Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY OF SEASONAL ROOT
AND TILLER DYNAMICS IN SWARDS OF
PERENNIAL RYEGRASS (Lolium perenne L.).

A thesis presented
in partial fulfilment of the requirements
for the degree of Ph D in Agronomy
at Massey University.

ABSTRACT

Objectives of this study were (i) to provide data on seasonal variation in root mass and root replacement in perennial ryegrass dominant swards, (ii) to simultaneously collect parallel data for above-ground parameters tiller population density, tiller natality, tiller mortality, herbage mass and herbage production, and (iii) to determine if such information on the behaviour of root and shoot systems and the inter-relation between the two could identify ways in which grazing management manipulation favouring root system development might subsequently result in pasture production increases.

Perennial ryegrass was chosen for study because it is the species most commonly used in new pasture sowings in New Zealand. Four field experiments and two glasshouse experiments are reported.

In the first field experiment, techniques for making measurements of root mass and root production in field swards were evaluated. Over 80 days from November 1985 to February 1986, total root mass measured by washing roots from "intact" soil cores did not change, but root mass in core-holes bored out and "refilled" with sand was 53% of that in intact cores. The refilled core technique was therefore adopted as a measure of "apparent" root production, and a later calibration study showed that measurements using the refilled core technique underestimate actual root growth. Using the refilled core technique, differences in root production were detected between six mowing treatments designed to allow varying degrees of reproductive development. Root growth was greater where mowing of swards was delayed sufficiently to allow reproductive growth until head emergence or anthesis than where seed heads were either removed before head emergence or left un-mown until seed-set. There was also evidence of increased tillering on treatments with the highest root growth.

In the second experiment (December 1986 to May 1988) plots were subjected to lax (LL) or severe (HH) grazing management or to cross-over LH or HL grazing managements. The cross-over date, December 7 1987, was timed to coincide with peak reproductive development. Swards in this study had approximately 100 m m⁻² underground stolon, with a seasonal increase in late winter and higher stolon formation on LL plots than on HH plots. Apparent root growth rates exhibited marked seasonal variation, and were typically about 15% of above-ground net production. For 12 months from January 1987 to January 1988 apparent root growth averaged 8.4 and
7.3 kg DM ha\(^{-1}\) day\(^{-1}\) for LL and HH plots, respectively for 0 - 600 mm soil depth. Because of these relatively small differences in root growth, it was concluded that manipulation of root growth would not enable herbage production advantages to be achieved. However, after introduction of cross-over grazing managements, high herbage production was observed on LH plots and tissue turnover and herbage dissection measurements showed that this high herbage production was associated with high daughter tiller formation, probably from stubs of decapitated flowering tillers.

Experiment 3 (November 1988 to January 1989) comprised 3 plots under common grazing management, and was designed to provide detailed information on the location on the tiller axis of actively elongating roots, and to confirm seasonal patterns of root and tiller growth observed in Experiment 2. Root initiation normally occurred at the same node as leaf senescence, normally two roots formed at each node, and few active roots were found more than 10 nodes below the last leaf. Seasonal timing of peak root growth and tiller appearance was different from that in Experiment 2, however. This is believed to reflect genetic differences between the cultivars 'Elliet' used in Experiment 2 and 'Grasslands Ruanui' used in Experiment 3, but specifically designed controlled comparisons would be needed to confirm this.

Experiments 4, 5, and 6 were designed to provide more information on the reasons for high tillering on LH plots in Experiment 2, and investigated the number of daughter tillers formed by flowering tillers subjected to differing cutting treatments. In all three experiments the number and weight of daughter tillers formed was greatest where a degree of reproductive growth occurred, and was reduced where seedheads were cut closer to the ground or earlier, and where seedheads remained uncut to act as a competing sink. These observations indicate that assimilate from parent flowering tillers is important for daughter tiller formation and, in Experiment 6, a cutting treatment which increased translocation of carbon-14 tracer from labelled flowering tillers to daughter tillers also increased the number and weight of daughter tillers formed.

