Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY OF THE DISTAL HINDLIMB MUSCLES AND NERVES
IN NORMAL AND LARYNGEAL HEMIPLEGIC HORSES

A Thesis Presented in Partial Fulfilment of the
Requirements for the
Degree of
Doctor of Philosophy in Veterinary Science
at Massey University

NICHOLAS JOHN KANNEGIETER

BVSc, DipVetClinStud, MACVSc

1989
ABSTRACT

Idiopathic laryngeal hemiplegia has long been recognised as a disease of horses which primarily affects the left recurrent laryngeal nerve, resulting in atrophy of the left intrinsic muscles of the larynx and subsequent left-sided laryngeal paralysis. Recent investigations, however, have resulted in classification of the disease as a distal axonopathy, so that in addition to the recurrent laryngeal nerves, other long nerves in the horse may be affected. This present study was undertaken in order to compare the distal hindlimb muscles and nerves in horses clinically free of neuromuscular disease, and in those suffering from idiopathic laryngeal hemiplegia.

A total of nineteen Thoroughbred horses and two ponies were used in this study. Endoscopic examination and the histological appearance of the left dorsal and lateral cricoarytenoid muscles, and the recurrent laryngeal nerve, were used to classify horses into clinical, subclinical and control groups. A number of samples were taken from multiple sites within several of the most distal hindlimb muscles, in both left and right hind legs. Those examined were the deep digital flexor, the cranial tibial, and the long, lateral and short digital extensor muscles. Histological and histochemical staining techniques were used, which allowed extensive morphologic and morphometric assessment of muscles. Morphometric analysis included calculation of the proportion of fibre types; measurement of fibre size; calculation of atrophy and hypertrophy factors; and histographic analysis of fibre diameter distribution.

The nerves examined were those supplying the lower hind limb muscles, and their distal continuations. These were the common and deep peroneal, tibial,
plantar, and plantar digital nerves. Samples taken from these nerves were embedded in resin and transverse sections examined under light microscopy, enabling an assessment of morphological abnormalities and measurement, using computer-assisted image analysis techniques, of fibre density, and the cross-sectional area of a large number of individual axons. Subsequently the mean and total cross-sectional axonal area were calculated and distribution histograms of cross-sectional axonal area were also established. In five horses teased fibre examination was undertaken to further define the nerve changes.

The results of examination of muscle revealed that abnormalities consistent with those of neurogenic disease were commonly present in the hindlimb in control horses and those affected by idiopathic laryngeal hemiplegia. In the latter group these abnormalities were of both greater frequency and severity, and, in the deep digital flexor muscle, were more severe distally.

Abnormalities were also commonly seen in the nerve samples in control, subclinical and clinical horses. These changes, which included regenerating clusters, thinly myelinated fibres, onion bulb formation, demyelination and remyelination, active axonal degeneration and fibre loss, were found to increase in severity from proximal to distal sites in the limb nerves. As was found in the muscle samples, clinical laryngeal hemiplegic horses were more frequently and more severely affected than control horses. The abnormalities were considered to be indicative of a distal axonopathy.

It was concluded that many apparently normal horses, possibly including smaller breeds, have changes in the hindlimb muscles and nerves, which are associated with peripheral nerve disease, and that the disease
process causing idiopathic laryngeal hemiplegia has an effect on distal hindlimb muscles and nerves.
ACKNOWLEDGEMENTS

The Equine Research Foundation of New Zealand and the Norman Cunningham Fellowship for financial support of this study.

Dr Brian Goulden for his advice, guidance and knowledge in the preparation of this thesis as well as in many other areas.

Mrs Mary Johnston, who provided technical support for the majority of this work, and also Mrs Pat Davey for her technical assistance.

The staff of the Image Analysis Unit, Massey University, for the development of programmes used to evaluate nerve samples.

Kees Korndorffer for the illustrations.

Helen Dick for advice and assistance with statistical analysis.

