Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
LEPTOSPIROSIS: PATHOGENESIS AND RED CELL DESTRUCTION

A thesis presented in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Massey University Palmerston North New Zealand

JANICE CATHERINE TAN (nee Thompson)

1983
ABSTRACT

A study was made of the morphological changes in red blood cells (RBC's) from hamsters and calves during the development of haemoglobinaemia following infection with Leptospira interrogans serovars ballum and pomona respectively.

The major changes seen by scanning electron microscopy of RBC's from the haemoglobinaemic animals were spherocytosis and surface pitting. The major change seen by transmission electron microscopy was vacuolation of abnormally shaped RBC's with some vacuoles containing a small amount of a fine granular material. Few RBC's showed evidence of haemoglobin loss even though the animals from which the RBC's came were severely haemoglobinaemic. Those RBC's which did show haemoglobin loss contained membrane-bound dense granular inclusions in addition to the vacuoles observed in the fully haemoglobinated RBC's. The spherocytes from the haemoglobinaemic animals probably arose from echinocytes which were seen in prehaemoglobinaemic hamsters. Echinocytes seen in calves injected with 'toxin' can probably be considered as equivalent to echinocytes seen in the prehaemoglobinaemic hamsters. These echinocytes had membrane-bound portions of cytoplasm segregated from the remainder of the cytoplasm. It is thought that these portions of cytoplasm are defective and subsequently become digested in autophagocytic vacuoles with complete digestion resulting in the empty vacuoles or those containing a small amount of fine granular material as seen in the fully haemoglobinated RBC's. Inability of the cell to either fully digest or expel material within autophagocytic vacuoles may explain dense granular inclusions seen within partially haemoglobinated RBC's which are considered the most severely affected RBC's.

Present studies support other work that a 'toxin' elaborated by the organisms rather than mechanical damage is responsible for the
lesions observed. The original lesion is thought to be biochemical although biochemical studies were beyond the scope of the present work. This biochemical lesion is likely to be similar in all affected tissues. Sufficient biochemical and physiological differences exist between adults and neonates and between individuals of similar age of the same species, and between different animal species to explain the differences in susceptibility of RBC's to leptospiiral 'toxins'.

RBC's from cattle, hamsters and humans suspended in non-immune plasma and incubated with ballum and pmona were never haemolysed while those suspended in saline were always haemolysed. Normal plasma thus has a protective effect. The protective action of plasma demonstrated in vitro required reconciliation with some conflicting findings of parallel studies in vivo in which RBC's were destroyed resulting in haemoglobinemia. It therefore appears that another mechanism may be responsible for RBC destruction in vivo. Because RBC sequestration resulting in lowering of the PCV and haemoglobin occurred in the prehaemoglobinemia animals, involvement of the reticulomacrophage system appeared likely. Other workers have suggested that RBC's which already have an abnormality may be further damaged or lysed within the splenic circulation. Thus in leptospiiral infections, leptospiiral 'toxins' may induce changes in RBC's leading to their sequestration within the spleen resulting in further damage and ultimately lysis and haemoglobinemia.

The ground is now set for further studies to identify the putative biochemical lesions which would pave the way for development of new therapeutic regimes to prevent the more severe clinical features of the disease.
The opportunity to work for this thesis was provided by the Department of Veterinary Pathology and Public Health and made possible by the support of the Phyllis Irene Grey Fellowship.

I would like to thank my initial chief supervisor Dr R.H. Sutton for his assistance, interest and encouragement in the early stages of this research. I would also like to thank his successor, Dr A.C. Johnstone for his assistance in later experiments and for reading the drafts of this thesis. Professor B.W. Manktelow gave valuable advice and encouragement in completing the final copy of this thesis. In addition I would like to express my gratitude to Dr R.B. Marshall who was always willing to discuss experiments and results with me and provide help and encouragement.