It is concluded that grazing management which exploits the potential for high tillering rates from stubs of flowering tillers could increase herbage production on many New Zealand farms by more than 0.5 t DM ha\(^{-1}\) over the summer/autumn period, and implications for farm practice are briefly discussed.
ACKNOWLEDGEMENTS

Thanks are due to my chief supervisor, Professor A. C. P. Chu, for his very warm interest and encouragement throughout this project; and to my two co-supervisors, Professor J. Hodgson and Dr A. D. Mackay who went far beyond the call of duty in providing assistance at various stages.

Root measurements are notoriously laborious and demanding of concentration and the technical assistance of a large number of helpers over the 6 year duration of this study is acknowledged. These helpers included Ms Pauline Pollock, Mr Russell Malton, Mr Max Wooding, Ms Marama Findlay, Mr Utiku Potaka, Mr Geoff Howe, Mr Satya Pasumarty, Mrs Sue Hall, Mrs Marion Valentine, Mr Mark Osborne, Mr Maurice Thompson, Mr Bob Battersby, Mr Gary Evans, Mr Terry Lynch, and others.

Many colleagues were generous in giving time for discussion or help in various ways or in allowing use of their equipment. These are too many to mention individually, but especially, thanks are due to Dr W. Hunt (initial planning), Dr P. Gandar and Messrs K. Hughes and G. Shepphard (use of root-sampling and root-washing equipment), Mr I. Painter (construction of root washing machine), Drs D. Chapman and S. Pasumarty (techniques for radiocarbon labelling), Dr D. Greer & Dr I. Warrington (sample oxidation), and Dr I. Valentine (helpful advice), Professor M. Apperley and Messrs T. Cochrane and P. Ngan (image analysis) and Mrs F. Brown (preparation of text figures).

Massey University Research Fund, Massey University Agricultural Research Foundation, the C. Alma Baker Trust, and the Ellett Agricultural Trust are thanked for financial assistance towards the costs of this study.

Finally, my wife Judy, my children, mother, and other family members are thanked for their considerable encouragement and assistance in a number of ways, but especially in allowing me to take what might have been family time, to finish this thesis.
TABLE OF CONTENTS

Abstract .. ii
Acknowledgements .. iv
Contents ... v
List of Tables ... xiii
List of Figures .. xvi
List of Plates ... xviii

Chapter 1. Introduction and objectives ... 1
 1.1 Introduction .. 1
 1.2 Objectives .. 2
 1.3 Overview of experimental programme ... 3

Chapter 2. Literature Review ... 5
 2.1 Introduction and overview ... 5
 2.2 Increasing herbage production through manipulation of above-ground organs of grass swards ... 5
 2.2.1 Manipulation of herbage mass ... 5
 2.2.2 Sward light interception ... 8
 2.2.3 Manipulation of tiller density .. 9
 2.2.4 Control of reproductive growth .. 13
 2.3 Root systems of field swards .. 15
 2.3.1 Root distribution and seasonal patterns of replacement 15
 2.3.2 Grazing management effects on roots .. 18
 2.4 Root/shoot relationships ... 18
 2.4.1 Developmental morphology ... 19
 2.4.2 Root/shoot balance ... 21
 2.4.3 Need for further study ... 22
3.4.1 Comparison of techniques ... 50
3.4.2 Rate of root turnover .. 52
3.4.3 Effect of mowing treatments .. 53
 3.4.3.1 Effect on root growth ... 53
 3.4.3.2 Effect on shoot growth ... 54

3.5 Summary .. 55

Chapter 4. Seasonality of root growth and effects of hard
or lax defoliation ... 57

4.1 Introduction and overview ... 57

4.2 Experimental .. 57
 4.2.1 Background and objectives 57
 4.2.2 Site .. 58
 4.2.3 Experimental design and statistical analysis 59
 4.2.4 Grazing strategy ... 60
 4.2.5 Measurements .. 61

