Automated Wireless Greenhouse Management System

A Thesis submitted in partial fulfillment of the
Requirements for the Degree of

Master of Engineering

In

Electronics and Computer Systems

By

Quan Minh Vu

MASSEY UNIVERSITY

SCHOOL OF ENGINEERING AND ADVANCED TECHNOLOGY

MASSEY UNIVERSITY

PALMERSTON NORTH

NEW ZEALAND

June 2011
ABSTRACT

Increases in greenhouse sizes have forced the growers to increase measurement points for tracking changes in the environment, thus enabling energy saving and more accurate adjustments. However, increases in measurement points mean increases in installation and maintenance cost. Not to mention, once the measurement points have been built and installed, they can be tedious to relocate in the future. Therefore, the purpose of this Masters thesis is to present a novel project called “Automated Wireless Greenhouse Climate Management System” which is capable of intelligently monitoring and controlling the greenhouse climate conditions in a preprogrammed manner.

The proposed system consists of three stations: Sensor Station, Coordinator Station, and Central Station. To allow for better monitoring of the climate condition in the greenhouse, the sensor station is equipped with several sensor elements such as CO₂, Temperature, humidity, light, soil moisture and soil temperature. The communication between the sensor station and the coordinator station is achieved via ZigBee wireless modules and the communication between coordinator station and the central station is achieved via long range RF modems.

An important aspect of designing a wireless network is the reliability of data transmission. Therefore, it is important to ensure that the developed system will not lose packets during transmission. An experiment was carried out in one of the greenhouses at Plant and Food Research Ltd, New Zealand in order to determine the functionality and reliability of the designed wireless sensor network using ZigBee wireless technology. The Experiment result indicates that ZigBee modules can be used as one solution to lower the installation cost, increase flexibility and reliability and create a greenhouse management system that is only based on wireless nodes.

The overall system architecture shows advantages in cost, size, power, flexibility and distributed intelligent. It is believed that the outcomes of the project will provide the opportunity for further research and development of a low cost automated wireless greenhouse management system for commercial use.
ACKNOWLEDGMENTS

A journey is easier when you travel together. Interdependence is certainly more valuable than independence. This thesis is the result of work whereby I have been accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my gratitude to all of them.

I would like to express my gratitude to my supervisors, Senior Lecturer Dr. Gourab Sen Gupta and Associate Professor Dr. Subhas Mukhopadhayay, who have given me encouragement and assistance to complete my Masters Project.

I am indebted to Dr. Gourab Sen Gupta for his continuous support and supervision of my research work and providing me with valuable advice and expert guidance, and above all his technical feedback. Without his help and support this work would not have been possible. I sincerely thank Dr. Subhas Mukhopadhayay for his valuable advice, and numerous helpful suggestions. Many thanks to Colin Plaw, Ken Mercer, Anthony Wade, Kerry Griffiths and John Edwards for their help and support on technical matters, and invaluable comments to improve the experimental work in the laboratory.

I would like to thank the New Zealand Institute for Plant & Food Research Ltd for providing me with helpful information on greenhouse related matters and necessary testing environment for the developed prototype.

I would like to thank my friends: Ryan Thomas, Peter Barlow, Ian Bayliss and Mark Seelye for their help and support, and the occasional beverages which have made my Masters year enjoyable and memorable.

Last but not the least, my gratitude goes to my family for their love, support and encouragement during all my studies. Most of all I would like to thank my mother for all the sacrifices that she has made to allow me to achieve my goal. I thank you from the bottom of my heart.

