Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EXPERIMENTAL AIRWAY HYPERSENSITIVITY IN SHEEP:
A MODEL FOR ASTHMA

A thesis presented
in partial fulfilment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY IN VETERINARY PATHOLOGY
at Massey University

CHEN WANGXUE

1990
ABSTRACT

This study aimed to establish an animal model for human bronchial asthma using locally bred Romney sheep. It was then planned to determine whether or not morphological and inflammatory factors in the ovine respiratory tract are associated with a predisposition to allergic bronchial hypersensitivity induced by inhaled *Ascaris suum* antigen.

The skin and airway responses to a commercial *A. suum* antigen were tested in adult Romney sheep from two local farms with and without previous exposure to pigs. Ninety percent of 101 adult sheep tested showed an immediate skin reaction, and about 70% of 43 adult sheep with positive skin reactions showed an immediate airway response, reflected as a significant increase in airway resistance and/or decreased dynamic lung compliance. Among these 43 sheep, 21 showed changes in both airway resistance and dynamic lung compliance (Group A); ten only in dynamic lung compliance (Group B) and 12 were non-responders (Group C). No significant changes were recorded when the same animals were given an aerosol of phosphate buffered saline. Although the sheep with previous exposure to pigs showed significantly greater skin reactions than those without exposure to pigs, they showed no significant differences in airway response to antigen inhalation. In addition, there was no correlation between the degree of skin reaction and the magnitude of bronchoconstriction.

Since no information was available on the respiratory tract-associated lymphoid tissue and cells in healthy sheep, study of this tissue and its associated epithelium was a prerequisite for studies of the morphological and inflammatory mechanisms involved in the development of allergic airway hypersensitivity. The ovine respiratory tract has five forms of lymphoid tissue; intra-luminal, intraepithelial, scattered forms, and dense and nodular aggregations; the dense and nodular aggregations being confined to the pharyngeal tonsil and bronchioles. Morphologically well-developed lymphoepithelium (M cells) is present only in the pharyngeal tonsil region, and absent in the lower respiratory tract. The M cell of the ovine pharyngeal tonsil is ultrastructurally and functionally similar to that in other mucosal tissues of this and other species, but its development and maturation takes place earlier than the bronchus-associated lymphoid tissue.

Mast cells in the lower respiratory tract of normal sheep are morphologically heterogeneous, and both formalin-sensitive and formalin-resistant types can be identified. The morphological and histochemical features of formalin-sensitive mast cells are similar to those from the human respiratory tract in several respects which enhances the use of the sheep model in the study of human allergic respiratory disease.
A morphometric comparison of airway structure and inflammatory components was conducted between the three groups of sheep with varying airway hypersensitivity. The epithelium of the small airways was significantly thinner and contained fewer goblet cells in the hypersensitive sheep (Groups A and B) than in non-reacting sheep (Group C). Mast cells from the hypersensitive sheep had a significantly greater volume density of secretory granules than those from non-reacting sheep. However, no morphological difference was found in the epithelial integrity of airways between hypersensitive and non-reacting sheep, and the permeability of tracheobronchial epithelium to horseradish peroxidase was of the same order in all groups. Similarly, the airway wall was not significantly thicker in hypersensitive sheep than in non-reacting sheep, and the shortening of smooth muscle required to cause complete airway closure was similar. The numerical density of mast cells, eosinophils, neutrophils and lymphocytes in the airways and lung was not significantly different between the groups.

These observations indicate that the Ascaris-induced airway response seen in Romney sheep is similar in several respects to that seen in human asthmatics and these sheep can therefore be used as an animal model to study human asthma. The current findings suggest that the presence of relatively low goblet cell density, thin epithelium, and high volume density of mast cell secretory granules in the small airways and lung may be important inherent factors responsible for the development of airway hypersensitivity in these sheep. It is concluded that most of the other morphological features observed in asthmatics and animal models are likely to be the result of allergic airway reactions rather than a fundamental difference between potentially allergic and non-allergic subjects.
STATEMENT

This is to certify that the work on which this thesis is based was carried out by the undersigned, and has not been accepted in whole or in part for any other degree or diploma. Assistance received is specifically recorded in the Acknowledgements section bound with this thesis.

Wangxue CHEN
(19 September 1990)
ACKNOWLEDGEMENTS

I am grateful to Professor B.W. Manktelow, Head of the Department of Veterinary Pathology and Public Health, Massey University, for providing me with the opportunity and facilities to undertake this study. I would particularly like to thank my chief supervisor Associate Professor M.R. Alley and supervisor Professor B.W. Manktelow for their continuous encouragement, valuable suggestions, constructive criticism and unforgettable friendship during all phases of this work.

I wish to express my special gratitude to Dr. R.J. Pack for his advice and guidance in the studies of respiratory physiology in sheep, Dr. D.H. Carr for his expertise and participation in the bronchial provocation tests, and to Professor R.E. Munford for his advice on statistical analysis. My thanks are also due to Associate Professors K.M. Moriarty, L.J. Holloway and W.A.G. Charleston, Professor C.R. Wilks, and Dr. R.A. Allardyce for advice in their specialised areas.

