

8.4 CONCLUSION..224
LIST OF FIGURES

Figure 3.1 Method of xylem sap collection using filter paper strips .. 47
Figure 3.2 The effect of N application rate on fresh head yield of cabbages at final harvest 49
Figure 3.3 The effect of N application rate on total N uptake by cabbages at final harvest 52
Figure 3.4 The effect of N application rate on petiole sap NO₃-N concentration measured by the Merck test strip .. 55
Figure 3.5 The effect of N application rate on petiole sap NO₃-N concentration measured by the autoanalyser method ... 56
Figure 3.6 The effect of N application rate on xylem sap NO₃-N concentration measured by the autoanalyser method ... 59
Figure 3.7 The effect of N application rate on acetic acid soluble NO₃-N in cabbage tissues 61
Figure 3.8 The effect of N application rate on total N contents (roots + shoots) in cabbages 63
Figure 3.9 The effect of N application rate on NO₃-N concentration in the soil .. 64
Figure 3.10 The relationship between soil and sap tests ... 65
Figure 3.11 Comparison of (a) NO₃-N and (b) NH₄-N concentrations in xylem sap of cabbages collected by different methods ... 70
Figure 4.1 Showing the position of (a) young mature leaf (YML) and (b) wrapper leaf (WL) within a cabbage plant ... 77
Figure 4.2a The effect of leaf sampling position on the petiole sap NO₃-N concentration of cabbage at heading (glasshouse experiment) ... 78
Figure 4.2b The effect of leaf sampling position on the petiole sap NO₃-N concentration of cabbage at heading (field experiment) ... 80
Figure 4.3 The effect of time of day on xylem and petiole sap NO₃-N concentrations in cabbages 82
The effect of sample storage time on xylem sap N and P concentrations in cabbages............................... 83

The effect of plant age and rates of N application on (a) xylem and (b) petiole sap NO₃-N concentrations in cabbages.. 85

The effect of N fertilizer form on NO₃-N concentration in xylem sap of cabbages. Rate of N application (N g/pot): N0(0); N1(1); N2(2) and N4(4).. 102

The effect of N fertilizer form on NH₄-N concentration in xylem sap of cabbages. Rate of N application (N g/pot): NO(0); N1(1); N2(2); N4(4)................. 103

The effect of P fertilizer form on NO₃-N concentration in xylem sap of cabbages. Rate of N/P application (N/P g/pot): NO(0); N2(2); N4(4).............................. 105

The effect of P fertilizer form on NH₄-N concentration in xylem sap of cabbages Rate of N/P application (N/P g/pot): NO(0); N2(2); N4(4)......................... 106

The effect of N fertilizer form on P concentration in xylem sap of cabbages Rate of N application (N g/pot): NO(0); N1(1); N2(2) and N4(4).......................... 108

The effect of N/P fertilizer form as Urea/PAPR on P concentration in xylem sap of cabbages............................... 110

The effect of (a) straight N and (b) straight P fertilizer forms on dry matter yield of cabbages........... 111

The effect of N/P fertilizer form as Urea/PAPR on dry matter yield of cabbages.............................. 113

The effect of N/PAPR and N/MCP fertilizer forms on dry matter yield of cabbages. Rates of P application are given in Table 5.5.................. 114

The symptoms of NH₄⁺ toxicity exhibited by cabbage plants fertilised with AmS/PAPR at 4 and 5 N/P g/pot application rate.. 119

The relationship between specific conductivity and percent yield reduction of cabbages at 40 DAT......... 122

General view of the field experiment............................... 129

Total monthly rainfall during the conduct of the
Figure 6.3 NO₃-N concentration in xylem sap of cabbages (▼) Indicates time of N fertilizer sidedressing...........135
Figure 6.4 NO₃-N concentration in petiole sap of cabbages. (▼) Indicates time of N fertilizer sidedressing...........136
Figure 6.5 Petiole sap NO₃-N concentration in relation to soil N after N fertilizer sidedressing........................138
Figure 6.6a Soil NO₃- + NH₄-N concentrations (0-30 cm depth) at each harvest..139
Figure 6.6b Soil NO₃-N concentrations (>30 cm depth) in relation to cumulative drainage..............................141
Figure 6.7a NO₃-N depletion zone around cabbage roots at (a) 20 and (b) 40 DAS..142
Figure 6.7b NH₄-N depletion zone around cabbage roots at (a) 20 and (b) 40 DAS..143
Figure 6.8 Correlation between soil and sap tests...144
Figure 6.9a Harvestable fresh head yield vs xylem sap NO₃-N measured at various sampling dates......146
Figure 6.9b Harvestable fresh head yield vs petiole sap NO₃-N measured at various sampling dates...........147
Figure 6.10 The relationship between S and nitrate concentration in (a) xylem and (b) petiole sap...........150
Figure 6.11 The effect of N additions on dry matter yield of cabbages...154
Figure 6.12 The effect of N additions on harvestable fresh head yield..155
Figure 6.13 The effect of N additions on N uptake by cabbages...157
Figure 6.14 Percent recovery of fertilizer N...158
Figure 7.1 Showing the microplots used in the ¹⁵N field experiment...164
Figure 7.2 The effect of rate of N fertilizer sidedressing on total (roots + shoots) dry matter yield of cabbages........168
Figure 7.3 Total N concentrations in cabbages...............................170
Figure 7.4 Total N uptake (roots + shoots) by cabbages...............171
Figure 7.5 Balance of applied labelled fertilizer N in the plant and soil...178
Figure 7.6 Daily rain and drainage data after sidedressing 15N fertilizer...181
Figure 7.7 NO$_3$-N concentrations in water samples collected at 30 cm depth..182
Figure 8.1 The effect of N additions on harvestable fresh head yield of cabbages in the 1989 field trial..........................193
Figure 8.2 The %N in the dry matter yield (above ground parts of cabbages plotted against their dry matter yield measured at intervals during growth on treatments (x) 300 and (+) 0 kg N/ha in the 1988 field trial........203
Figure 8.3 Predicted N uptake (N kg/ha) by winter cabbages (above ground parts) against heat units in the (a) 1988 and (b) 1989 field trial...209
Figure 8.4 The relationship between B/Bmax and petiole sap NO$_3$-N concentrations at heading in the (a) 1988 and (b) 1988 + 1989 field trials..211
Figure 8.5 The relationship between fresh head yield (t/ha) and N uptake (N kg/ha) by cabbages at final harvest for the 1988 and 1989 field trials (pooled data).................218
Figure 8.6 Measured and predicted soil N levels (N kg/ha) prior to (+) and at heading (x) in the 1989 field trial.............220
Figure 8.7 Available N (NO$_3^-$ + NH$_4^-$N) in the soils (0-30 cm depth) from transplanting to heading in (a) 1988 and (b) 1989 field trial...223
LIST OF TABLES