~ iii ~
CONTENTS

ACKNOWLEDGMENTS .. III

CONTENTS .. V

LIST OF FIGURES .. IX

LIST OF TABLES ... XIII

1. INTRODUCTION .. 1

1.1 GREENHOUSE HISTORY .. 1

1.2 PROJECT STATEMENTS AND OBJECTIVES .. 1

1.3 OUTLINE OF THE THESIS ... 4

2. LITERATURE REVIEW AND MARKET SURVEY .. 7

2.1 LITERATURE REVIEW ... 7

2.1.1 Environmental Factors and Plant Growth .. 7

2.1.2 Wireless Sensor Network (WSN) In Environmental monitoring 11

2.1.3 Wireless Sensor Network (WSN) In Greenhouse management 12

2.1.4 ZigBee Wireless technology applications ... 14

2.2 MARKET SURVEY .. 17

2.2.1 Introduction .. 17

2.2.2 Winland EnviroAlert.. 17

2.2.3 Watchdog Wireless Crop Monitor .. 18

2.2.4 Sensaphone alarm Dialer .. 20

2.2.5 Conclusions .. 21

3. SENSOR RESEARCH AND EVALUATIONS .. 23

3.1 INTRODUCTION ... 23

3.2 TEMPERATURE SENSING TECHNOLOGY .. 23

3.2.1 Thermocouples ... 23

3.2.2 Resistance Temperature Detectors (RTD) ... 24

3.2.3 Thermistors .. 25

3.2.4 Integrated Circuit (IC) Temperature sensors .. 26

3.3 HUMIDITY SENSING TECHNOLOGY ... 27

3.3.1 Capacitive Humidity Sensors (CHS) ... 28

3.3.2 Resistive Humidity Sensors (RHS) ... 29

3.3.3 Thermal Conductivity Humidity Sensors (TCHS) .. 30

3.4 LIGHT SENSING TECHNOLOGY ... 31

3.4.1 Photometric Sensors .. 31

3.4.2 Light Dependent Resistor (LDR) .. 32

3.4.3 Pyranometers .. 33

3.4.4 Quantum Sensors .. 34

3.5 SOIL MOISTURE SENSING TECHNOLOGY ... 34

3.5.1 Frequency Domain Reflectometry (FDR) Soil Moisture Sensor 35

3.5.2 Time Domain Reflectometry (TDR) Soil Moisture Sensor ... 36

~ V ~
5.4 Prototype Hardware Design .. 99
 5.4.1 Introduction .. 99
 5.4.2 Hardware Design of the Sensor Station ... 100
 5.4.3 Hardware Design of the Coordinator Station ... 106
 5.4.4 Hardware design of the Central Station ... 109
5.5 Software Design and Algorithms .. 110
 5.5.1 Introduction .. 110
 5.5.2 Software Design of the Sensor Station ... 110
 5.5.3 Software Design of Coordinator Station ... 113
 5.5.4 Software Design of Central Control Station ... 115
 5.5.5 Data Acquisition Algorithms ... 116
5.6 Prototype Final Design .. 121
 5.6.1 Sensor Station Final Design .. 121
 5.6.2 Coordinator Station Final Design ... 122
 5.6.3 Central Station Final Design ... 123
5.7 Graphical User Interface (GUI) Final Design .. 124
 5.7.1 MANUAL Mode .. 127
 5.7.2 AUTO Mode .. 128
5.8 Database .. 129

6. CONTROL OF OPERATIONS AND SYSTEM EVALUATION 131
 6.1 Introduction ... 131
 6.2 Development of the Proposed Controller .. 132
 6.2.1 Input and output variables of greenhouse system .. 132
 6.2.2 Control Rules .. 133
 6.3 Control Algorithm .. 136
 6.3.1 Comparison Algorithm .. 136
 6.3.2 Rule Checking Algorithm .. 137
 6.4 Controller Implementation and Evaluation ... 137
 6.5 System Evaluation .. 139
 6.5.1 Measuring Environment .. 139
 6.5.2 Network Throughput and ZigBee Feasibility .. 140
 6.5.3 Power Consumption .. 141

7. CONCLUSIONS ... 143
 7.1 Future Developments ... 145

REFERENCES ... 147

PUBLICATIONS ... 155
 A. Proceeding and Conference Paper ... 155
 B. Seminar/Presentation ... 155

APPENDIX ... 156
List of Figures

Figure 2-1: Winland EnviroAlert ... 18
Figure 2-2: WatchDog Wireless Crop Monitor ... 19
Figure 2-3: Sensaphone Alarm Dialer .. 20
Figure 3-1: Thermocouples ... 24
Figure 3-2: Resistance Temperature Detectors ... 25
Figure 3-3: Thermistors ... 26
Figure 3-4: Integrated Circuit (IC) temperature sensors 27
Figure 3-5: Capacitive humidity sensors .. 28
Figure 3-6: Resistive humidity sensor .. 29
Figure 3-7: Thermal conductivity humidity sensor .. 30
Figure 3-8: Photometric Sensors .. 31
Figure 3-9: Light dependent resistors ... 32
Figure 3-10: Pyranometers ... 33
Figure 3-11: Quantum Sensors ... 34
Figure 3-12: Frequency Domain Reflectometry (FDR) Soil Moisture Sensors .. 35
Figure 3-13: Time Domain Reflectometry (TDR) Soil Moisture Sensors 36
Figure 3-14: Gypsum Blocks .. 37
Figure 3-15: Neutron Probes .. 37
Figure 3-16: Electrochemical CO₂ Sensors ... 39
Figure 3-17: Non-dispersive Infrared CO₂ Sensors 40
Figure 3-18: SHT75 connection layout [51] .. 46
Figure 3-19: VG400 soil moisture sensor .. 48
Figure 3-20: THERM200 soil temperature sensor ... 49
Figure 3-21: Graph of resistance as function of illumination (left) and spectral respond (right) [54] ... 51
Figure 3-22: NOPR12 electrical characteristics [54] 51
Figure 3-23: NORP12 light dependent resistor ... 52
Figure 3-24: TGS4161 construction ... 53
Figure 3-25: TGS4161 application circuit [57] .. 54
Figure 3-26: Humidity dependency test (left) and sensor sensitivity to various gases (right) 54
Figure 3-27: Sensor calibration overview .. 55
Figure 3-28: Sensor calibration setup ... 56
Figure 3-29: Experimental result of TGS4161 sensors .. 58
Figure 3-30: Manufacturer’s plot ... 58
Figure 3-31: Comparison of the experimental results of the SHT75 temperature sensors results and the BWGasProbe temperature sensor .. 60
Figure 3-32: Comparison of the experimental results for the SHT75 humidity sensors and the BWGasProbe humidity sensor ... 62
Figure 3-33: Comparison of the experimental results of the NORP12 light sensors and the JT-06LX Lux meter ... 64
Figure 3-34: Comparison of the experimental results of THERM200 soil temperature sensors and Fluke Temperature Meter .. 66
Figure 3-35: Comparison of the experimental results of the VG400 soil moisture sensors and MO750 soil moisture Meter .. 68
Figure 3-36: Comparison of the experimental results of the TGS4161 electrochemical CO$_2$ sensors and BWGasProbe CO$_2$ sensor .. 70
Figure 4-1: Comparison of the complexity for each protocol [68] ... 78
Figure 4-2: XCTU Configuration tab .. 79
Figure 4-3: Components for ZigBee testing ... 81
Figure 4-4: Testing the strength of ZigBee radio signal with respect to the changes in the displacement between coordinator and end device ... 83