This study could not have been fully undertaken without the technical assistance of a number of people whose help I gratefully acknowledge. Skilled assistance was provided by Mrs. P.M. Slack and Mrs. P.M. Davey in preparation of histological materials and processing of electron microscopy specimens; Mr. F.K. Sharpe in sheep feeding and handling; Mr. D. Hopcroft in preparation of tissues for scanning electron microscopy; Mrs. E. Davies in haematological studies, Mr. R. Bennett and Mr. T.G. Law in printing some of the photographs; the Graphic Design Unit in drawing the diagrams in Chapters 4-7; Mrs. D.J.E. Anthony in assistance in the measurement of respiratory physiology and in drawing the diagrams in Chapter 8, Mr. P.N. Wildbore in administrative assistance, and Mrs. A.A. Scott and Mrs. S. Crawford in secretarial help in preparation of the manuscripts for publication.

I also would like to thank my colleagues in the Department of Veterinary Science, Zhejiang Agricultural University, the People’s Republic of China, for supporting the extension of my leave to undertake this study.

Finally, I would like to express thanks to my friends and family for their understanding and forbearance, but most of all I would like to thank my grandparents, my wife and my son for their love, support and willingness to share in all aspects of my study.

Financially, this work was jointly supported by a grant from the Medical Research Council of New Zealand and a grant from the Palmerston North Medical Research Foundation. My personal support during this study was provided by a Postgraduate Scholarship of the University Grants Committee of New Zealand.
LIST OF PUBLICATIONS

Some of the work presented in this thesis has already been published or is to be published in the following journals:

TABLE OF CONTENTS

ABSTRACT ... II
STATEMENT ... Iv
ACKNOWLEDGEMENTS .. v
LIST OF PUBLICATIONS .. vi
TABLE OF CONTENTS ... vii
LIST OF FIGURES .. xii
LIST OF TABLES .. xix
ABBREVIATIONS ... xxii

INTRODUCTION .. xxiii

PART I GENERAL REVIEW OF LITERATURE .. 1

CHAPTER 1 PATHOLOGY OF HUMAN ASTHMA ... 1
 1.1 MACROSCOPIC LESIONS .. 1
 1.2 MICROSCOPIC LESIONS .. 1
 1.2.1 Changes in Airways .. 1
 1.2.2 Changes in Lung Parenchyma .. 6
 1.3 CHANGES IN BRONCHOALVEOLAR LAVAGE (BAL) FLUID .. 6
 1.4 CONCLUSION ... 8

CHAPTER 2 INFLAMMATORY MECHANISMS IN THE PATHOGENESIS OF ALLERGIC
 ASTHMA ... 9
 2.1 INFLAMMATORY CELLS AND ASTHMA ... 9
 2.1.1 Mast cells ... 9
 2.1.2 Eosinophils .. 16
 2.1.3 Macrophages and monocytes ... 20
 2.1.4 Neutrophils and lymphocytes .. 20
 2.2 AIRWAY EPITHELIAL DAMAGE .. 22
 2.2.1 Increased mucosal permeability ... 22
 2.2.2 Epithelium-derived relaxing factors .. 23
 2.2.3 Neutral endopeptidase ... 24
 2.3 THE ASSOCIATION BETWEEN RESPIRATORY INFECTIONS AND ASTHMA 24
 2.4 CONCLUSION ... 27

CHAPTER 3 ANIMAL MODELS OF HUMAN ALLERGIC ASTHMA 29
 3.1 GUINEA PIGS .. 29
 3.2 MONKEYS .. 33
PART I MORPHOLOGICAL STUDIES OF IMMUNE-ASSOCIATED TISSUE AND CELLS IN THE RESPIRATORY TRACT OF CONVENTIONALLY RAISED SHEEP

CHAPTER 4 RESPIRATORY TRACT-ASSOCIATED LYMPHOID TISSUE IN CONVENTIONALLY RAISED SHEEP

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.3 RESULTS

4.3.1 Nodular aggregations of lymphoid cells

4.3.2 Dense aggregations of lymphoid cells

4.3.3 Scattered lymphoid cells

4.3.4 Intraepithelial lymphoid cells (IELC)

4.3.5 Intraluminal lymphoid cells

4.4 DISCUSSION

4.5 SUMMARY

CHAPTER 5 THE POTENTIAL ROLE OF THE OVINE PHARYNGEAL TONSIL IN RESPIRATORY TRACT IMMUNITY: A SCANNING AND TRANSMISSION ELECTRON MICROSCOPIC STUDY OF ITS EPITHELIUM

5.1 INTRODUCTION

5.2 MATERIALS AND METHODS

5.3 RESULTS

5.3.1 Scanning electron microscopy

5.3.2 Transmission electron microscopy

5.4 DISCUSSION

5.5 SUMMARY
CHAPTER 6 PERINATAL DEVELOPMENT OF LYMPHOID TISSUE AND ITS ASSOCIATED EPITHELIUM IN THE OVINE PHARYNGEAL TONSIL: A MORPHOLOGICAL STUDY .. 74
6.1 INTRODUCTION .. 74
6.2 MATERIALS AND METHODS ... 74
6.3 RESULTS ... 75
6.3.1 Foetuses of 80-96 days .. 75
6.3.2 Foetuses of 140 days to full term 75
6.3.3 The 1-2 week old lambs .. 77
6.4 DISCUSSION ... 82
6.5 SUMMARY .. 84