4.3 Results .. 63
 4.3.1 Seasonal variation in root mass, root
 length, mean root diameter, and new root production
 under LL and HH grazing managements 64
 4.3.1.1 Data from intact core sampling 64
 4.3.1.2 Data from refilled core sampling 70
 4.3.2 Introduction of cross-over LH and HL
 grazing managements ... 77

4.4 Discussion .. 80
 4.4.1 Seasonal variation in sward root mass,
 root length, and root diameter; and seasonality
 of root replacement ... 80
 4.4.2 Effect of grazing management on root mass,
 root length, and root production 83
 4.4.3 Effects of cross-over grazing management
 treatments .. 85

 4.4.4 Influence of soil moisture level on root growth 86

4.5 Summary ... 87
Chapter 5. Above-ground measurements - tiller dynamics, herbage mass & herbage accumulation, and other results

5.1 Introduction and overview .. 88

5.2 Experimental ... 88

5.2.1 Soil fertility transfer through grazing
behaviour ... 88
5.2.2 Stolon development .. 89
5.2.3 Herbage mass and herbage accumulation 90
5.2.4 Tiller population densities and tiller
appearance and death rates .. 91

5.3 Results and discussion .. 92

5.3.1 Soil fertility transfer ... 92
5.3.2 Stolon formation ... 93
5.3.3 Herbage mass and herbage accumulation 99
5.3.3.1 January to November 1987, prior to
introduction of cross-over grazing managements 99
5.3.3.2 Summer/autumn 1987/88, following
introduction of cross-over grazing managements .. 102
5.3.4 Tiller dynamics ... 106
5.3.4.1 Tiller population densities and size/
density relations .. 106
5.3.4.2 Proportion of reproductive tillers .. 111
5.3.4.3 Tiller appearance and death .. 112
5.3.4.3.1 Grazing management effects 112
5.3.4.3.2 Seasonal effects .. 113
5.3.4.4 Disturbance effects on tiller density
and tiller appearance ... 116
5.3.4.5 Effect of tiller age on tiller productivity 117
5.3.4.6 Tiller demography .. 118
5.3.4.6.1 Tiller population age-structure for a post-
flowering sward .. 119
5.3.4.6.2 Tiller longevity and propensity to
produce daughter tillers ... 120
5.3.4.6.3 Implications for sward productivity 123

5.4 Summary .. 124
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.1</td>
<td>Introduction and overview</td>
<td>125</td>
</tr>
<tr>
<td>6</td>
<td>6.2</td>
<td>Experimental</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>6.2.1</td>
<td>Field measurements</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>6.2.2</td>
<td>Transplanted cores</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>6.2.3</td>
<td>Statistical analysis of results</td>
<td>129</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>Results and discussion</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>6.3.1</td>
<td>Field measurements</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>6.3.2</td>
<td>Transplanted cores</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>6.3.2.1</td>
<td>Root mass and root length from transplanted cores</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>6.3.2.2</td>
<td>Root behaviour in relation to nodal position on the tiller axis</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>6.3.2.3</td>
<td>The phytomer and root and tiller initiation</td>
<td>141</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
<td>Summary</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>7.1</td>
<td>Introduction and overview</td>
<td>144</td>
</tr>
<tr>
<td>7</td>
<td>7.2</td>
<td>Aspects of the inter-relationship between root and shoot systems</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>7.2.1</td>
<td>The phytomer as a basis for integration of root and shoot dynamics</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>7.2.2</td>
<td>Ratio of root/shoot production as an estimate of root/shoot partitioning</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>7.2.3</td>
<td>Multivariate analysis as a means of describing root/shoot relationships</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>7.2.3.1</td>
<td>Multiple discriminant analysis</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>7.2.3.2</td>
<td>Principle component analysis (PCA)</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>7.2.3.2.1</td>
<td>PCA for tiller and root appearance for January to December 1987 (Experiment 2)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>7.2.3.2.2</td>
<td>PCA for Experiment 3</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>7.2.4</td>
<td>Functional equilibrium</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>7.3</td>
<td>A hypothesis for further investigation</td>
<td>158</td>
</tr>
<tr>
<td>7</td>
<td>7.4</td>
<td>Summary</td>
<td>158</td>
</tr>
</tbody>
</table>
Chapter 8. Effect of manipulation of reproductive growth on the potential for tiller initiation in the late spring sward ... 160