Members of the Department of Veterinary Clinical Sciences, Massey University, who provided support throughout this study.

Fiona Dickinson, whose typing skills, patience, and assistance in the preparation of this thesis were very much appreciated.

Tina Briggs for typing the appendices.

My wife, Sally, who in addition to support and encouragement throughout this work, provided extensive assistance with computer analysis of data and the production of the histograms and graphs. Without her help this thesis would not have been possible.
TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF TABLES xii
LIST OF FIGURES xiv

PART I INTRODUCTION 1
Idiopathic laryngeal hemiplegia - a Summary 3

Anatomy of muscles examined 6
(i) Laryngeal muscles 6
 Dorsal cricoarytenoid
 Lateral cricoarytenoid
(ii) Hindlimb muscles 6
 Long digital extensor
 Lateral digital extensor
 Cranial tibial
 Deep digital flexor
 Short digital extensor

Anatomy of nerves examined 11
(i) Laryngeal nerves 11
 Recurrent laryngeal

(ii) Hindlimb nerves 14
 Common peroneal
 Deep peroneal
 Tibial
 Plantar
 Plantar digital
PART II MUSCLES

INTRODUCTION - Skeletal muscle and its reaction to disease 16

Composition of skeletal muscle 16

Variation of fibre type proportions in normal muscle 19

(i) Variation in fibre type proportions between muscles 19
(ii) Variation of fibre type proportions within a muscle 20
(iii) Distribution of fibre types within muscle fascicles 21
(iv) Effect of age on fibre type proportions in muscle 22
(v) Relationship between breed of horse and muscle fibre type 22
(vi) Effect of training on muscle fibre type proportions 23

Variation in size of muscle fibres in normal muscle 25

Reaction of skeletal muscle to disease 26

(i) Alteration in proportions of fibre types 26
(ii) Alteration in size of fibres 27
(iii) Alteration in shape of fibres 28
(iv) Alteration in number of fibres 29
(v) Connective tissue proliferation 29
(vi) Internal changes to muscle fibres 30
 (a) internal nuclei
 (b) split and fragmented fibres
 (c) myofibrillar whorls
 (d) target fibres and central cores
 (e) internalization of capillaries
 (f) dense hypercontracted fibres

(vii) Degeneration and necrosis of muscle fibres 32
(viii) Regeneration of muscle fibres 33
(ix) Denervation and reinnervation of muscle fibres 34

Primary diseases of equine skeletal muscle 36

Exertional rhabdomyolysis 36
Malignant hyperthermia 37
Nutritional myopathy 37
Hypothyroid myopathy 38
Post-anaesthetic myopathy 39
Pasture myopathy 40
Contracted tendons 40
Myotonia 41
Histochemical investigation of muscle disease in the horse

(i) Selection of muscle
(ii) Selection of site within a muscle
(iii) Technique of muscle collection
(iv) Processing of muscle samples
(v) Histochemical staining of muscle
(vi) Methods of analysis of muscle

MATERIALS AND METHODS

Experimental horses
Collection of muscle samples
Processing of muscle
Collection and Analysis of data

(i) Muscle morphology
(ii) Muscle morphometry

(a) Proportion of Type I fibres
(b) Muscle fibre diameters
(c) Muscle fibre diameter distribution
(d) Atrophy and hypertrophy factors

RESULTS

Muscle Morphology

Muscle Morphometry

(a) Proportion of Type I fibres
(b) Muscle fibre diameters
(c) Muscle fibre diameter distribution
(d) Atrophy and hypertrophy factors

DISCUSSION

Muscle morphology

Muscle morphometry

(a) Proportion of Type I fibres

Variation between muscles
Variation within muscles
Variation with age
Variation between horses

(b) Muscle fibre diameter, atrophy and hypertrophy factors and histographic analysis
PART III - NERVES