Funds and facilities for the research were provided by the Department of Veterinary Pathology and Public Health, Veterinary Research Fund and Glaxo Laboratories (NZ) Ltd. The electron microscopy was carried out with the help and advice of members of the Electron Microscopy Unit, DSIR, Palmerston North and in particular, Mr D. Hopcroft. The Radiotherapy Department of the Palmerston North Public Hospital and Mr Trott provided facilities for the irradiation of hamsters. I would also like to thank the staff of the Clinical Pathology Department of the Palmerston North Hospital for the use of their autoanalyser and Mr B. Riddler of the Department of Agricultural Economics and the staff of the No 4 Dairy Unit for providing neonatal calves and some older cattle for blood sampling.

The hamsters were provided by the National Health Institute and maintained by Dr L.M. Schollum. In addition Dr Schollum provided the cultures of leptospires used in these experiments and assisted with the microscopic agglutination titres. Histological slides were prepared by Mrs P.M. Slack and Miss S.M. Malloch and culture media were prepared by Mrs J.L. Schramer. Preparation of photographs was done with the assistance of Mr T. Law.
I also wish to thank the staff of the Massey University Library for their prompt and efficient assistance in obtaining references. Mrs F.S. Wicherts typed this thesis and I would like to thank her for her excellent advice on thesis preparation.

Finally I would like to thank my husband, Ghee Yong, for his support and understanding over the years of working for this thesis.
CONTENTS

ABSTRACT (ii)

ACKNOWLEDGEMENTS (iv)

CONTENTS (vi)

LIST OF TABLES (viii)

LIST OF FIGURES (x)

LIST OF APPENDICES (xviii)

INTRODUCTION 1

CHAPTER 1 LITERATURE REVIEW 2

CHAPTER 2 MATERIALS AND METHODS 35

CHAPTER 3 CLINICAL SIGNS AND CLINICAL PATHOLOGY 46
 OF POMONA INFECTED CALVES AND BALLUM INFECTED HAMSTERS
 Experiment I: ballum infected hamsters
 Experiment V: pomona infected calves

CHAPTER 4 MORPHOLOGICAL CHANGES IN RED BLOOD 80
 CELLS IN LEPTOSPIROSIS
 Experiment I: ballum infected hamsters
 Experiment II: ballum infected hamsters
 Experiment III: pomona infected hamsters
 Experiment IV: bled hamsters (reticulocyte production)
 Experiment V: pomona infected calves
 Experiment VI: balcanica infected cattle
 Experiment VII: ballum infected human
CHAPTER 5 PATHOLOGY OF HAEMOLYTIC LEPTOSPIRAL INFECTIONS OF CALVES AND HAMSTERS

Experiment I: ballum infected hamsters
Experiment IV: bled hamsters (reticulocyte production)
Experiment V: pomona infected calves

CHAPTER 6 PATHOLOGY OF NON-HAEMOLYTIC LEPTOSPIRAL INFECTIONS OF HAMSTERS AND CATTLE

Experiment II: ballum infected hamsters
Experiment III: pomona infected hamsters
Experiment VI: balcanica infected cattle

CHAPTER 7 IN VITRO HAEMOLYTIC STUDIES

Experiment A
Experiment B
Experiment C
Experiment D

CHAPTER 8 INTRAVASCULAR HAEMOLYSIS IN GAMMA IRRADIATED, BALLUM INFECTED HAMSTERS

Experiment VIII: ballum infected hamsters

CHAPTER 9 GENERAL DISCUSSION

APPENDICES

BIBLIOGRAPHY
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1-1</td>
<td>Summary of the major references pertaining to the pathology and pathogenesis of experimental and natural leptospiral infections of man and domestic animals</td>
<td>4-6</td>
</tr>
<tr>
<td>Table 1-2</td>
<td>Alterations in blood clotting factors during leptospirosis</td>
<td>18</td>
</tr>
<tr>
<td>Table 1-3</td>
<td>Circulating leucocytes</td>
<td>21</td>
</tr>
<tr>
<td>Table 1-4</td>
<td>Biochemical changes in the blood during leptospirosis</td>
<td>25</td>
</tr>
<tr>
<td>Table 1-5</td>
<td>Urinary changes during leptospirosis</td>
<td>28</td>
</tr>
<tr>
<td>Table 1-6</td>
<td>Cellular pathology of the kidney during leptospirosis</td>
<td>29-31</td>
</tr>
<tr>
<td>Table 2-1</td>
<td>Strains of leptospire, their field source and method of typing</td>
<td>37</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>Dates of death of control and ballum infected hamsters from Experiment I, part 1.</td>
<td>40</td>
</tr>
<tr>
<td>Table 2-3</td>
<td>Treatment of calves in Experiment V, an experimental pomona infection</td>
<td>43</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Normal haematological values for ten hamsters aged 19-42 days used in Experiment I, part 1</td>
<td>50</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Normal haematological values for 12 calves 10-21 days of age</td>
<td>51</td>
</tr>
</tbody>
</table>
Table 3-3 Data from selected hamsters demonstrating the decrease in PCV and haemoglobin levels, the increase in the MCHC and the alterations in icterus index, total protein and white blood cells