8.1 Introduction and overview .. 160

8.2 Numbers and weight of daughter tillers formed in early summer after decapitation of flowering tillers in a 'Grasslands Ruanui' ryegrass sward cut on different dates or at differing heights (Experiment 4) 161

8.2.1 Experimental .. 161
8.2.2 Results .. 162
8.2.3 Discussion ... 163

8.3 Effects on daughter tiller formation of height and date of cutting, of flowering tillers in plugs transplanted to a glasshouse from a 'Grasslands Ruanui' ryegrass sward (Experiment 5) ... 164

8.3.1 Background .. 164
8.3.2 Experimental ... 164
8.3.3 Results ... 166
8.3.4 Discussion .. 168

8.4 Translocation of 14C from flowering tillers to daughter tillers ... 169

8.4.1 Introduction ... 169
8.4.2 Experimental .. 169
8.4.3 Results ... 173
8.4.3.1 Tiller number and tiller size 173
8.4.3.2 Recovery and distribution of radiocarbon 175
8.4.3.3 Autoradiography 178
8.4.4 Discussion .. 180
8.4.4.1 Experimental strategy and radiocarbon recovery ... 180
8.4.4.2 Translocation to daughter tillers 181
8.4.4.3 Location of sinks 183
8.4.4.4 Evidence for remobilisation 184
8.4.4.5 Comparison between tillering responses in Experiment 5 ('Grasslands Ruanui' ryegrass) and in Experiment 6 ('Ellett' ryegrass) ... 185

8.5 Implications for farm practice 187
Appendix 4. Results of statistical tests of significance (Experiment 2) .. 219

Appendix 5. Seasonal variation in tiller population density for Poa spp. .. 221

Appendix 6. Fourier equations used for interpolation of tiller data (Experiment 3) 223

Appendix 7. Calibration checks for 14C sample oxidation and liquid scintillation counting 224

A7.1 Linearity with differing sample size and repeatability of method .. 224

A7.2 Determination of 14C single label DPM .. 225

A7.2.1 Background .. 225
A7.2.2 Mode of operation of Beckman scintillation counter .. 227
A7.2.3 Possible errors ... 230
A7.2.4 Calibration exercise .. 230

Bibliography .. 232
LIST OF TABLES

Chapter 3. (Experiment 1)

Table 3.1 The six cutting treatments and timing of cutting 31
Table 3.2 Correlations between root parameters for sand filled core samples harvested at Day 56 ... 39
Table 3.3 Probabilities for tests of statistical significance for refilled core data analysed as split plot effects .. 44
Table 3.4 Gravimetric soil moisture contents in two soil depths for the six cutting treatments at Days 76 and 83 45
Table 3.5 Root mass for Days 56 & 80, apparent root growth rates, and estimates of root turnover and mean root radius 46
Table 3.6 Herbage mass and herbage accumulation rates under different cutting treatments between Days 0 and 28 47
Table 3.7 Herbage mass, ryegrass tiller numbers and clover stolon densities at Day 80 ... 48

Chapter 4. (Experiment 2, below ground results)

Table 4.1 Seasonal change in intact core root mass for 3 soil depths and 2 grazing managements .. 67
Table 4.2 Seasonal change in intact core root length for 3 soil depths and 2 grazing managements .. 68
Table 4.3 Seasonal change in mean root diameter for intact core samples from 3 soil depths and 2 grazing managements 69
Table 4.4 Seasonal change in apparent root production for 3 soil depths and two grazing managements ... 72
Table 4.5 Seasonal change in mean root diameter for refilled core samples from 3 soil depths and 2 grazing managements 73
Table 4.6 Ratio of apparent root production for 2 soil depths 74
Table 4.7 Estimate of root turnover time ... 75
Table 4.8 Root mass, root length, and mean root diameter for Harvests 10 & 12, Experiment 2 ... 78
Table 4.9 Apparent root production and refilled core mean root diameter for Harvests 10 & 12, Experiment 2 .. 79
Chapter 5. (Experiment 2, above-ground results.)