Figure 5-1: System overview .. 88
Figure 5-2: C8051F020 system overview [70] ... 90
Figure 5-3: Block Diagram of C8051F020 [70] ... 91
Figure 5-4: XBee 2mW series 2.5 ... 92
Figure 5-5: 2.4 GHz XStream-PKG RF modem ... 93
Figure 5-6: Schematic design of the battery detection unit ... 96
Figure 5-7: Battery detector simulation .. 98
Figure 5-8: I/O 24 Relay Output Board ... 99
Figure 5-9: System block diagram .. 100
Figure 5-10: Sensing Unit schematic design .. 102
Figure 5-11: Sensing Unit PCB design .. 102
Figure 5-12: XBee electrical connection layout .. 103
Figure 5-13: REG1117 circuit layout ... 104
Figure 5-14: LM2594M-5V circuit layout ... 105
Figure 5-15: PCB design of the processing unit .. 105
Figure 5-16: Final design of the Sensor Station ... 106
Figure 5-17: System data flow of the coordinator station .. 107
Figure 5-18: PCB design of the coordinator station .. 108
Figure 5-19: Final design of the coordinator-station ... 108
Figure 5-20: Layout of the central station .. 110
Figure 5-21: Software flow diagram of the sensor station ... 111
Figure 5-22: Algorithm for ADC initialization ... 112
Figure 5-23: UART0 and UART1 initialization .. 113
Figure 5-24: Software flow diagram of the coordinator station 114
Figure 5-25: Software flow diagram of the central station ... 115
Figure 5-26: Data acquisition algorithm for analog sensors ... 117
Figure 5-27: Algorithm for start-up sequence ... 118
Figure 5-28: Start-up transmission output signal .. 119
Figure 5-29: Algorithm for sending command to SHT75 .. 119
Figure 5-30: Temperature command (‘00000011’) ... 120
Figure 5-31: Relative humidity command (‘00000101’) .. 120
Figure 5-32: Data acquisition algorithm for SHT75 .. 121
Figure 5-33: Final design of the sensor station ... 122
Figure 5-34: Final design of the coordinator station ... 123
Figure 5-35: Final design of the central station .. 124
Figure 5-36: GUI of the developed system .. 125
Figure 5-37: Real-time data plotting .. 126
Figure 5-38: MANUAL Mode .. 128
Figure 5-39: AUTO mode .. 128
Figure 6-1: Tasks in greenhouse environmental control .. 135
Figure 6-2: Comparison Algorithm ... 136
Figure 6-3: Rule checking Algorithm ... 137
Figure 6-4: Case 1-simulation result (invoked control rules: 2, 11, 20 and 29) 138
Figure 6-5: Case 2-simulation result (invoked control rules: 9, 17, 19 and 28) 138
Figure 7-1: Experimental setup ... 139
List of Tables

Table 2-1: Design guidelines for building a WSN for environmental monitoring [19] 12
Table 3-1: Sensor technologies comparison .. 42
Table 3-2: Temperature compensation coefficients [51].. 47
Table 3-3: Temperature conversion coefficients [51].. 47
Table 3-4: Calibration result ... 57
Table 3-5: Sensor evaluation and comparison with calibrated instrument (BWGasProbe Temperature Detector) .. 61
Table 3-6: Sensor evaluation and comparison with calibrated instrument (BWGasProbe humidity detector) .. 63
Table 3-7: Sensor evaluation and comparison with calibrated instrument (JT-06LX Lux meter) .. 65
Table 3-8: Sensor evaluation and comparison with calibrated instrument (Fluke Temperature Meter) ... 67
Table 3-9: Sensor evaluation and comparison with calibrated instrument (MO750 Soil moisture probe) .. 69
Table 3-10: Sensor evaluation and comparison with calibrated instrument (BWGasProbe CO₂ Detector) .. 71
Table 4-1: Wi-Fi Generations [63] .. 75
Table 4-2: Comparison of ZigBee, Wi-Fi and Bluetooth [67]... 77
Table 5-1: Battery technology comparison [74].. 95
Table 5-2: Database field description ... 129
Table 6-1: Control rules .. 134
Table 7-1: Network Throughput ... 140
Table 7-2: Current consumption of the Sensor Station .. 141