A COMPARISON OF PRE-SOAKING AND PRE-WASHING AS METHODS OF INCREASING BEET (*BETA VULGARIS*) AND NEW ZEALAND SPINACH (*TETRAGONIA TETRAGONIOIDES*) SEED GERMINATION

A thesis presented in partial fulfilment of the requirements for the degree of

Master of AgriScience

in

Seed Science and Technology

at Massey University, Palmerston North

New Zealand

MASSEY UNIVERSITY

Chifundo Alberta Kalengamaliro

2011
ABSTRACT

Water soluble germination inhibitors located in the pericarp of Beta vulgaris fruits have historically been reported to be one of the causes of seed dormancy in fruit of this species. Dormancy can lead to low and non-uniform germination, which is a problem in the seed production system. Dormancy-breaking treatments that have been applied to B. vulgaris fruit include steeping, priming, rubbing the fruit coat or scarification, and washing and soaking the fruits prior to sowing as a way of leaching out the inhibitors. Anecdotal evidence suggests that soaking the fruits is as effective as the washing dormancy-breaking treatment recommended by the International Seed Testing Association (ISTA).

In this study, the presence or absence of dormancy in 18 B. vulgaris (11 vegetable beet, 4 fodder beet, and 3 sugar beet) seed lots was assessed by conducting germination tests on fruits in the absence of dormancy-breaking treatments. There was little or no dormancy in the seed lots tested. Six seed lots had over 90% germination, another six seed lots had more than 80% germination. Four seed lots had germination ranging from 76 to 79% while two seed lots had germination lower than 67%. These low germination percentages were due to empty fruits rather than dormancy. This suggests that dormancy may no longer be a problem in modern B. vulgaris cultivars.

Two B. vulgaris seed lots were identified as having some residual dormancy as indicated by a high percentage of ungerminated viable fruits. These were Flores sugar beet and an “unnamed” (Kings Seeds) sugar beet cultivar. These had 14% and 16% ungerminated viable fruits respectively. Two other seed lots identified had less than 90% germination, Brigadier and Kyros fodder beets, and had high percentages of ungerminated viable fruits (5%) compared with other seed lots in the same germination range. Dormancy-breaking treatments were conducted on the four seed lots. The dormancy-breaking treatments were i) fruits washed in running water at 25 °C for two hours, and ii) fruits soaked in 25 °C water for two hours, changing the water every 30 minutes. The aim of this experiment was to compare the effectiveness of the two treatments in removing residual dormancy by leaching inhibitors from the fruit coat. The effectiveness of these dormancy-breaking treatments was determined by measuring the germination percentage, time to 50% germination and the uniformity of germination. No significant differences were found between the germination of soaked or washed fruits compared with the control i.e. 84%, 89%, and 89% for Flores sugar beet, 77%,
80%, and 71% for the Kings Seeds sugar beet, 75%, 80%, and 73% for Brigadier fodder beet, and 93%, 91%, and 91% for Kyros fodder beet for control, soaking and washing treatments respectively. This suggested that water soluble germination inhibitors are absent from the fruit coats as the water treatments did not alleviate the residual dormancy. There were no significant differences in the time to 50% germination (T_{50}) of the seed lots following the treatments, except in Flores sugar beet where the soaking slowed down germination (49.9, 72.26, and 71.17 hours for the control, soaking, and washing treatments respectively).

Tetragonia tetragonioides was the only other species in the ISTA Rules for which the two hour washing treatment was recommended as a dormancy-breaking technique. The same dormancy-breaking treatments were applied to fruits of a *T. tetragonioides* seed lot. There were no significant differences in germination for the control, washing and soaking treatments (72%, 63%, and 70% respectively). The high percentages of ungerminated viable fruits of 26%, 32%, and 28% remaining for untreated, soaked, and washed fruits respectively indicated high levels of dormancy and inability of the dormancy-breaking treatments to alleviate this. A follow up experiment following an ISTA Rules change in 2011 that changed the two hour washing treatment to soaking the fruits for 24 hours was conducted to assess the effectiveness of the new 24 hour soaking recommendation in alleviating dormancy. The 24 hour soaking treatment gave a significantly lower germination (40%) and high percentage of ungerminated fruits (60%) compared with the control, two hour soaking, and two hour washing treatments. Cutting the endocarp of ungerminated fruits at the end of the 35 days germination period alleviated the dormancy in all remaining fresh viable fruits. The study also suggests that *T. tetragonioides* germination is inhibited by the presence of excess water past the early stages of imbibition, but further work is required to confirm this.
ACKNOWLEDGEMENTS

I would firstly like to thank my supervisors, Mr Craig McGill and Mr Robert Southward, for their guidance and much appreciated criticism throughout this study.

I would also like to thank Mrs Diane Bell and all the staff at AsureQuality National Seed Laboratory, Palmerston North, for kindly allowing me to carry out most part of the experiments on their premises and for their much appreciated assistance.

I would also like to sincerely thank Mrs Kay Sinclair, Institute of Natural Resources, Massey University, for her assistance with the experiments. My sincere thanks also go to staff at Seed Technology Centre, Massey University, for their assistance.

