Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY OF PHYSIOLOGICAL DIFFERENCES BETWEEN
LOW AND HIGH BREEDING INDEX
FRIESIAN HEIFERS

A thesis presented in partial fulfilment of
the requirements for the Degree of Doctor
of Philosophy in Animal Science
at Massey University

GUO-QIANG XING

1989
ABSTRACT

Friesian heifers from two genetic lines divergently selected for milk production were compared in their metabolic physiology and endocrinology in three experiments. Studies were conducted on the heifers, which were matched for age and bodyweight, in order to identify metabolic differences which might be used as genetic markers for lactational performance.

In the first experiment diurnal variation in plasma metabolite and hormone concentrations and responses to metabolic challenges of glucose, insulin, glucagon, and adrenaline, were measured in 6 high breeding index (HBI) and 6 low breeding index (LBI) heifers aged 6 to 8 months and fed 75% or 125% maintenance energy requirement (MER).

Basal plasma concentrations of creatinine, GH and NEFA were not influenced by selection line. Plasma insulin concentrations after feeding were greater in the LBI than in the HBI heifers. Relative to the concentrations which existed at the time of feeding, the elevation in plasma glucose concentration was greater in the HBI than in the LBI heifers from 7 to 9 hours after feeding. Elevation in plasma urea concentration on feeding was greater in HBI than in LBI heifers. Urea concentrations then declined more rapidly in the selected animals during the postprandial period such that concentrations were lower in HBI than in LBI heifers from 11 till 23 hours after feeding. Responses to metabolic challenge were generally not different between the lines and there were no line x allowance interactions except in the NEFA response to adrenaline where HBI heifers responded more than LBI heifers at 75% MER but not at 125% MER.

When compared with heifers fed 125% MER, those fed 75% MER exhibited: increased plasma creatinine concentrations; a smaller increment in plasma urea concentration after feeding; greater plasma NEFA levels in the post-prandial period; lower insulin concentrations during a 24 hour sampling period; decreased insulin release and glucose removal after glucose administration; greater plasma NEFA concentrations and reduced glucose clearance after insulin injection; enhanced glycogenolytic responses to glucagon and adrenaline;
and increased lipolytic responses to glucagon and adrenaline.

In the second experiment, 8 HBI and 8 LBI Friesian heifers aged 6 months were treated with progesterone by Controlled Internal Drug Release (CIDR) devices and fed 70% MER. Initially, basal plasma metabolite and hormone concentrations were measured in samples collected during a 6 hour intensive sampling period. In the following period, the line x dose interactions of intravenous glucose (0, 75, 150 and 300 mg/kg lw) and insulin (0, 0.1, 1, and 10 ug/kg lw) on metabolic responses were evaluated in a split-plot design carried out over a period of 8 days.

Basal plasma urea and creatinine concentrations were marginally greater (P<0.10) in the LBI heifers than in the HBI heifers but no differences were found between the two lines in plasma concentrations of GH, insulin, glucagon, glucose or NEFA. No significant line differences were found in the number of secretion spikes or the magnitude of the spikes for basal GH or insulin. Glucagon concentrations were measured using a specific double antibody radioimmunoassay developed as part of this programme.

There were marked dose effects of both glucose and insulin challenges on concentrations of insulin, glucose and NEFA. In addition, the HBI heifers released more insulin than the LBI heifers after the glucose challenge in a manner independent of glucose dose. Moreover, volume of plasma glucose distribution (Vd), or the distribution coefficient (\(\Delta\)) was smaller, and glucose disappearance rate greater (in terms of elimination rate constant (k) or the half-life (\(t_{1/2}\)) of the injected glucose), in the HBI than in the LBI heifers.

Insulin challenge resulted in slightly higher plasma insulin concentrations in the HBI heifers than in the LBI heifers. No significant interactions of line x dose in plasma metabolites and hormone concentrations were observed after either glucose or insulin challenges.
The third experiment compared 8 HBI and 8 LBI yearling heifers, fed 140% MER and receiving progesterone treatment, with respect to: diurnal patterns of plasma concentrations of metabolites and hormones; volume of body fluid distribution; ingestive behaviour in terms of rate of eating; responses of lipolysis and glycogenolysis to adrenaline challenge at various times after feeding and fasting; metabolic responses to fasting and refeeding; and pancreatic insulin release and glucose disappearance after glucose challenges administered before and after the withdrawal of progesterone-impregnated CIDRs.