Table 5.1 Grazing dates for plots, December 1987 to January 1988 . 91
Table 5.2 Soil test values indicating fertility transfer within plots ... 93
Table 5.3 Ryegrass stolon densities, July 1987 to August 1988 94
Table 5.4 Height of ryegrass growing points above or below soil surface, October 1987 ... 95
Table 5.5 Herbage mass on LL & HH plots, Harvests 1 - 6 100
Table 5.6 Herbage mass on LL, HH, LH & HL plots, Harvests 7 & 8 101
Table 5.7 Herbage accumulation for 4 grazing managements, September - October 1987 ... 102
Table 5.8 Herbage accumulation for 4 grazing managements, December 1987 - January 1988 ... 103
Table 5.9 Multiple discriminant analysis for components of herbage accumulation: canonical structure of discriminant functions, and summary statistics ... 104

Table 5.10 Percentage of live ryegrass tillers classified as reproductive .. 111
Table 5.11 Tiller appearance and death rates for 4 grazing managements, summer 1987/88 ... 114
Table 5.12 Herbage accumulation for autumn 1988, and tissue turnover for old and young tillers. ... 118
Table 5.13 Tiller classification for a post-flowering sward 119
Table 5.14 Number of surviving tillers per tiller produced from various age categories of parent tiller ... 121
Table 5.15 Total number of surviving tillers produced by various age categories of parent tiller ... 121

Chapter 6. (Experiment 3)

Table 6.1 Root mass, total length of new root, mean monthly temperature, and mean diameter of nodal roots at point of origin for transplanted cores ... 136
Table 6.2 Root length and root status at successive positions on the tiller axis ... 139
Chapter 7. (Root/shoot relations)

Table 7.1 Structure of the discriminant scores, and their summary statistics (Harvests 10 & 12, Experiment 2) 148

Table 7.2 Correlation between raw data and principal component scores obtained from analysis of tiller data with apparent root production data for Experiment 2 .. 151

Table 7.3 Correlation between raw data and principal component scores obtained from analysis of data for above- and belowground variables (Experiment 3) .. 153

Chapter 8. (Experiments 4, 5, and 6)

Table 8.1 Daughter tiller formation from flowering tillers subjected to 4 cutting treatments (Experiment 4) 163

Table 8.2 Daughter tiller formation from reproductive tillers under differing spring defoliation regimes (Experiment 5) 168

Table 8.3 Effect of cutting height and light or shade treatment on total weight and number of new daughter tillers from flowering tillers (Experiment 6) .. 174

Table 8.4 Distribution of radiocarbon fed to flowering tillers 176

Table 8.5 Effects of seedhead removal and light or shade treatments on distribution of radiocarbon .. 177

Table 8.6 Specific activity for leaf segments dissected from 3 individual tillers after autoradiography 178

Table 8.7 Specific activity for daughter tillers at successive nodal positions on a flowering tiller axis 178

Table 8.8 Ratios of new daughter tillers: existing daughter secondary tillers for Experiments 5 & 6.
LIST OF FIGURES

Chapter 2.

Figure 2.1 (a) Ryegrass tiller age-cohort survival diagram, (b) Ryegrass tiller natality and mortality (Korte, 1986) 12
Figure 2.2 Seasonal patterns of root elongation and longevity (Garwood, 1967b) ... 17

Chapter 3.