Table 5-1 Summary of clinical pathological results from *ballum* infected hamsters in Experiment I, part 2

Table 6-1 Clinical pathological data from euthanased hamsters infected with *pomona* in Experiment III

Table 6-2 Summary of clinical data from the hamsters infected with *pomona* : Experiment III, A comparison of three strains

Table 6-3 Summary of clinical pathological data from the hamsters infected with *ballum* : Experiment II, A comparison of five strains

Table 7-1 Results of Experiment B : Percentage of washed and unwashed hamster, cattle and human RBC's haemolysed by two strains of *pomona* and two strains of *ballum*

Table 7-2 Results of Experiment C : Percentage of washed and unwashed RBC's haemolysed by two strains of *pomona* up to 14 days post infection
LIST OF FIGURES

CHAPTER 3

Figures following page 58

Fig. 3-1(i) Graph showing the changes in the PCV's of ten experimental calves, five of which were infected with *pomona* and two of which were injected with a *pomona*-derived 'toxin'.

Fig. 3-1(ii) Graph showing the changes in the haemoglobin levels of ten experimental calves, five of which were infected with *pomona* and two of which were injected with a *pomona*-derived 'toxin'.

Figure following page 61

Fig. 3-2 Microhaematocrit tubes of blood from hamsters with varying degrees of jaundice and haemoglobinæmia following infection with *ballum*.

Figures following page 65

Fig. 3-3 Blood smear from a haemoglobinæmic hamster infected with *ballum*.

Fig. 3-4 Bone marrow smear from a haemoglobinæmic hamster infected with *ballum*.

Fig. 3-5 Bone marrow smear from a haemoglobinæmic calf infected with *pomona*.

Figures following page 67

Fig. 3-6(i) Graph of the alteration of GGT levels in ten experimental calves, five of which were infected with *pomona* and two of which were injected with a *pomona*-derived 'toxin'.

Fig. 3-6(ii) Graph of the alteration of AAT levels in ten experimental calves, five of which were infected with *pomona* and two of which were injected with a *pomona*-derived 'toxin'.

CHAPTER 4

Figures following page 89

Scanning electron microscope (SEM) preparations

Fig. 4-1 RBC's from a control hamster.

Fig. 4-2 Echinocytes from a non-haemoglobinanaemic hamster infected with *ballum*.

Fig. 4-3 Early development of spherocytes from a haemoglobinanaemic hamster infected with *ballum*.

Fig. 4-4 Spherocytes from a haemoglobinanaemic hamster infected with *ballum*.

Fig. 4-6 RBC's from a control calf.

Fig. 4-7 Spherocytes and other abnormally shaped RBC's from a haemoglobinanaemic calf infected with *pomona*.

Fig. 4-8 Echinocytes from a calf injected with a *pomona*-derived 'toxin'.

Fig. 4-9 RBC's from a leptospiroaemic and non-haemoglobinanaemic calf following infection with *pomona*.

Fig. 4-10 RBC's and reticulocytes from a 'bled' hamster.

Fig. 4-11 RBC's from a 'bled' hamster.

Fig. 4-12 RBC's from a normal human.

Fig. 4-13 RBC's and knizocytes from a leptospiroaemic human infected with *ballum*.