INTRODUCTION

Normal neuroanatomy

Reaction of peripheral nerve to disease

(i) Wallerian degeneration
(ii) Axonal degeneration
(iii) Segmental demyelination

Investigation of peripheral nerve disease in the horse

(i) Common changes in transverse sections of nerves
(a) Onion bulbs
(b) Thinly myelinated fibres
(c) Thick myelin sheaths
(d) Regenerating clusters
(e) Axonal degeneration
(f) Decreased fibre density
(g) Renaut bodies

(ii) Common changes in teased myelinated nerve fibres
(a) Myelin ovoids and balls
(b) Paranodal demyelination
(c) Thick myelin sheaths
(d) Thinly myelinated segments and short internodes

Diseases of equine peripheral nerve

Idiopathic laryngeal hemiplegia
Stringhalt
Toxic neuropathies
Suprascapular neuropathy

MATERIALS AND METHODS

Collection of nerve samples
Preparation and examination of transverse sections
Preparation and examination of individual teased fibres
RESULTS

Individual nerve fibre pathology 128
Nerve fibre density 143
Individual cross-sectional axonal area, mean values and distribution histograms 148
Total cross-sectional axonal area 152
Teased fibre examination 155
 (a) Morphology 155
 (b) Mean internode length 164

DISCUSSION

Individual nerve fibre pathology 166
Nerve fibre density 171
Mean individual cross-sectional axonal area 172
Histographic analysis of individual axonal area distribution 173
Total axonal area 174
Teased fibre examination 175
 (a) Morphology
 (b) Mean internode length