CHAPTER 7 MAST CELLS IN THE OVINE LOWER RESPIRATORY TRACT: HETEROGENEITY, MORPHOLOGY AND DENSITY ... 85
7.1 INTRODUCTION ... 85
7.2 MATERIALS AND METHODS ... 86
7.2.1 Tissue sources .. 86
7.2.2 Fixation and staining .. 86
7.2.3 Counting technique ... 86
7.2.4 Data analysis ... 87
7.3 RESULTS ... 87
7.3.1 Heterogeneity, density and distribution 87
7.3.2 Morphology ... 88
7.4 DISCUSSION ... 94
7.5 SUMMARY .. 97

PART III AIRWAY HYPERSENSITIVITY INDUCED BY ASCARIS SUUM EXTRACT IN NEW ZEALAND ROMNEY SHEEP: A MODEL FOR ASTHMA ... 98

CHAPTER 8 AIRWAY HYPERSENSITIVITY INDUCED BY ASCARIS SUUM EXTRACT IN NEW ZEALAND ROMNEY SHEEP: A MODEL FOR ASTHMA ... 99
8.1 INTRODUCTION ... 99
8.2 MATERIALS AND METHODS ... 99
8.2.1 Animals ... 99
8.2.2 Antigen ... 99
8.2.3 Skin tests ... 100
8.2.4 Experimental set-up .. 100
8.2.5 Measurement of respiratory parameters 101
8.2.6 Bronchial provocation test .. 102
8.2.7 Data analysis .. 102
8.3 RESULTS ... 103
8.3.1 Skin reactivity ... 103
8.3.2 Effect of PBS inhalation ... 105
8.3.3 Effect of antigen inhalation 105
8.3.4 Effect of pregnancy on airway response 110
8.4 DISCUSSION .. 110
8.5 SUMMARY .. 114

PART IV MORPHOLOGICAL AND MORPHOMETRIC COMPARISON OF AIRWAY STRUCTURE AND INFLAMMATORY CELLS IN HYPERSENSITIVE AND NON-REACTING SHEEP ... 115

CHAPTER 9 AIRWAY HYPERSENSITIVITY TO INHALED ASCARIS SUUM IN SHEEP:
PERMEABILITY OF THE TRACHEOBRONCHIAL EPITHELIUM TO HORSERADISH PEROXIDASE .. 116
9.1 INTRODUCTION .. 116
9.2 MATERIALS AND METHODS 116
9.3 RESULTS ... 117
9.4 DISCUSSION .. 119
9.5 SUMMARY .. 124

CHAPTER 10 AIRWAY HYPERSENSITIVITY TO INHALED ASCARIS SUUM IN SHEEP:
MORPHOLOGICAL AND MORPHOMETRIC STUDIES OF THE AIRWAYS 125
10.1 INTRODUCTION .. 125
10.2 MATERIALS AND METHODS 125
10.2.1 Animals ... 125
10.2.2 Tissue sampling and processing 126
10.2.3 Morphological and morphometric studies 127
10.2.4 Data analysis ... 129
10.3 RESULTS ... 129
10.3.1 Gross findings ... 129
10.3.2 Morphological and morphometric studies 129
10.4 DISCUSSION .. 138
10.5 SUMMARY .. 142

CHAPTER 11 AIRWAY HYPERSENSITIVITY TO INHALED ASCARIS SUUM IN SHEEP:
AIRWAY DIMENSIONS .. 143
11.1 INTRODUCTION .. 143
11.2 MATERIALS AND METHODS 143
CHAPTER 12 AIRWAY HYPERSENSITIVITY TO INHALED ASCARIS SUUM IN SHEEP:

AIRWAY INFLAMMATION.. 157

12.1 INTRODUCTION .. 157

12.2 MATERIALS AND METHODS ... 157

12.2.1 Animals ... 157

12.2.2 Haematology ... 158

12.2.3 Tissue sampling and processing 158

12.2.4 Quantitative studies of tissue inflammatory cells 158

12.2.5 Data analysis ... 159

12.3 RESULTS .. 160

12.3.1 Haematology ... 160

12.3.2 Quantitative studies of tissue inflammatory cells 161

12.4 DISCUSSION .. 163

12.5 SUMMARY ... 170

PART V GENERAL DISCUSSION .. 171

CHAPTER 13 GENERAL DISCUSSION ... 172

PART VI REFERENCES AND APPENDICES 179

REFERENCES ... 180

APPENDIX 8.1 ... 209

APPENDIX 9.1 ... 210

APPENDIX 10.1 ... 211

APPENDIX 12.1 ... 212

REPRINTS OF PUBLICATIONS .. 213
LIST OF FIGURES

Fig. 2.1 The proposed hypothesis of the central role of mast cells in asthma.. 13