Transmission electron microscope (TEM) preparations

Fig. 4-14 Normal RBC's.
Fig. 4-15 RBC showing changes typical of those seen in non-haemoglobinanaemic hamsters following infection with *ballum* and calves following injection with a *pomona*-derived 'toxin'.

Fig. 4-16 RBC's showing changes typical of those seen in non-haemoglobinanaemic hamsters following infection with *ballum* and calves following injection with a *pomona*-derived 'toxin'.

Fig. 4-17 Spherocytes from a haemoglobinanaemic hamster infected with *ballum*.

Fig. 4-18 Spherocytes from a haemoglobinanaemic hamster infected with *ballum*.

Fig. 4-19 Spherocytes and an abnormally shaped RBC from a haemoglobinanaemic calf infected with *pomona*.

Fig. 4-20 Low power view of abnormal RBC's from a haemoglobinanaemic calf infected with *pomona*.

Fig. 4-21 High power view of abnormal RBC's from a haemoglobinanaemic calf infected with *pomona*.

Fig. 4-22 Apparent discontinuity in the membrane of a RBC from a haemoglobinanaemic calf.

Fig. 4-23 Artefactual lines in hamster spherocyte.

Fig. 4-24 Typical reticulocyte.

CHAPTER 5

Figure following page 102

Fig. 5-1 Post mortem appearance of calf 17 demonstrating lesions resulting from leptospiral induced haemoglobinanaemia and haemoglobinuria.

Figures following page 117

Histological Preparations

Fig. 5-2 Normal appearance of the liver of control hamsters.
Electron Microscope Preparations

Fig. 5-8 Normal hamster hepatocyte.

Fig. 5-9 Hepatocyte from the 'bled' calf.

Fig. 5-10 Hepatocyte from a non-haemoglobinaemic hamster infected with *ballum*.

Fig. 5-11 Hepatic macrophage containing phagocytosed RBC's in a haemoglobinaemic hamster following *ballum* infection.

Fig. 5-12 Hepatic macrophage containing phagocytosed RBC's in a haemoglobinaemic calf following *pomona* infection.

Fig. 5-13 Hepatic macrophage containing a phagocytosed leptospire in a hamster infected with *ballum*.

Fig. 5-14 Hepatocytes from a calf injected with a *pomona*-derived 'toxin'.

Fig. 5-15 Hepatocytes from a leptospiraemic non-haemoglobinaemic calf following infection with *pomona*.

Fig. 5-16 Hepatocytes and the space of Disse in a leptospiraemic, non-haemoglobinaemic calf infected with *pomona*.

Fig. 5-17 Erythrophagocytosis in a normal hamster spleen.
Fig. 5-18 Contact between a mononuclear cell and a RBC within the spleen of a hamster infected with *ballum*.

Fig. 5-19 Sequestration of RBC's within the spleen of a haemoglobinnaemic hamster infected with *ballum*.

Fig. 5-20 Splenic macrophage containing a leptospiere in a hamster following *ballum* infection.

Fig. 5-21 Reticular cell structures within the spleen of a hamster following infection with *ballum*.

Fig. 5-22 Epithelial cells from the kidney of a haemoglobinnaemic calf infected with *pomona*.

Fig. 5-23 Epithelial cells and the lumen of a proximal tubule of a haemoglobinnaemic hamster following a *ballum* infection.

Fig. 5-24 Epithelial cells and the lumen of a proximal convoluted tubule of a haemoglobinnaemic hamster infected with *ballum*.

Fig. 5-25 Glomerular capillary and endothelial cells from a haemoglobinnaemic hamster infected with *ballum*.

Fig. 5-26 Glomerular capillary from a haemoglobinnaemic hamster following a *ballum* infection.

Fig. 5-27 Migrating leptospiere in the kidney of a hamster infected with *ballum*.

Fig. 5-28 Leptospires associated with abnormal microvilli in a proximal convoluted tubule of a calf infected with *pomona*.

Fig. 5-29 Leptospires associated with normal microvilli in a proximal convoluted tubule of a calf infected with *pomona*.

CHAPTER 6

Figures following page 151

Histological Preparations

Fig. 6-1 Hepatocyte dissociation in a hamster infected with *pomona*.
Fig. 6-2 Hepatocyte vacuolation in a hamster infected with *pomona*.