Figure 3.1 Change in root length with time (a) intact cores, (b) sand filled cores, (c) silt filled cores .. 40
Figure 3.2 Root lengths in intact cores at Days 26 & 80 41
Figure 3.3 Effect of mowing treatments on root length (a) sand filled cores Day 56, (b) sand filled cores Day 80, (c) silt filled cores Day 80 43

Chapter 4.

Figure 4.1 Monthly totals for rainfall and pan evaporation (Experiment 2) ... 59
Figure 4.2 Seasonal and grazing management effects on (a) intact core root mass and (b) root length ... 65
Figure 4.3 Seasonal variation in ratio of intact core root length for 0 - 70 mm:70 - 250 mm soil depths .. 66
Figure 4.4 Seasonal and grazing management variation in apparent root growth (0 - 250 mm soil depth) 71
Figure 4.5 Seasonal change in refilled core root diameter for LL and HH grazing managements ... 71
Figure 4.6 Seasonal change in ratio of refilled core root lengths for two soil depths ... 74
Figure 4.7 Gravimetric soil moisture levels for LL- & HH-grazed plots on 3 December 1986 ... 76

Chapter 5.

Figure 5.1 Annual cycle of ryegrass stolon formation 97
Figure 5.2 Herbage accumulation rates for 4 grazing managements, determined by tissue turnover .. 102
Figure 5.3 Grazing management means for discriminant functions derived from components of herbage accumulation 105

Figure 5.4 Ryegrass tiller densities on LL & HH plots 107

Figure 5.5 Ryegrass tiller densities for 4 grazing managements from September 1987 to May 1988 ... 108

Figure 5.6 Seasonal and grazing management effects on tiller size/density relationships ... 108

Figure 5.7 (a) Tiller appearance and (b) tiller death rate for LL & HH plots, December 1986 to March 1988. 113

Figure 5.8 Tiller population age structures for the 4 grazing managements as at 4 April 1988 ... 115

Chapter 6.

Figure 6.1 Seasonal means for variables measured in Experiment 3 ... 130

Figure 6.2 Tiller age-cohort survival, Experiment 3 131

Chapter 7.

Figure 7.1 Seasonality of herbage accumulation and apparent root growth ... 146

Figure 7.2 Grazing management means for discriminant scores from analysis of above- and below-ground measurements, Experiment 2 ... 149

Figure 7.3 Mean scores for principal component 1, Experiment 3, at 6 harvests ... 153

Figure 7.4 Seasonal changes in principal component 1 for Experiments 2 & 3 ... 155

Chapter 8.

Figure 8.1 Daughter tiller categories and their position on the parent tiller axis ... 166
LIST OF PLATES

Chapter 3.
Plate 3.1 General view of plots, Day 35 .. 32
Plate 3.2 Intact core sampling .. 33
Plate 3.3 Refilled core sampling .. 34

Chapter 5.
Plate 5.1 Tiller cohort showing stubs of flowering tillers and daughter tillers formed from flowering tillers 98

Chapter 6.
Plate 6.1 (a) Transplanted core (b) dissected tiller hierarchy and inter-connecting stolons .. 128
Plate 6.2 Non-flowering age-category-1 tillers 134
Plate 6.3 Tiller axis dissected from a transplanted core 138

Chapter 8.
Plate 8.1 Layout of mowing strips for Experiment 4. 162
Plate 8.2 Experiment 5 - (a) view of pots after imposing cutting treatments (b) effect of cutting treatments on daughter tiller formation from flowering tillers 167
Plate 8.3 Experiment 6 - (a) view of pots after feeding radiocarbon and applying cutting treatments to individual tillers (b) method of feeding radiocarbon to tillers 170
Plate 8.4 Autoradiograph of labelled tiller indicating translocation of radiocarbon to daughter tillers and uneven distribution of radiocarbon within daughter tiller tissues 179

Appendix 2.
Plate A2.1 Modified root washing machine 212
Plate A2.2 Method of mounting endoscope for counting roots in minirhizotron tubes .. 212