Lastly, I would like to thank my family for their support throughout this study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1. *Beta vulgaris* | 1 |
1.2. *Tetragonia tetragonioides* | 2 |

CHAPTER 2 LITERATURE REVIEW

2.1. Introduction | 3 |
2.2. The *B. vulgaris* fruit | 4 |
2.2.1. Multigerm and monogerm *B. vulgaris* fruit | 4 |
2.2.2. Structure of the individual *B. vulgaris* fruit | 6 |
2.3. Seed dormancy in *B. vulgaris* | 7 |
2.3.1. What is seed dormancy? | 7 |
2.3.2. Types of seed dormancy | 7 |
2.3.2.1. Coat imposed dormancy | 7 |
2.3.2.1.1. Pericarp impermeability | 8 |
2.3.2.1.2. The pericarp as physical constraint of radicle protrusion | 8 |
2.3.2.1.3. Germination inhibitors in the pericarp | 9 |
2.3.2.2. Embryo imposed dormancy | 9 |
2.3.3. Importance of dormancy | 10 |
2.3.4. Problems caused by seed dormancy | 10 |
2.3.5. Role of germination inhibitors in *B. vulgaris* fruits | 10 |
2.3.5.1. Where are the inhibitors in the fruits? | 10 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3.2. T. tetragonioides</td>
<td>31</td>
</tr>
<tr>
<td>3.2. Main experiment</td>
<td>32</td>
</tr>
<tr>
<td>3.2.1. Pre-washing treatment</td>
<td>32</td>
</tr>
<tr>
<td>3.2.2. Pre-soaking treatment</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3. Seed moisture content</td>
<td>36</td>
</tr>
<tr>
<td>3.2.4. Final germination, mean germination time and uniformity of germination</td>
<td>36</td>
</tr>
<tr>
<td>3.2.5. Tetrazolium (TZ) test</td>
<td>37</td>
</tr>
<tr>
<td>3.2.5.1. B. vulgaris</td>
<td>37</td>
</tr>
<tr>
<td>3.2.5.2. T. tetragonioides</td>
<td>38</td>
</tr>
<tr>
<td>3.3. Experiment 3: T. tetragonioides follow up experiment</td>
<td>40</td>
</tr>
<tr>
<td>3.4. Data analysis</td>
<td>42</td>
</tr>
<tr>
<td>CHAPTER 4 RESULTS</td>
<td>43-60</td>
</tr>
<tr>
<td>4.1. Preliminary experiment: Screening seed lots for dormancy</td>
<td>43</td>
</tr>
<tr>
<td>4.1.1. B. vulgaris</td>
<td>43</td>
</tr>
<tr>
<td>4.1.2. T. tetragonioides</td>
<td>48</td>
</tr>
<tr>
<td>4.2. Main experiment</td>
<td>48</td>
</tr>
<tr>
<td>4.2.1. B. vulgaris</td>
<td>48</td>
</tr>
<tr>
<td>4.2.1.1. Selection of seed lots with the highest possible dormancy</td>
<td>48</td>
</tr>
<tr>
<td>4.2.1.2. Moisture content</td>
<td>49</td>
</tr>
<tr>
<td>4.2.1.3. Germination and tetrazolium test results</td>
<td>55</td>
</tr>
<tr>
<td>4.2.1.4. Mean germination time and uniformity</td>
<td>55</td>
</tr>
<tr>
<td>4.2.2. T. tetragonioides</td>
<td>56</td>
</tr>
<tr>
<td>4.2.2.1. Moisture content</td>
<td>56</td>
</tr>
<tr>
<td>4.2.2.2. Germination and tetrazolium test results</td>
<td>56</td>
</tr>
<tr>
<td>4.2.2.3. Mean germination time and uniformity</td>
<td>56</td>
</tr>
<tr>
<td>4.3. Experiment 2: T. tetragonioides</td>
<td>58</td>
</tr>
<tr>
<td>4.3.1. Moisture content</td>
<td>58</td>
</tr>
<tr>
<td>4.3.2. Germination and tetrazolium test results</td>
<td>58</td>
</tr>
<tr>
<td>4.3.3. Mean germination time and uniformity</td>
<td>59</td>
</tr>
</tbody>
</table>
CHAPTER 5 DISCUSSION.. 61-77