Fig. 6-3 Renal lesions in a hamster following infection with *pomona*.

Electron Microscope Preparations

Fig. 6-4 Hepatocyte from a hamster following infection with *pomona*.

Fig. 6-5 Hepatocyte from a hamster following infection with *pomona*.

Fig. 6-6 Cytoplasmic detail of a hepatocyte from a hamster infected with *pomona*.

Fig. 6-7 Cytoplasmic detail of a hepatocyte from a hamster infected with *pomona*.

Fig. 6-8 Degenerating hepatic mitochondria from a hamster infected with *pomona*.

Fig. 6-9 Leptospire within the liver of a hamster following a *pomona* infection.

Fig. 6-10 Phagocytosed leptospires within a splenic macrophage from a hamster infected with *pomona*.

Fig. 6-11 High power view of the phagocytosed leptospires.

Fig. 6-12 Abnormally shaped mitochondria within a splenic macrophage from a hamster infected with *pomona*.

Fig. 6-13 Cytoplasmic inclusions within a splenic macrophage of a hamster infected with *pomona*.

Fig. 6-14 Intracellular leptospire within a splenic macrophage from a hamster following a *pomona* infection.

Fig. 6-15 Apex of an epithelial cell from the proximal convoluted tubule of a hamster infected with *pomona*.

Fig. 6-16 Cytoplasmic detail from an epithelial cell of a proximal convoluted tubule of a hamster infected with *pomona*.
Fig. 6-17 Leptospire migrating between epithelial cells of a proximal convoluted tubule of a hamster following infection with *pomona*.

CHAPTER 7

Figures following page 173

Fig. 7-1(i) Test tubes containing unwashed calf RBC's following incubation with *pomona, balcanica, hardjo*, distilled water and culture media.

Fig. 7-2(ii) Test tubes containing washed calf RBC's following incubation with *pomona, balcanica, hardjo*, distilled water and culture media.

Fig. 7-2(i) Test tubes containing unwashed calf RBC's following incubation with *pomona, ballum*, distilled water and culture media.

Fig. 7-2(ii) Test tubes containing washed calf RBC's following incubation with *pomona, ballum*, distilled water and culture media.

Fig. 7-3 SEM appearance of washed cattle RBC's immediately after combination with a *pomona* culture.

Fig. 7-4 SEM appearance of washed cattle RBC's six hours after incubation with a *pomona* culture.

Fig. 7-5 SEM appearance of washed cattle RBC's 18 hours after incubation with a *pomona* culture.

Fig. 7-6 Graph showing the decrease in foetal haemoglobin in neonatal calves.

CHAPTER 8

Following page 197

Fig. 8-1 SEM appearance of RBC's from a control hamster.

Fig. 8-2 SEM appearance of echinocytes from a hamster five days after irradiation.
Fig. 8-3 SEM appearance of spherocytes from a haemoglobinemic hamster in six days following irradiation and infection with *ballum*.

Figures following page 203

Fig. 8-4 Histological appearance of the spleen of a hamster eleven days following irradiation.

Fig. 8-5 Histological appearance of the bone marrow of a hamster five days following irradiation.

CHAPTER 9

page 217

Fig. 9-1 Progression of infection during leptospirosis
LIST OF APPENDICES

APPENDIX I Paper: Colostral transfer of gamma glutamyl transpeptidase in calves

APPENDIX II Letter: A rapid method for the detection of leptospiroaemia

APPENDIX III Abstract: Morphological changes in red blood cells of calves and hamsters with leptospirosis

APPENDIX IV Paper: Experimental infection of sheep and cattle with *Leptospira interrogans* serovar *balcanica*

APPENDIX V Preparation of tissue for electron microscopic examination

APPENDIX VI Summary of abbreviations for clinical pathological data and bone marrow differentials

APPENDIX VII a) Clinical pathological data from control hamsters of Experiment I, part I, euthanased on day 0
 b) Bone marrow differentials of control hamsters from Experiment I, part I, euthanased on day 0