Diurnal plasma concentrations of glucose, were greater, but plasma urea and creatinine levels were lower, in HBI than in LBI heifers. Plasma glucagon levels at the onset of feeding/refeeding were only briefly greater in HBI heifers than in LBI heifers. The volumes of urea distribution, plasma distribution (as measured by Evans blue (T1824) distribution), and the extracellular fluid distribution (as measured by thiocyanate (NaSCN) distribution) were similar between the HBI and LBI heifers. In general, rate of eating was similar between the lines over the experiments except it was greater in the LBI than in the HBI heifers on the first day of measurement. In addition, the eating rate fell substantially in the LBI but not in HBI heifers 28 hours after the withdrawal of progesterone-CIDRs.

Lipolytic response to adrenaline was minimal 7 hours after feeding, and maximal after 72 hours of fasting, whereas the reverse was true for glycogenolytic responses. There were significant line x time of challenge interactions in pre-challenge plasma NEFA concentrations, HBI heifers fasted for 72 hours exhibiting greater elevation in plasma NEFA concentration. Time of challenge relative to feeding/fasting did not, however, influence the magnitude of selection line effects on lipolytic or glycogenolytic responses.

Basal plasma insulin concentration and pancreatic insulin release after glucose challenges were greater in HBI than the LBI heifers, irrespective of the presence or absence of progesterone-impregnated CIDRs. Although basal plasma glucose concentration was greater in the HBI than in the LBI heifers, glucose disappearance was similar between
the two lines following glucose challenge in this experiment. There was a significant line x progesterone presence/withdrawal interaction in the pre-challenge plasma glucose concentrations. Plasma glucose concentrations were greater in the HBI than in the LBI heifers 46 hours after the removal of progesterone CIDRs but not prior to removal of the CIDRs.

These results demonstrated that genetic variation exists in nitrogen, lipid, glucose and insulin metabolism between the HBI and the LBI heifers. Appropriate experimental conditions such as different feeding regimens, use of metabolic challenges and control of oestrous activity, alone or in combination, were useful means of maximising these genetic differences. While these metabolic characteristics have the potential to become markers for dairy merit, their genetic relationships with milk production should be confirmed in further studies and these traits should also be evaluated in progeny tested bulls before their wide use in dairy cattle breeding.
ACKNOWLEDGEMENTS

I want to express my sincere gratitude to my supervisors, Dr. Duncan D.S. Mackenzie and Dr. Stuart N. McCutcheon, for their enthusiasm, critical guidance, wise counsel and stimulation throughout this study. Their contribution to this project has been immeasurable. To me this has been an invaluable educational experience through which I have had the opportunity to share their broad knowledge and scientific philosophy.

I want to give my special thanks to Professor R.D. Anderson without whose permission, and assistance with Departmental facilities, my pursuit of this study would not have been possible.

I gratefully acknowledge the assistance given to me by the following:-

Mrs. Janice. A. Rumbal, Miss Margaret F. Scott, Miss Yvette H. Cottam and Mr. W. Barry Parlane for their excellent technical assistance. Miss Margaret F. Scott also proof-read several chapters of this thesis.

The staff of the Dairy Cattle Research Unit, Massey University, for willing assistance in management of the heifers.

My fellow postgraduate students in the Animal Science Department: Mark Carter, Carolyn Clark, Maria Dattena, Jose Solis-Ferreya, Sabine Muller, Coby Hoogendoorn, Tessa Matthew, Anne McClelland, Seok-Hong Min, Peter Morgan, Sam Peterson, Christine Roberts, Bruce Southey, Beverley Thompson, Sean Beer, Peter Walsh, Zhenzhong Xu, and visiting fellows Gao Hu, Carla Kroonsberg, Andries Mesken, Leon Pijls, Machteld Van Maanen and Peter Van Dinther for helping in blood sampling and conducting challenges during various stages of this study. Raymundo Rangel for his assistance in administration of the progesterone-CIDRs to the heifers.
Dr. K. M. Moriarty for advice on raising glucagon antisera, and the staff of the Small Animal Production Unit, especially Mr. J.E. Ormsby, for assistance in immunizing the guinea pigs.