5.1. Preliminary experiment: Screening of seed lots for dormancy.. 61

5.1.1. B. vulgaris.. 61

5.1.1.1. TSW and germination.. 61

5.1.1.2. The question of dormancy in B. vulgaris fruits: Does dormancy exist?...................... 62

5.1.1.3. Why is dormancy no longer a problem in B. vulgaris fruits?..................................... 62

5.1.1.3.1. Seed multiplication purposes.. 63

5.1.1.3.2. Breeding for other traits... 63

5.1.1.3.3. Seed processing.. 64

5.1.1.4. Possible dormancy mechanisms in B. vulgaris.. 65

5.1.1.4.1. The mucilaginous layer and germination inhibitors... 65

5.1.1.4.2. The tightness of the operculum... 66

5.1.2. T. tetragonioides germination and its possible dormancy mechanisms..................... 67

5.2. Main experiment... 67

5.2.1. B. vulgaris... 67

5.2.1.1. Moisture content... 67

5.2.1.2. Germination and tetrazolium test results.. 68

5.2.1.2.1. The effect of initial moisture content on B. vulgaris germination..................... 69

5.2.1.2.2. The effect of washing and soaking fruits prior to sowing on germination.......... 69

5.2.1.2.3. What does this mean for the use in the ISTA Rules of the washing procedure to alleviate dormancy?.. 71

5.2.1.2.4. Why the different responses in T50 of B. vulgaris fruits?..................................... 71

5.2.2. T. tetragonioides... 72

5.2.2.1. Moisture content.. 72

5.2.2.2. Germination and tetrazolium test results... 72

5.2.2.2.1. Possible ways of breaking T. tetragonioides dormancy.................................. 72

5.3. Experiment 2: T. tetragonioides... 73

5.3.1. Moisture content... 74

5.3.2. Germination and tetrazolium test results.. 74
5.3.2.1. The effect of water on germination decrease in *T. tetragonioides*74
5.3.2.2. The effect of cutting *T. tetragonioides* fruits ...75
5.3.2.3. The effect of water on T₅₀ and uniformity of germination76
5.4. Conclusion ..76
 5.4.1. *B. vulgaris* ...76
 5.4.2. *T. tetragonioides* ...76
5.5. Recommendation ..77
REFERENCES ...78-86
APPENDICES ...87-95

Appendix 1: Preliminary experiment data collected for four replicates of each
B. vulgaris seed lot and the *T. teragonioides* seed lot .. 87

Appendix 2: Main experiment data collected for four replicates of the four *B. vulgaris*
seed lots and the *T. teragonioides* seed lot ...90

Appendix 3: *T. tetragonioides* follow up experiment data collected for four replicates of
the four pre-sowing treatments applied to fruits ...95
LIST OF TABLES

Table 1 Numbered seed lots used, *B. vulgaris* types, fruit types, year harvested and source of the seeds lots... 30

Table 2 TSW (g), mean germination (%), and tetrazolium (TZ) test results for the *T. tetragonioides* seed lot ... 48

Table 3 Relative seed quality of the *B. vulgaris* four seed lots that showed the highest percentage of dormant fruits in the screening experiment 50

Table 4 Effect of soaking and washing dormancy-breaking treatments on the four *B. vulgaris* seed lots that showed the highest percentage of dormant fruits in the screening experiment... 51

Table 5A Changes in the moisture content of the four selected *B. vulgaris* seed lots as a result of washing or soaking treatments... 52

Table 5B Changes in the moisture content of the single *T. tetragoniodides* seed lot as a result of washing or soaking treatments 52

Table 6A Effect of soaking and washing dormancy-breaking treatments on each *B. vulgaris* seed lot ... 53

Table 6B Effect of soaking and washing dormancy-breaking treatments on the single *T. tetragonioides* seed lot. ... 54

Table 7A Mean germination time (*T*₅₀) and spread of germination (uniformity) of the four *B. vulgaris* seed lots without treatment and after washing and soaking ... 57

Table 7B Mean germination time (*T*₅₀) and spread of germination (uniformity) of the single *T. tetragonioides* seed lot without treatment and after washing and soaking ... 57
Table 8 The effect on seed quality of two soaking and one washing dormancy-breaking treatments on a single *T. tetragonioides* seed lot 60

Table 9 Mean germination time (*T*₅₀) and spread of germination (uniformity) of the single *T. tetragonioides* seed lot. ... 60

LIST OF FIGURES

Figure 1 A multigerm *B. vulgaris* fruit cluster (external features showing two fruits with opercula). ... 5

Figure 2 Internal features of a *B. vulgaris* fruit showing one seed 5

Figure 3 Structure of a monogerm *B. vulgaris* fruit in longitudinal section 6

Figure 4 *T. tetragonioides* fruit (external features) ... 26

Figure 5 *T. tetragonioides* fruit .. 26

Figure 6 Washing fruits in organza bags with running water 33

Figure 7 The washed fruits weighed down by sieves to ensure complete submersion in water ... 34

Mean temperature of running water used for pre-washing every 30 minutes .. 34

Figure 8 Pre-soaking the five seed lots in a germinator set at 25 °C 35
Figure 10 Tetrazolium stained embryo of a *B. vulgaris* fruit indicating viability........38

Figure 11 A diagonally cut *T. tetragonioides* fruit showing stained (tetrazolium) embryos and a single unstained (non-viable) embryo.............39

Figure 12 *T. tetragonioides* seeds showing stained (tetrazolium) embryos and non-stained endosperm ...40

Figure 13 Germination (%) of 18 *B. vulgaris* seed lots screened for dormancy........45

Figure 14 Dead and empty fruits (%) and tetrazolium (TZ) test results for remaining apparently healthy but non-germinated fruits (viable and non-viable fruits) of 18 *B. vulgaris* seed lots screened for dormancy46

Figure 15 Thousand seed weight (TSW) (g) of the initially screened *B. vulgaris* seed lots..47