APPENDIX VIII a) Clinical pathological data from *ballum* infected hamsters of Experiment I, part I euthanased on day 1, am
 b) Bone marrow differentials of *ballum* infected hamsters from Experiment I, part I, euthanased on day 1, am

APPENDIX IX a) Clinical pathological data from *ballum* infected hamsters of Experiment I, part I, euthanased on day 2, am
 b) Bone marrow differentials of *ballum* infected hamsters from Experiment I, part I, euthanased on day 2, am

APPENDIX X a) Clinical pathological data from *ballum* infected hamsters of Experiment I, part I, euthanased on day 3, am
 b) Bone marrow differentials of *ballum* infected hamsters from Experiment I, part I, euthanased on day 3, am
APPENDIX XI

a) Clinical pathological data from *ballum* infected hamsters of Experiment I, part I, euthanased or found dead on day 4, am

b) Bone marrow differentials of *ballum* infected hamsters from Experiment I, part I, euthanased on day 4, am

APPENDIX XII

a) Clinical pathological data from *ballum* infected hamsters from Experiment I, part I, euthanased or found dead on day 4, pm

b) Bone marrow differentials of *ballum* infected hamsters from Experiment I, part I, euthanased on day 4, pm

APPENDIX XIII

a) Clinical pathological data from *ballum* infected hamsters of experiment I, part I, euthanased on day 5, am

b) Bone marrow differentials of *ballum* infected hamsters from Experiment I, part I, euthanased on day 5, am

c) Organ weight/body weight ratios from *ballum* infected hamsters of Experiment I, part I, found dead on day 5, am

APPENDIX XIV

a) Clinical pathological data from control hamsters of Experiment I, part I, euthanased on day 6

b) Bone marrow differentials of control hamsters from Experiment I, part I, euthanased on day 6

APPENDIX XV

Means, standard deviations and ranges of organ weight: body weight rations of ten untreated control hamsters from Experiment I, part I.

APPENDIX XVI

Clinical pathological data from *pomona* infected calf 11

APPENDIX XVII

Clinical pathological data from 'toxin' injected calf 12

APPENDIX XVIII

Clinical pathological data from 'toxin' injected calf 13

APPENDIX XIX

Clinical pathological data from *pomona* infected calf 14

APPENDIX XX

Clinical pathological data from *pomona* infected calf 15

APPENDIX XXI

Clinical pathological data from *pomona* infected calf 16

APPENDIX XXII

Clinical pathological data from *pomona* infected calf 17

APPENDIX XXIII

Clinical pathological data from control calf 18

APPENDIX XXIV

Clinical pathological data from control calf 19

APPENDIX XXV

Clinical pathological data from the bled calf 20
APPENDIX XXVI Bone marrow differentials from control and _pomona_ infected calves

APPENDIX XXVII Haematological and urinary results from untreated control heifers
 a) Untreated control heifer: number 19
 b) Untreated control heifer: number 67

APPENDIX XXVIII Haematological and urinary results from negative control heifers
 a) Heifer inoculated with noninfected media: number 44
 b) Heifer inoculated with noninfected liver and kidney homogenate: number 61

APPENDIX XXIX Haematological and urinary results from heifers infected using _balcanica_ infected hamster livers and kidneys
 a) _balcanica_ infected heifer: number 1
 b) _balcanica_ infected heifer: number 53
 c) _balcanica_ infected heifer: number 59
 d) _balcanica_ infected heifer: number 64

APPENDIX XXX Haematological and urinary results from heifers infected using _balcanica_ culture
 a) _balcanica_ infected heifer: number 27
 b) _balcanica_ infected heifer: number 39
 c) _balcanica_ infected heifer: number 41
 d) _balcanica_ infected heifer: number 62

APPENDIX XXXI Results of _in vitro_ Experiment A: Tube haemolysis of washed and unwashed RBC's taken from calves soon after birth to 47 days of age

APPENDIX XXXII Haematological and bone marrow data of control and irradiated hamsters from Experiment VIII, part I

APPENDIX XXXIII Summary of clinical and pathological data from Experiment VIII, part II

APPENDIX XXXIV Bone marrow differentials of hamsters from Experiment VIII, part II