PART IV CONCLUSIONS 177

REFERENCES 183

APPENDICES

Appendix 1 Staining methods for muscle tissue 200
Appendix 2 Composition of solutions for processing nerve samples 202
Appendix 3 Composition of embedding resin used in processing nerve samples 203
Appendix 4 Morphological grading of muscle samples 204
Appendix 5 Difference in percentage of Type I fibres when either 200 or 1000 muscle fibres were counted 207
Appendix 6 Mean percentage of Type I fibres in the laryngeal and limb muscles 208
Appendix 7 Mean muscle fibre diameter of Type I and Type 2 fibres in laryngeal and limb muscles 211
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 8</td>
<td>Atrophy and hypertrophy table</td>
<td>212</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Atrophy and hypertrophy factors for limb muscles</td>
<td>213</td>
</tr>
<tr>
<td>Appendix 10</td>
<td>Frequency of individual nerve fibre changes</td>
<td>214</td>
</tr>
<tr>
<td>Appendix 11</td>
<td>Density of nerve fibres</td>
<td>216</td>
</tr>
<tr>
<td>Appendix 12</td>
<td>Mean cross-sectional axonal area in limb nerves</td>
<td>217</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Experimental animals</td>
<td>49</td>
</tr>
<tr>
<td>Table 2</td>
<td>Incidence of pathology and average morphological grading of samples from limb muscles in horses in clinical, subclinical and control groups</td>
<td>56</td>
</tr>
<tr>
<td>Table 3</td>
<td>Mean percentage of Type I fibres in left laryngeal and middle sample of limb muscles of clinical, subclinical and control horses</td>
<td>76</td>
</tr>
<tr>
<td>Table 4</td>
<td>Mean percentage of Type I fibres in proximal, middle and distal samples of limb muscles in clinical, subclinical and control horses</td>
<td>76</td>
</tr>
<tr>
<td>Table 5</td>
<td>Effect of age on mean percentage of Type I fibres in various areas of limb muscles in control horses</td>
<td>77</td>
</tr>
<tr>
<td>Table 6</td>
<td>Mean percentage of Type I fibres in samples taken from various area in the middle of limb muscles in 5 control horses</td>
<td>77</td>
</tr>
<tr>
<td>Table 7</td>
<td>Mean fibre diameter (um) and standard deviation of Type I and Type II muscle fibres from laryngeal and limb muscles (middle site) in clinical, subclinical and control horses</td>
<td>81</td>
</tr>
<tr>
<td>Table 8</td>
<td>Mean diameter (um) and standard deviation of Type I and Type I fibres from different areas of the middle of the same limb muscles in control horses</td>
<td>82</td>
</tr>
<tr>
<td>Table 9</td>
<td>Mean atrophy and hypertrophy factors for Type I and Type II muscle fibres in hindlimb muscles of clinical, subclinical and control horses</td>
<td>87</td>
</tr>
<tr>
<td>Table 10</td>
<td>Incidence and average grading of individual nerve fibre changes at each level of sampling in nerves of clinical, subclinical and control horses</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Table 11</td>
<td>Mean density (no/mm²) of nerve fibres in limb nerves in clinical, sub-clinical and control horses</td>
<td></td>
</tr>
<tr>
<td>Table 12</td>
<td>Mean density (no/mm²) of nerve fibres in the common and deep peroneal nerves in clinical, subclinical and control groups of horses when divided into high and low density groups</td>
<td></td>
</tr>
<tr>
<td>Table 13</td>
<td>Mean (μm²) and standard deviation of cross-sectional axonal area in the limb nerves of clinical, subclinical and control horses</td>
<td></td>
</tr>
<tr>
<td>Table 14</td>
<td>Mean total axonal area (μm²/mm² x 10³) in the limb nerves of clinical, subclinical and control horses</td>
<td></td>
</tr>
<tr>
<td>Table 15</td>
<td>Grading (after Dyck, 1975a, Cahill, 1985) of teased myelinated nerve fibres in the limbs of control, subclinical and clinical horses</td>
<td></td>
</tr>
<tr>
<td>Table 16</td>
<td>Percentage of abnormal teased fibres in limb nerves of clinical, subclinical and control horses</td>
<td></td>
</tr>
<tr>
<td>Table 17</td>
<td>Mean internode length (μm) in the limb nerves of a control horse, and subclinical and clinical laryngeal hemiplegic horses</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Lateral view of the superficial muscles in the distal hind limb.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Lateral view of the muscles of the distal hindlimb</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Medial view of the muscles of the distal hindlimb</td>
<td>10</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Diagram showing the course of the left recurrent laryngeal nerve.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Lateral view of the nerves sampled in the hindlimb.</td>
<td>13</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Diagram of a cross-section through a muscle fascicle</td>
<td>17</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>A line drawing illustrating the sites of sampling from the large limb muscles.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Photomicrograph of a transverse section of the left lateral cricoarytenoid muscle in a six week old foal</td>
<td>57</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Photomicrograph of a transverse section of the left lateral cricoarytenoid muscle in a horse from the subclinical group</td>
<td>57</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Photomicrographs of a transverse section of the left lateral cricoarytenoid muscle in clinical laryngeal hemiplegic horses</td>
<td>58</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>Photomicrographs of transverse sections of the deep digital flexor muscle in control horses</td>
<td>59</td>
</tr>
<tr>
<td>Figure 12.</td>
<td>Photomicrographs of transverse sections taken from the deep digital flexor muscle of a control horse</td>
<td>60</td>
</tr>
<tr>
<td>Figure 13.</td>
<td>Photomicrograph of a transverse section of the deep digital flexor muscle in a clinical laryngeal hemiplegic horse</td>
<td>60</td>
</tr>
</tbody>
</table>
Figure 14. A photomicrograph of a transverse section of the deep digital flexor muscle in a subclinical laryngeal hemiplegic horse

Figure 15. A photomicrograph of a transverse section of the deep digital flexor muscle in a clinical laryngeal hemiplegic horse

Figure 16. A photomicrograph of a transverse section of the cranial tibial muscle in a control horse

Figure 17. A photomicrograph of a transverse section of the cranial tibial muscle in a subclinical laryngeal hemiplegic horse

Figure 18. A photomicrograph of a transverse section from the cranial tibial muscle in a control horse