Dr. R. M. Greenway and Ms G.M. Borrie for urea and creatinine assays.

The staff of Massey library for excellent service.

The staff at the Computer Center, Massey University, for excellent service and assistance, especially Dr. Hugo Varela-Alvarez and Dr. Ted Drawneek for valuable advice on fitting non-linear models.

Dr. Ian L. Gordon and Dr. Dorian Garrick for valuable advice on statistical analysis of the data.

My fellow postgraduate students and the members of the Animal Science Department for moral support and providing a friendly academic atmosphere.

My fellow overseas students at the Massey campus, both from China and other parts of the world, for their moral support and friendship.

The growth hormone used in GH RIA was kindly supplied by Dr. S. Raiti, National Hormone and Pituitary Program, NIDDKD, NIH, USA.

Professor George Shouksmith, Dr. John Zhan-Peong Liang and Mr. Tony True for the arrangement of part-time work in the Department of Psychology, which provided my principal support for the first three years of this study.

Financial assistance, in part, from the following sources is gratefully acknowledged:

The Helen E. Akers Postgraduate Scholarship (1986/87) and a Graduate Scholarship from the Faculty of Agricultural and Horticultural Sciences; Massey University Scholarship (1988); and a scholarship from the Livestock Improvement Corporation of the New Zealand Dairy
Board (1989).

The New Zealand Dairy Board is gratefully acknowledged for its financial support of this project.

Finally, my parents, my brothers and sister for their love, encouragement, and support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>Chapter one: Introduction</td>
<td></td>
</tr>
<tr>
<td>I. Dairy cattle breeding and the role of genetic markers</td>
<td>1</td>
</tr>
<tr>
<td>1. Progeny testing and its limitations</td>
<td>1</td>
</tr>
<tr>
<td>2. Potential uses of genetic markers in dairying</td>
<td>1</td>
</tr>
<tr>
<td>II. Approaches to identifying genetic markers</td>
<td>2</td>
</tr>
<tr>
<td>1. Selection lines</td>
<td>2</td>
</tr>
<tr>
<td>2. Progeny tested bulls</td>
<td>4</td>
</tr>
<tr>
<td>III. Types of genetic markers</td>
<td>4</td>
</tr>
<tr>
<td>1. Polymorphisms</td>
<td>5</td>
</tr>
<tr>
<td>1) Protein polymorphisms</td>
<td>5</td>
</tr>
<tr>
<td>2) DNA Polymorphisms</td>
<td>6</td>
</tr>
<tr>
<td>2. Metabolic characteristics</td>
<td>7</td>
</tr>
<tr>
<td>IV. Metabolic differences between divergent dairy lines selected</td>
<td>10</td>
</tr>
<tr>
<td>for milk production</td>
<td></td>
</tr>
<tr>
<td>1. Basal plasma concentrations of hormones and metabolites</td>
<td>10</td>
</tr>
<tr>
<td>1) Hormones</td>
<td></td>
</tr>
<tr>
<td>1) GH</td>
<td>10</td>
</tr>
<tr>
<td>2) Insulin</td>
<td>11</td>
</tr>
<tr>
<td>3) Glucagon</td>
<td>13</td>
</tr>
<tr>
<td>4) Prolactin</td>
<td>13</td>
</tr>
<tr>
<td>5) Placental lactogen</td>
<td>14</td>
</tr>
<tr>
<td>6) Insulin-like growth factors</td>
<td>14</td>
</tr>
<tr>
<td>7) Thyroid hormones</td>
<td>14</td>
</tr>
<tr>
<td>8) Cortisol</td>
<td>15</td>
</tr>
<tr>
<td>9) Progesterone, oestrogen and LH</td>
<td>15</td>
</tr>
<tr>
<td>2) Metabolites and other metabolic parameters</td>
<td>16</td>
</tr>
<tr>
<td>1) Glucose</td>
<td>16</td>
</tr>
<tr>
<td>2) NEFA</td>
<td>17</td>
</tr>
<tr>
<td>3) Ketone bodies</td>
<td>18</td>
</tr>
<tr>
<td>4) Urea</td>
<td>18</td>
</tr>
</tbody>
</table>
Chapter two: Development and application of a double antibody radioimmunoassay for bovine plasma glucagon