Fig. 4.1 Diagram of paramedial sagittal section through sheep’s head. □ = tissue sampling sites; 1= nostril; 2= nasal vestibule; 3= cranial concha; 4= mid concha; 5= caudal concha; 6= anterior nasopharynx; 7= mid nasopharynx; 8= pharyngeal tonsil; 9= opening of auditory tube; 10= epiglottis. A= ethmoid conchae; B= frontal sinus; C= dorsal nasal meatus; D= dorsal nasal concha; E= middle nasal meatus; F= ventral nasal concha; G= ventral nasal meatus; H= hard palate; I= soft palate; J= lower jaw; K= nasopharynx; L= trachea.. 47

Fig. 4.2 Diagram of ovine lower respiratory tract showing the tissue sampling sites (□).
11= upper trachea; 12= mid trachea; 13= lower trachea; 14= major bronchus; 15= lobar bronchus A; 16= lobar bronchus B; 17= medium bronchus; 18= bronchioles and lung; 19= lung and pleura.. 47

Fig. 4.3 Isolated lymphoid nodule in the pharyngeal tonsil consisting of germinal centre (G), dome area (D), and parafollicular region (P). The lymphoepithelium overlying the nodule is flattened and heavily infiltrated with lymphocytes (between arrows). HE/AB, x50.. 50

Fig. 4.4 Lymphoepithelium in the pharyngeal tonsil. The pseudostratified epithelium infiltrated with lymphocytes is devoid of goblet cells and cilia (between arrows). The basement membrane is partly disrupted by lymphocytes. Intraluminal lymphoid cells (arrowhead). HE/AB, x350.. 50

Fig. 4.5 Dense aggregation of lymphoid cells in the submuscular tissue of a bronchiole. Note that the epithelium overlying the aggregate is unspecialised HE/AB, x300.. 52

Fig. 4.6 Dense lymphoid aggregate within the lamina propria of a bronchus showing "collar stud" appearance with the major aggregate below the muscularis and a narrow neck of lymphoid cells passing between adjacent muscular bundles. HE/AB, x350.. 52

Fig. 4.7 Scattered lymphoid cells in the lamina propria adjacent to lymphoid nodules (N) in the mid nasopharynx. HE/AB, x300.. 53

Fig. 4.8 Scattered lymphoid cells in the region surrounding the submucosal glands of the trachea. The cells are mainly lymphocyte-plasma cell series. HE/AB, x200.. 53

Fig. 4.9 Scattered lymphoid cells in the lamina propria of the trachea. HE/AB, x300.. 54

Fig. 4.10 Intraepithelial lymphoid cells (arrows) in the epithelium of the mid nasopharynx. HE/AB, x325.. 54
Fig. 4.1 Presence of small amounts of carbon (between arrows) in the lymphoepithelium of the pharyngeal tonsil. Sheep killed 30 minutes after carbon aerosol. HE, x250. ... 55

Fig. 5.1 Mucosal epithelium of the pharyngeal tonsil from an 8-month-old sheep showing an island of follicle-associated epithelium which is depressed and distinct from the adjacent ciliated epithelium. SEM, x270. .. 61

Fig. 5.2 Singly distributed microvillous cells (M) in the mucosal epithelium of the pharyngeal tonsil of an 8-month-old sheep. Microvilli on these cells are usually tall and densely packed. SEM, x3,100. .. 61

Fig. 5.3 A nest of microvillous cells in the follicle-associated epithelium of the pharyngeal tonsil from a 9-month-old sheep. Note the intercellular crevices formed by the bulging surface of the microvillous cells. The microvilli on these cells are thick but less densely packed than those of single cells. SEM, x7,700. ... 63

Fig. 5.4 One type of flattened follicle-associated epithelium showing microvillous cells of various shapes and sizes with a slightly bulging surface. The microvilli on these cells are short and densely packed. Pharyngeal tonsil from a 9-month-old sheep. SEM, x5,000. ... 63

Fig. 5.5 A second type of flattened follicle-associated epithelium in the pharyngeal tonsil of an 8-month-old sheep. The cells are polygonal, closely joined to each other and have ledge-like cell borders. Numerous densely-packed knob-like microvilli are evenly distributed on the cell surface. Two intermediate cells (I) containing both cilia and microvilli are also present. SEM, x3,200. ... 64

Fig. 5.6 A microvillous cell in the follicle-associated epithelium of the pharyngeal tonsil from a 2-year-old sheep showing a cobblestone pattern of cytoplasmic elevations on the surface. SEM, x8,100. ... 64

Fig. 5.7 A microvillous cell in the follicle-associated epithelium from the pharyngeal tonsil of a 2-year-old sheep showing irregular, ridge-like microplicae on its surface. SEM, x7,400. ... 65

Fig. 5.8 Squamous epithelium in the pharyngeal tonsil from a 9-month-old sheep showing many irregular shadow-like microfolds on the surface and ledge-like cytoplasmic elevations at the cell borders. A few squamous epithelial cells are undergoing desquamation (arrows). SEM, x1,500. ... 65

Fig. 5.9 Microvillous cells (M) in the mucosa of the pharyngeal tonsil from a 3-year-old sheep showing an absence of cilia. The apical cytoplasm is rich in the mitochondria and there is infiltration of lymphocytes (L). TEM, x4,850. ... 66