Figure 19. Photomicrograph of a transverse section of the cranial tibial muscle in a clinical laryngeal hemiplegic horse

Figure 20. Photomicrograph of a transverse section from the cranial tibial muscle in a control horse

Figure 21. Photomicrograph of a transverse section of the cranial tibial muscle in a control horse

Figure 22. Photomicrograph of a transverse section of the cranial tibial muscle in a subclinical laryngeal hemiplegic horse

Figure 23. Photomicrograph of a transverse section of the cranial tibial muscle in a control horse

Figure 24. Photomicrograph of a transverse section of the long digital extensor muscle in a control horse
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Photomicrographs of a transverse section of the long digital extensor muscle in a control horse</td>
<td>65</td>
</tr>
<tr>
<td>26</td>
<td>Photomicrographs of transverse sections of the long digital extensor muscle in a six week old control horse</td>
<td>66</td>
</tr>
<tr>
<td>27</td>
<td>Photomicrographs of transverse sections of the long digital extensor muscle in a six week old control horse</td>
<td>67</td>
</tr>
<tr>
<td>28</td>
<td>Photomicrograph of a transverse section from the lateral digital extensor muscle in a control horse</td>
<td>68</td>
</tr>
<tr>
<td>29</td>
<td>Photomicrograph of a transverse section from the lateral digital extensor muscle in a clinical laryngeal hemiplegic horse</td>
<td>68</td>
</tr>
<tr>
<td>30</td>
<td>Photomicrographs of a transverse section of the short digital extensor muscle in a control horse</td>
<td>69</td>
</tr>
<tr>
<td>31</td>
<td>Photomicrograph of a transverse section of the short digital extensor muscle in a control horse</td>
<td>70</td>
</tr>
<tr>
<td>32</td>
<td>Photomicrograph of a transverse section of the short digital extensor muscle in a clinical laryngeal hemiplegic horse</td>
<td>70</td>
</tr>
<tr>
<td>33</td>
<td>Histograms of muscle fibre diameter distribution in the deep digital flexor muscle in control and clinical laryngeal hemiplegic horses.</td>
<td>88</td>
</tr>
<tr>
<td>34</td>
<td>Histograms of muscle fibre diameter distribution in the deep digital flexor muscle in the cranial tibial muscle in control and clinical laryngeal hemiplegic horses.</td>
<td>89</td>
</tr>
<tr>
<td>35</td>
<td>Histograms of muscle fibre diameter distribution in the long digital extensor muscle in control and clinical laryngeal hemiplegic horses.</td>
<td>90</td>
</tr>
</tbody>
</table>
Figure 36. Histograms of muscle fibre diameter distribution in the lateral digital extensor in control and clinical laryngeal hemiplegic horses.

Figure 37. Histograms of muscle fibre diameter distribution in the short digital extensor muscle in control and clinical laryngeal hemiplegic horses.

Figure 38. Diagrams showing the normal structure of a nerve fibre.

Figure 39. Some of the steps involved in determining fibre density and mean cross-sectional axonal area of nerve samples using image analysis.

Figure 40. Technique for obtaining single teased nerve fibres (after Dyck, 1975).

Figure 41. System of classification of individual teased fibres (after Dyck, 1975, as modified by Cahill, 1985).

Figure 42. Photomicrograph of a transverse section of the proximal left recurrent laryngeal nerve in a control horse.

Figure 43. Photomicrograph of a transverse section of the proximal left recurrent laryngeal nerve in a clinical laryngeal hemiplegic horse.

Figure 44. Photomicrograph of a transverse section of the distal left recurrent laryngeal nerve.

Figure 45. Photomicrographs of transverse sections of the common peroneal nerve in a control horse.