I. Introduction..30
II. Materials and methods..31
 1. Source of hormones..31
 2. Generation of glucagon antisera and antisera to guinea pig gamma globulin.................................32
 1) Antigen preparation......................................32
 2) Animals..32
 3) Immunization procedures..................................32
 4) Production of second antibody............................33
 3. Preparation of reference standards........................33
 4. Glucagon iodination and purification of the 125I-labelled glucagon..34
 5. Radioimmunoassay method................................35
III. Results..35
1. Validation of the radioimmunoassay system.................................35
 1) Characterization of the antisera..35
 i) Titre...35
 ii) Affinity..36
 iii) Sensitivity...36
 iv) Specificity...36
 v) Precision..38
 2) Parallelism..38

2. Plasma glucagon in heifers...40

IV Discussion..43

Chapter three: Diurnal variation in plasma metabolite and hormone concentrations and response to metabolic challenges in high breeding index and low breeding index Friesian heifers fed at two allowances

Abstract..46

I. Introduction..47

II. Materials and methods...47
 1. Animals..47
 2. Experimental design..48
 3. Blood analyses...49
 4. Statistical analysis..50

III. Results..51
 1. Body weight changes..51
 2. Basal hormone and metabolite concentrations......................51
 3. Challenges...57
 1) Glucose challenge..57
 2) Insulin challenge..57
 3) Glucagon challenge..60
 4) Adrenaline challenge...62

IV. Discussion..64

Chapter four: Metabolic differences between high breeding index and low breeding index heifers treated with progesterone-CIDRs: basal metabolite and hormone concentrations and dose effects of glucose and insulin challenges on metabolic responses

Abstract..69

I. Introduction..70
II. Materials and methods .. 71
 1. Animals .. 71
 2. Experimental procedures ... 72
 3. Blood analyses .. 73
 4. Statistical analysis ... 75
 1) Six hour sampling .. 75
 i) Basal plasma concentrations 75
 ii) Quantitative analyses of pulsatile GH and insulin
 secretion observed in the 6 hour period 75
 2) Analysis of the data from glucose and insulin challenges 76
 i) Plasma concentrations of hormones/metabolites 76
 ii) Insulin and glucose disappearance curves after insulin and
 glucose injections .. 77
 iii) Insulin and glucose response areas after glucose
 injection ... 78
III. Results .. 79
 1. Six hour sampling period .. 79
 2. Characteristics of GH and insulin secretion 83
 3. Challenges .. 84
 1) Glucose challenge .. 84
 2) Insulin challenge ... 89
IV. Discussion .. 92

Chapter five: Physiological differences between high breeding index
and low breeding index Friesian heifers treated with progesterone:
Diurnal pattern of plasma metabolite and hormone concentrations,
responses to metabolic challenges, size of body fluid compartments,
and rates of eating

Abstract ... 97
I. Introduction ... 98
II. Materials and methods .. 100
 1. Animals and management .. 100
 2. Recording of pattern of eating .. 101
 3. Experimental procedures ... 101
 4. Blood analyses ... 103
 5. Statistical analysis ... 105
 1) Plasma concentrations of hormones and metabolites 105
2) Disappearance curves for urea, Evans blue (T1824), thiocyanate (NaSCN), and glucose challenges..........106

III. Results...108
 1. Plasma metabolite and hormone concentrations during a 29 hour period...108
 2. Urea/T1824/NaSCN injection..110
 3. Adrenaline challenge at different times from feeding...........113
 4. Fasting and refeeding...116
 5. Glucose challenges before and after withdrawal of CIDR........118
 6. Changes in rate of eating...121
 7. Changes in plasma progesterone concentration................121
 8. Changes in blood haematocrit.....................................121

IV. Discussion...125
 1. Volumes of body fluid distributions..............................125
 2. 29 hour observation and fasting/refeeding.........................126
 3. Metabolic responses to feeding......................................130
 4. Effect of timing of adrenaline challenge relative to feeding.131
 5. Metabolic response to glucose challenge, progesterone and its influence on metabolism.........................132
 6. Rate of eating...134