Fig. 5.10 A microvillous cell containing many vesicles in its apical cytoplasm and a few short microvilli on its surface. Pharyngeal tonsil of an 8-month-old sheep. TEM, x21,200. ... 66
Fig. 5.11 A microvillous cell showing an abundance of vacuoles in the cytoplasm nearest the lumen. The microvilli in this cell are sparse and slender. Pharyngeal tonsil of an 8-month-old sheep. TEM, x11,200. 67

Fig. 5.12 A microvillous cell containing many electron-dense cores in its apical cytoplasm and prominent intercellular digital junctions on its lateral surface. The pharyngeal tonsil of an 8-month-old sheep. TEM, x7,800. 67

Fig. 5.13 A microvillous cell showing the presence of a phagolysosome (arrow) in its apical cytoplasm and finger-like cytoplasmic projections on its surface. Pharyngeal tonsil of a 2-year-old sheep. TEM, x11,200. 68

Fig. 5.14 Flattened microvillous cells (M) in the follicle-associated epithelium of the pharyngeal tonsil from a 3-year-old sheep. These cells contain densely-packed knob-like microvilli and few cytoplasmic organelles. Several lymphocytes (L) are nested beneath these microvillous cells. TEM, x5,200. 68

Fig. 5.15 Intercellular spaces between two adjacent microvillous cells (M). The microvillous cells also contain many vesicles in their apical part of the cytoplasm. Pharyngeal tonsil from an 8-month-old sheep. TEM, x11,200. 70

Fig. 5.16 Focal epithelial disintegration (arrows) in the mucosa of the pharyngeal tonsil from a 9-month-old sheep. Note many lymphocytes (L) of different matuities are directly exposed to the nasopharyngeal cavity. Squamous cells (S) and ciliated cells (C). TEM, x3,400. 70

Fig. 6.1 The mucosal epithelium of the pharyngeal tonsil from an 80-day ovine foetus. It consists almost entirely of ciliated cells with a few goblet cells. Small numbers of mesenchymal cells with occasional neutrophils are present in the subepithelial areas. HE, x185. 76

Fig. 6.2 The pharyngeal tonsil from an ovine foetus of 96 days gestation showing subepithelial infiltration of small numbers of lymphocytes and other mononuclear cells. HE, x185. 76

Fig. 6.3 A dense aggregation of lymphoid cells in the subepithelial region of the pharyngeal tonsil from a 140 day ovine foetus. HE, x300. 78

Fig. 6.4 Mucosal epithelium of the pharyngeal tonsil from a newborn lamb showing non-ciliated epithelial cells singly (S) and in nests (N). SEM, x1,500. 78

Fig. 6.5 M cells (M) in the mucosa of the pharyngeal tonsil of a newborn lamb. The cells show absence of cilia and bulging of the apical cytoplasm. TEM, x3,600. 79

Fig. 6.6 High magnification of an M cell showing many mitochondria and several vacuoles in the apical cytoplasm. Pharyngeal tonsil from a newborn lamb. TEM, x8,300. 79

Fig. 6.7 Tissue of the pharyngeal tonsil of a 7-day-old lamb showing a lymphoid follicle containing a germinal centre (G), dome area (D) and parafollicular region (P).
The follicle-associated epithelium is flattened and infiltrated with lymphocytes
(between arrowheads). HE, x60... 80

Fig. 6.8 Mucosal epithelium of the pharyngeal tonsil from a 7-day-old lamb. It has an
island of follicle-associated epithelium which is depressed and distinct from the
adjacent ciliated epithelium. SEM, x190... 80

Fig. 6.9 High magnification of the follicle-associated epithelium of the pharyngeal tonsil
from a 7-day-old lamb. There is considerable variation in the size and shape of
M cells. SEM, x850.. 81

Fig. 6.10 Mucosal epithelium of the pharyngeal tonsil from a 7-day-old lamb. There is
heavy infiltration of lymphocytes (L) and the M cells (M) possess a few thick
microvilli. There are many intercellular spaces between M cells and adjacent
cells (arrows). TEM, x3,400... 81

Fig. 7.1 Effects of fixation on perceived mast cell density (cells/mm²) in the ovine lower
respiratory tract. FA=10% neutral buffered formalin; IFAA=isotonic formal-acetic-acid; Values are mean ± the standard error of means (n = 6); *=p<0.01
and **=p<0.001 significantly different from mast cell numbers in the same
anatomic region of FA-fixed specimens.. 87

Fig. 7.2 Distribution of mast cells within tissue compartments in the ovine airway (a)
and lung (b). .. 89

Fig. 7.3 Ovoid type of mast cell (arrow) in the ovine lung fixed in 10% neutral buffered
formalin. Toluidine blue, x185. .. 90

Fig. 7.4 Elongated type of mast cell in the bronchial smooth muscle of a sheep. Fixed
in 10% neutral buffered formalin. Toluidine blue, x185. 90

Fig. 7.5 Mast cells in the superficial lamina propria of ovine trachea (a) and lung (b)
fixed in isotonic formal-acetic-acid. They are small and variable in shape.
Toluidine blue, x225. Inset: High magnification of a mast cell with intensively
stained intracytoplasmic granules which have obscured the nucleus. Toluidine
blue, x375... 91

Fig. 7.6 Type I granules (I) and type II granules (II) in a mast cell located in an alveolar
septum of a sheep. TEM, x31,800... 92