Table 2.1 Nitrogen levels in cabbages as reported in the literature... 21
Table 3.1 Properties of Manawatu fine sandy loam topsoil used in the glasshouse experiment......................... 43
Table 3.2 Total dry matter yield (g/pot) of cabbages at different sampling dates.. 51
Table 3.3 Total N uptake (N g/pot) by cabbages at different sampling dates... 53
Table 3.4 Correlation between N application rate and sap NO₃-N acetic acid soluble NO₃-N and total N using a quadratic function (n=32).. 54
Table 3.5 The effect of N fertilizer rates on N concentrations in cabbages at 60 DAT.. 58
Table 3.6 Soil NO₃⁻ + NH₄-N (μg/g soil) after each harvest........... 66
Table 3.7 Linear correlation coefficients (r) between Psap NO₃-N concentrations determined by the Merck test strip and the autoanalyser method and acetic acid extraction (n=32)............................. 68
Table 3.8 Linear regression equations showing the relationship between Psap NO₃-N concentrations measured by Merck test strip and autoanalyser method (n=32).................... 68
Table 3.9 Summary of regression coefficients (R²) of the predictive equations relating plant N parameters at 60 DAT and final yield of cabbages (n=32)................................. 72
Table 5.1 Yield weights of the different fertilizer materials........... 92
Table 5.2 Total N(%N) and total P(%P) analyses of the N/PAPR fertilizers (oven-dry basis, 90°C for 24-hr)........ 93
Table 5.3 The total P content and the percentage P extracted from different N/PAPR products by water, 2% citric and 2% formic acid.. 96
Table 5.4 Dry matter yield (g/pot) of broccoli from the preliminary glasshouse experiment......................... 98
Table 5.5 Forms and rates of N/P; N or P application in the glasshouse experiment................................. 99
Table 5.6 Effect of fertilizer forms (N/P) on dry matter yield (g/pot) of cabbages.................................116
Table 5.7 Soil pH at each harvest...117
Table 5.8 Extractable NH₄-N levels (μg/g) in the soils and %N concentrations in plants after each harvest.........................118
Table 5.9 Conductivity of saturated soil extracts (μmhos/cm) at 40 DAT ...121
Table 5.10 The effect of fertilizer form on dry matter yield and fresh head yield (g/plant) of cabbages.........................124
Table 5.11 N and P concentrations (%) and N and P uptake (g/plant) by cabbages at final harvest..........................124
Table 6.1 Some initial properties of Karapoti fine sandy loam topsoil used in the field experiment..........................130
Table 6.2 Cabbage data and simulation results using xylem sap....151
Table 6.3 Cabbage data and simulation results using petiole sap...152
Table 7.1a The effect of rate of N fertilizer sidedressing on harvestable fresh head yield (kg/plant) of cabbages......169
Table 7.1b The effect of rate of N fertilizer sidedressing on total dry matter yield (g/plant) of cabbages..................169
Table 7.2 Recovery of labelled fertilizer N in the plant............173
Table 7.3 Recovery of labelled fertilizer N in the soil.............175
Table 7.4 Balance of applied labelled fertilizer N in the plant and soil...177
Table 7.5 Statistical analysis of fresh head yield and N uptake in the ¹⁵N plot (A) and main trial (B).........................183
Table 8.1 Fertilizer N (Nₓ) sidedressing requirements of winter cabbages in the 1989 field trial..........................191
Table 8.2 Monthly rainfall (mm) and drainage (mm) during the conduct of the field experiments.........................195
Table 8.3 Measured and predicted Nₓ (N kg/ha) from heading to final harvest in the 1989 field trial.........................195
Table 8.4 NO₃-N concentrations (μg/ml) in petiole sap (YML) of winter cabbages at two sampling growth stages in