Chapter six: General discussion and conclusions

I. Differences in basal plasma concentrations of metabolites and hormones and their responses to feeding/fasting between the HBI and LBI heifers...............................136
II. Response to metabolic challenges in the HBI and LBI heifers...141
III. Conclusions...142

Appendixes..145

References..161
LIST OF ABBREVIATIONS

AI Artificial insemination
A_{kp} Alkaline phosphatase
AMI Amylases
ANOVA analyses of variance
BHBA β-hydroxybutyrate
C_0 Concentration at time=0 (after challenge)
CCK Cholecystokinin
CIDR Progesterone-impregnated controlled internal drug releaser
CNS Central nervous system
cpm Counts per minute
C.V. Coefficient of variation
DM Dry matter
DNAFP DNA Finger Print
GH Growth hormone
GHRH Growth hormone releasing hormone
GIP Gastric inhibitory peptide
GnRH Gonadotrophin releasing hormone
GPY Guinea pig gamma globulin
h^2 Heritability
IGF(s) Insulin-like growth factor(s)
HBI High breeding index
k Fractional removal rate of injected metabolite
LH Luteinizing hormone
LBI Low breeding index
LWT Live weight
MANOVA Repeated-measures analyses (multivariate analyses of variance)
MER Maintenance energy requirement
MHC Major histocompatibility complex
MJ Megajoules
NaSCN Sodium thiocyanate
NEFA Non-esterified fatty acids
ng Nanogram
PCV Packed (red) cell volume
PL Placental lactogen
Prl Prolactin
Pg Picogram
r Repeatability
RFLP Restriction fragment length polymorphism
r_g Genetic correlation
RIA Radioimmunoassay
S.D. Standard deviation
S.E. Standard error of the mean
SGOT Serum glutamic oxaloacetic transaminas
t_{1/2} Half-life
T1824 Evans blue dye
T_3 Triiodothyronine
T_4 Thyroxine
Tf Transferrin
TRH Thyrotropin-releasing hormone
Hg Microgram
Vd Volume of fluid distribution
VIP Vasoinhibitory peptide
VMH Ventromedial hypothalamus
\(\Delta \) Fluid distribution coefficient
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The elution pattern of 125I-labelled bovine glucagon from QAE-Sephadex A 25</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Evaluation of the titres of glucagon antisera elicited in 8 young female guinea pigs after 5 months of monthly injections of glucagon-bovine serum albumin at 0.25 mg/animal at multiple intradermal sites or 0.125 mg/animal at multiple subcutaneous sites</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Displacement of 125I-glucagon from the antisera of guinea pig 2 (GP2) and GP3 by glucagon standards, glucagon-like peptide I and bovine insulin</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Parallelism of 125I-glucagon displacement by serially diluted bovine plasma samples</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Mean plasma glucagon concentrations in progesterone-treated heifers samples collected every 10 minutes for 6 hours, hourly for 29 hours, and over a 70 hour fasting/refeeding period</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Basal plasma concentrations of glucose, uncorrected and corrected for pre-feeding glucose concentration, in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Basal plasma concentrations of insulin and NEFA in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Basal plasma concentrations of urea, uncorrected and corrected for pre-feeding urea concentration, in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Basal plasma concentrations of creatinine and GH in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Plasma concentrations of glucose and insulin in response to glucose challenge (0.3 g/kg liveweight) in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Plasma concentrations of glucose and NEFA in response to insulin challenge (10 μg/kg liveweight) in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Plasma concentrations of glucose and NEFA in response to glucagon challenge (0.175 μg/kg liveweight) in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Plasma concentrations of NEFA, corrected for pre-challenge NEFA concentration, in response to adrenaline challenge (1 μg/kg liveweight) in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement</td>
<td>62</td>
</tr>
</tbody>
</table>
Figure 3.8 Plasma concentrations of glucose and NEFA in response to adrenaline challenge (1 mg/kg lw) in 6 high breeding index and 6 low breeding index heifers offered 75% and 125% maintenance energy requirement..63

Figure 4.1 Basal plasma concentrations of GH, insulin and glucose in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRS...80

Figure 4.2 Basal plasma concentrations of glucagon in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRS...81

Figure 4.3 Plasma concentrations of insulin and glucose in response to the challenges of glucose (0, 75, 150, and 300 mg/kg) in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRS...82