Fig. 7.7 An almost completely degranulated ovine lung mast cell containing a few
remnants of the granules. TEM, x7,800.. 92

Fig. 7.8 A mast cell in the deep lamina propria of an ovine airway showing the
heterogeneous nature of secretory granules. TEM, x7,800.................................. 93

Fig. 7.9 Higher magnification of Figure 8 showing granules with crescentic electron-
lucent areas (a); and combination type of secretory granules (b). TEM,
x31,800.. 93
Fig. 8.1 Diagram of experimental set-up for the measurement of respiratory parameters and the bronchial provocation test in anaesthetised sheep. A=sheep, B=endotracheal tube, C=two-way valve, D=Fleisch pneumotachograph and differential pressure transducer, E=ultrasonic nebuliser, F=closed rebreathing anaesthetic system and G=oxygen and halothane supply.

Fig. 8.2 Reactions to skin tests with *Ascaris suum* antigen in 101 adult sheep.

Fig. 8.3 Skin reactions to intradermal injection with *Ascaris suum* antigen (A) and phosphate buffered saline (C). The figures in the right side of the photograph are the concentrations of the antigen (protein nitrogen units/ml).

Fig. 8.4 Comparison of skin reactions to *Ascaris* antigen in sheep with (Farm II) and without (Farm I) a previous history of exposure to pigs.

Fig. 8.5 Representative records of airway response to 20 minutes (min) phosphate buffered saline (PBS) followed by a 20 minutes aerosol of *Ascaris suum* antigen in a hypersensitive (a) and non-reacting sheep (b). \(V_T = \text{tidal volume}, P_{pl} = \text{intrapleural pressure and} V = \text{airflow rate.} \)

Fig. 8.6 The time course of relative changes in airway resistance (Raw) and dynamic lung compliance (Cdyn) after exposure to an aerosol of *Ascaris* antigen. ■ = sheep showing significant changes in both Raw and Cdyn (Group A), □ = sheep showing significant changes only in Cdyn (Group B) and ● = sheep showing no significant changes in either Raw or Cdyn (Group C). Time 0 represents baseline values. Data are mean ± the standard error of means (*p<0.05; **p<0.01; ***p<0.001, with respect to the baselines).

Fig. 9.1 The tracheal epithelium of a sheep with significant changes only in dynamic lung compliance (Group B) showing horseradish peroxidase reaction products free on the luminal surface and bound to the cell membrane. Unstained, TEM, x11,200.

Fig. 9.2 Presence of horseradish peroxidase reaction products in the intercellular spaces of the tracheal epithelium of a sheep showing changes in both airway resistance and dynamic lung compliance (Group A). Unstained, TEM, x7,800.

Fig. 9.3 (a) Penetration of horseradish peroxidase into the tight junctions between two ciliated cells in the bronchi of a sheep with significant changes only in dynamic lung compliance (Group B). (b) Intact tight junctions from an adjacent area of the same section. Unstained, TEM, x15,300.

Fig. 9.4 Two intensely horseradish peroxidase-reacting cells in the bronchial epithelium of a sheep showing changes in both airway resistance and dynamic lung compliance (Group A). TEM, x3,400.
Fig. 10.1 Diagram of the ovine lower respiratory tract showing tissue sampling sites (x).
1=upper trachea; 2=mid trachea; 3=lower trachea; 4=major bronchi; 5=lobar bronchi; 6=medium bronchi; 7a,7b,7c,7d=bronchioles and lungs.

Fig. 10.2 Comparison of the epithelial thickness at different levels of airways in the three groups of sheep. Group A=hypersensitive sheep with significant changes in both airway resistance and dynamic lung compliance, Group B=hypersensitive sheep with significant changes only in dynamic lung compliance, and Group C=non-reacting sheep. * =p<0.05 compared to Group C.

Fig. 10.3 (a) Epithelial goblet cells showing affinity for alcian blue and periodic acid-Schiff (pH 2.5) in the tracheal mucosa of a sheep without airway hypersensitivity; (b) Tracheal mucosa from a hypersensitive sheep showing goblet cells with scanty mucus granules compared to those in (a). AB/PAS, pH 2.5, x250.

Fig. 10.4 Comparison of the density of goblet cells at the different levels of airways in the three groups of sheep. Refer Fig. 10.2 for the legend explanation. * =p<0.05 compared to Group C.

Fig. 10.5 Comparison of the affinity of goblet cells to alcian blue and periodic acid-Schiff staining (pH 2.5) at different levels of airway in the three groups of sheep. Refer Fig. 10.2 for the legend explanation. * =p<0.05 compared to Group C.

Fig. 10.6 Comparison of the dimensions of submucosal glands at different levels of airways in the three groups of sheep. Refer Fig. 10.2 for the legend explanation. * =p<0.05 and ** =p<0.01 compared to Group C.

Fig. 10.7 Comparison of the affinity of mucous cells to alcian blue and periodic acid-Schiff staining (pH 2.5) in the airway submucosal glands in the three groups of sheep. Refer Fig. 10.2 for the legend explanation. * =p<0.05 compared to Group C.