Figure 46. Photomicrograph of a transverse section of the common peroneal nerve in a subclinical laryngeal hemiplegic horse.
Figure 47. Photomicrographs of transverse sections of the proximal deep peroneal nerve in a control horse

Figure 48. Photomicrographs of transverse sections of the proximal deep peroneal nerve in clinical laryngeal hemiplegic horses

Figure 49. Photomicrograph of a transverse section of the distal deep peroneal nerve in a control horse

Figure 50. Photomicrographs of transverse sections of the distal deep peroneal nerve in a clinical laryngeal hemiplegic horse

Figure 51. Photomicrograph of a transverse section of the tibial nerve in a control horse

Figure 52. Photomicrograph of the tibial nerve in a clinical laryngeal hemiplegic horse

Figure 53. Photomicrograph of a transverse section of the tibial nerve in a control horse with frequent abnormalities

Figure 54. Photomicrographs of transverse sections of the plantar nerve in a control horse

Figure 55. Photomicrograph of a transverse section of the plantar nerve in a control horse

Figure 56. Photomicrographs of transverse sections of the plantar nerve in a clinical laryngeal hemiplegic horse

Figure 57. Photomicrographs of transverse sections of the plantar digital nerves in control horses

Figure 58. Photomicrograph of a transverse section of the plantar digital nerve in a control horse

Figure 59. Photomicrographs of transverse sections of the plantar digital nerve in clinical laryngeal hemiplegic horses
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Photomicrographs of transverse sections of the plantar digital nerve in clinical laryngeal hemiplegic horses</td>
<td>142</td>
</tr>
<tr>
<td>61</td>
<td>Histograms showing the distribution and density of cross-sectional axonal area in the common and deep peroneal nerves in two horses</td>
<td>145</td>
</tr>
<tr>
<td>62</td>
<td>Graph of nerve fibre density in the tibial, plantar, and plantar digital nerves in clinical, subclinical and control horses</td>
<td>147</td>
</tr>
<tr>
<td>63</td>
<td>Histograms of cross-sectional axonal area distribution in control and clinical horses in the common and deep peroneal nerves.</td>
<td>150</td>
</tr>
<tr>
<td>64</td>
<td>Histograms of cross-sectional axonal area distribution in control and clinical horses for the tibial, plantar, and plantar digital nerves</td>
<td>151</td>
</tr>
<tr>
<td>65</td>
<td>Graphs of total cross-sectional axonal area per square millimetre for all groups of horses at each sampling site.</td>
<td>153</td>
</tr>
<tr>
<td>66</td>
<td>Photomicrographs of consecutive portions of a normal teased nerve fibre from a control horse</td>
<td>157</td>
</tr>
<tr>
<td>67</td>
<td>Photomicrographs of consecutive portions of a teased myelinated fibre from the distal deep peroneal nerve in a subclinical laryngeal hemiplegic horse</td>
<td>158</td>
</tr>
<tr>
<td>68</td>
<td>Photomicrograph of a teased myelinated fibre from the plantar digital nerve of a clinical laryngeal hemiplegic horse</td>
<td>159</td>
</tr>
<tr>
<td>69</td>
<td>Photomicrograph of a teased fibre from the distal deep peroneal nerve in a clinical laryngeal hemiplegic horse</td>
<td>159</td>
</tr>
<tr>
<td>70</td>
<td>Photomicrographs of consecutive portions of a teased myelinated fibre from the proximal deep peroneal nerve in a clinical laryngeal hemiplegic horse</td>
<td>160</td>
</tr>
</tbody>
</table>
Figure 71. Photomicrographs of consecutive portions of a teased myelinated fibre from the common peroneal nerve in a clinical laryngeal hemiplegic horse

Figure 72. Photomicrographs of consecutive portions of a teased myelinated nerve fibre from the plantar nerve in a clinical laryngeal hemiplegic horse

Figure 73. Photomicrographs of teased myelinated nerve fibres from clinical laryngeal hemiplegic horses

Figure 74. Photomicrograph of a teased myelinated fibre from the proximal deep peroneal nerve in a clinical laryngeal hemiplegic horse