Figure 4.4 Relationship between the acute (0-12 min) insulin response area and the acute (0-12 min) glucose stimulus area above pre-challenge levels in 8 high breeding index and 8 low breeding index heifers..................88

Figure 4.5 Plasma concentrations of insulin after the injection of insulin (1 mg/kg) in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRs...90

Figure 4.6 Plasma concentrations of glucose and NEFA in response to the challenges of insulin (0, 0.1, 1, and 10 mg/kg) in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRS...91

Figure 5.1 Basal plasma concentrations of glucose, urea and creatinine over a 29 hour period in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRs...109

Figure 5.2 Basal plasma concentrations of NEFA and glucagon over a 29 hour period in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRs...111

Figure 5.3 Plasma concentrations of urea, T1824, NaSCN and creatinine in response to the challenges of urea (60 mg/kg lw), T1824 (1 mg/kg lw) and NaSCN (20 mg/kg lw) in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRs...112

Figure 5.4 Plasma concentrations of NEFA and glucose in response to adrenaline challenge (1 mg/kg lw) administered at -2 hr, 7 hr, 22 hr, and 70 hr relative to the time of feeding in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRs...115
Figure 5.5 Plasma concentrations of glucose, urea, creatinine, NEFA, insulin and glucagon over a period of 72 h fasting and refeeding in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRs..117

Figure 5.6 Plasma concentrations of insulin and glucose in response to glucose challenge (150 mg/kg liv wt) administered at -2 hr, and +46 hr, relative to the withdrawal of progesterone CIDR in 8 high breeding index and 8 low breeding index heifers.......119

Figure 5.7 The rate of eating in terms of amount and percentage of allowance consumed per unit time, or amount of allowance consumed during successive time intervals of 20 minutes on day 1 and day 8 of experiment in 8 high breeding index and 8 low breeding index heifers......122

Figure 5.8 The rate of eating, in terms of percentage, or amount of allowance consumed measured at 80 minutes after feeding, at 20 hours before and 28 hours after the withdrawal of progesterone CIDRs in 8 high breeding index and 8 low breeding index heifers..123

Figure 5.9 Plasma concentrations of progesterone relative to day of CIDR withdrawal in 8 high breeding index and 8 low breeding index heifers.................................124

Figure 5.10 Haematocrit in 8 high breeding index and 8 low breeding index heifers treated with progesterone CIDRs.................................124
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Heritabilities (h^2) of serum components and genetic correlations (r_g) with 305 day milk production</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Heritabilities (h^2), repeatabilities (R), and genetic correlations (r_g) of serum components with growth rate in British Friesian bull calves</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Summary of the reported differences in plasma metabolite and hormone concentrations between high and low genetic merit cattle within breed</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Means and standard errors (SE) for the integrated plasma hormone and metabolite concentrations collected at 10 minute intervals over a 6 hour period in 8 HBI and 8 LBI heifers</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Characteristics of GH and insulin secretion determined from the analyses of their concentrations in plasma samples collected at 10 minute intervals for 6 hours from the HBI and LBI heifers</td>
</tr>
<tr>
<td>Table 4.3a</td>
<td>Means and standard errors (SE) for various parameters describing glucose disappearance after glucose injections of 75, 150 and 300 mg/kg lw t in 8 HBI and 8 LBI heifers</td>
</tr>
<tr>
<td>Table 4.3b</td>
<td>Significance of selection line, dose of glucose injected and line x dose effects on parameters describing glucose disappearance curves from the plasma following glucose injections of 0, 75, 150 and 300mg/kg lw t in 8 HBI and 8 LBI heifers</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Means and standard errors for various insulin parameters describing the insulin disappearance curves after insulin injection of 1 μg/kg lw t in 8 HBI and 8 LBI heifers</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Kinetics of distribution and disappearance of urea, T1824 and NaSCN in 8 HBI and 8 LBI heifers following injections of urea (60 mg/kg lw t), T1824 (1 mg/kg lw t), and NaSCN (20 mg/kg lw t)</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Glucose kinetics measured at 2 hours before and 46 hours after CIDR withdrawal in HBI and LBI heifers that received glucose challenges (150 mg/kg lw t)</td>
</tr>
</tbody>
</table>