Fig. 11.1 A photomicrograph (a) and schematic drawing (b, according to James et al., 1989) of a small airway illustrating the measurements of airway dimensions. Pi=internal perimeter, Ai=internal area, Pe=external perimeter, and Ae=external area. WA=wall area, c=contracted, and r=relaxed.

Fig. 11.2 The relative wall areas at the different levels of airways of sheep with varying degrees of airway hypersensitivity. Group A=hypersensitive sheep with significant changes in both airway resistance and dynamic lung compliance; Group B=hypersensitive sheep with significant changes only in dynamic lung compliance; Group C=non-reacting sheep. The difference between three groups of sheep is not significant at any airway levels (all p>0.05).
Fig. 11.3 Comparison of the areas of airway wall components between sheep with varying degrees of airway hypersensitivity. Refer Fig. 11.2 for the legend explanation. * = p<0.05 and *** = p<0.001 compared to Group C. 151

Fig. 11.4 The relative changes in airway resistance of bronchioles calculated from the mean airway dimensions of sheep with varying degrees of airway hypersensitivity. The calculation was based on the assumption that the proportion of external perimeter of airway wall occupied by smooth muscle is 1 and the baseline resistance of the non-reacting sheep (Group C) is arbitrarily set at 1.0. Refer Fig. 11.2 for the legend explanation. The difference between three groups of sheep is not significant (p>0.05). 153

Fig. 12.1 A comparison of differential circulating leucocyte counts between hypersensitive and non-reacting sheep. Group A=hypersensitive sheep with significant changes in both airway resistance and dynamic lung compliance, Group B=hypersensitive sheep with significant changes only in dynamic lung compliance, and Group C=non-reacting sheep. * = p<0.05 compared to Group C. 160

Fig. 12.2 Results of mast cell counts at different levels of the lower respiratory tract of hypersensitive and non-reacting sheep. cr. = cranial, md. = middle, cd. = caudal. Refer Fig. 12.1 for the legend explanation. The difference between three groups of sheep is not significant at any level (all p>0.05). 162

Fig. 12.3 Results of morphometric profiles of mast cell granules in the lower respiratory tract of hypersensitive and non-reacting sheep. Refer Fig. 12.1 for the legend explanation. In the pie chart, □ = empty granules and ■ = solid granules. * = p<0.05 compared to Group C. 162

Fig. 12.4 An eosinophil with typical granules and nucleus in the perivascular area of the lung from a hypersensitive sheep. TEM, x7,800. 164

Fig. 12.5 Higher magnification of Figure 12.4 showing several granules with electron-dense crystals, and a lamellar body composed of eccentrically arranged fine myelin-like material. TEM, x48,600. 164
LIST OF TABLES

Table 2.1 Mast Cell-derived Mediators 12
Table 2.2 Pathological Changes in Asthma and the Mediators Likely to be Responsible 14
Table 2.3 Human Eosinophil Crystalloid Granule-derived Mediators 18
Table 2.4 Human Eosinophil Membrane-derived Mediators 19
Table 2.5 Association of Respiratory Virus Infections and Asthmatic Attacks 25
Table 2.6 Viruses Associated with Exacerbations of Asthma 27
Table 3.1 Comparisons of the Characteristics Between Animal Asthma Models and Human Asthmatics 30
Table 3.2 Comparison of the Effects of Pharmacological Agents on Acute Airway Hypersensitivity in Human Asthmatics and Animal Models 31
Table 4.1 Distribution of Different Forms of Lymphoid Tissue in the Ovine Respiratory Tract 49
Table 8.1 The Effect of Inhalation of Phosphate Buffered Saline (PBS) on Respiratory Parameters in Sheep 106
Table 8.2 Changes of Respiratory Parameters in Sheep After Inhalation of *Ascaris suum* 108
Table 9.1 Percentage of Horseradish Peroxidase (HRP)-containing Intercellular Spaces and Cells in the Tracheobronchial Epithelium of Sheep 121
Table 10.1 Sites and Tissues Sampled 127
Table 10.2 Scores of Luminal Exudative Occlusion in Airways 130
Table 11.1 Measured Dimensions of Airways from Sheep with Different Airway Hypersensitivity 148
Table 11.2 Calculated Dimensions of Reconstructed Airways of Sheep with Different Airway Hypersensitivity 150
Table 11.3 The Percentage of Muscle Shortening Required to Cause Complete Airway Closure in Hypersensitive and Non-reacting Sheep 152
Table 12.1 Results of Eosinophils Counts in the Lower Respiratory Tract from Hypersensitive and Non-reacting Sheep 165
Table 12.2
Severity of Neutrophil and Lymphoid Cell Infiltrations in the Airway Epithelium and Airway Wall

| XX | 166 |
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB/PAS</td>
<td>alcian blue/periodic acid-Schiff</td>
</tr>
<tr>
<td>Ae</td>
<td>external area</td>
</tr>
<tr>
<td>Ae<sub>r</sub></td>
<td>external area in "relaxed" state</td>
</tr>
<tr>
<td>Ai</td>
<td>internal area</td>
</tr>
<tr>
<td>Ai<sub>r</sub></td>
<td>internal area in "relaxed" state</td>
</tr>
<tr>
<td>AM</td>
<td>alveolar macrophages</td>
</tr>
<tr>
<td>BAL</td>
<td>bronchoalveolar lavage</td>
</tr>
<tr>
<td>BALT</td>
<td>bronchus-associated lymphoid tissue</td>
</tr>
<tr>
<td>BSM</td>
<td>bronchial smooth muscle</td>
</tr>
<tr>
<td>C3a, C4a and C5a</td>
<td>complement C3a, C4a and C5a</td>
</tr>
<tr>
<td>Cdyn</td>
<td>dynamic lung compliance</td>
</tr>
<tr>
<td>CTMC</td>
<td>connective tissue mast cells</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3 diaminobenzidine tetrahydrochloride</td>
</tr>
<tr>
<td>ECP</td>
<td>eosinophil cationic protein</td>
</tr>
<tr>
<td>EDN</td>
<td>eosinophil-derived neurotoxin</td>
</tr>
<tr>
<td>EPO</td>
<td>eosinophil peroxidase</td>
</tr>
<tr>
<td>f</td>
<td>respiratory frequency</td>
</tr>
<tr>
<td>FA</td>
<td>10% neutral buffered formalin</td>
</tr>
<tr>
<td>FAE</td>
<td>follicle-associated lymphoepithelium</td>
</tr>
<tr>
<td>GALT</td>
<td>gut-associated lymphoid tissue</td>
</tr>
<tr>
<td>HE</td>
<td>haematoxylin and eosin</td>
</tr>
<tr>
<td>HE/AB</td>
<td>haematoxylin and eosin/alcian blue</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IELC</td>
<td>intraepithelial lymphoid cells</td>
</tr>
<tr>
<td>IFAA</td>
<td>isotonic formal-acetic-acid</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin(s)</td>
</tr>
<tr>
<td>L</td>
<td>the length of outer layer of smooth muscle in airways</td>
</tr>
<tr>
<td>LAR</td>
<td>late airway response/reaction</td>
</tr>
<tr>
<td>LRT</td>
<td>lower respiratory tract</td>
</tr>
<tr>
<td>LT</td>
<td>leukotrienes</td>
</tr>
<tr>
<td>MBP</td>
<td>major basic protein</td>
</tr>
<tr>
<td>MC</td>
<td>mast cells</td>
</tr>
<tr>
<td>MMC</td>
<td>mucosal mast cells</td>
</tr>
<tr>
<td>NAHR</td>
<td>non-specific airway hyperresponsiveness</td>
</tr>
<tr>
<td>Nv</td>
<td>numerical density</td>
</tr>
<tr>
<td>PAF</td>
<td>platelet-activating factor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PAS</td>
<td>periodic acid-Schiff</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>Pe</td>
<td>external perimeter</td>
</tr>
<tr>
<td>PG</td>
<td>prostaglandins</td>
</tr>
<tr>
<td>Pi</td>
<td>internal perimeter</td>
</tr>
<tr>
<td>PMP</td>
<td>proportion of external perimeter of the airway occupied by muscle</td>
</tr>
<tr>
<td>PMS</td>
<td>the degree of muscle shortening</td>
</tr>
<tr>
<td>Ppl</td>
<td>intrapleural pressure</td>
</tr>
<tr>
<td>Pw</td>
<td>relative airway area</td>
</tr>
<tr>
<td>Raw</td>
<td>airway resistance</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonucleic acidase</td>
</tr>
<tr>
<td>RTALT</td>
<td>respiratory tract-associated lymphoid tissue</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>SRS-A</td>
<td>slow-reacting substances of anaphylaxis</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>V</td>
<td>airflow rate</td>
</tr>
<tr>
<td>V\textsubscript{T}</td>
<td>tidal volume</td>
</tr>
<tr>
<td>WA</td>
<td>wall area</td>
</tr>
</tbody>
</table>

* Abbreviations used in tables and figures are not included in this list.
INTRODUCTION

Asthma is a common respiratory disease of human beings characterised by an increased responsiveness of the trachea and bronchi to various stimuli and manifested by widespread narrowing of the airways which is totally or partially reversible either spontaneously or by appropriate treatment (Daniele, 1980; Borish, 1987; Dail, 1988; Magnussen and Nowak, 1989). Clinically, the disease is manifested by paroxysms of cough, dyspnoea and wheezing with excess sputum production (McFadden and Ingram, 1980a; Schellenberg, 1985).

Physiologically, the disease is characterised by an increase of airway resistance, total lung capacity and residual volume, a decrease of lung specific conductance, airflow rates and forced expiratory volumes, pulmonary hyperinflation and an imbalance of ventilation and perfusion (McFadden and Ingram, 1980b; Tattersfield and McNicol, 1987). The pathological changes of asthma extend to all bronchi and bronchioles down to 1 mm in diameter, and feature plugging of the airway lumen with exudate, epithelial shedding, squamous metaplasia, increase in numbers of goblet cells, thickening of the mucosal basement membrane, enlargement of bronchial mucous glands and smooth muscle, vasodilatation and oedema of the airway wall, and infiltration of the mucosa and submucosa by inflammatory cells, particularly eosinophils (Spencer, 1977; Dunnill, 1982).

The prevalence of asthma varies considerably between countries (Tattersfield and McNicol, 1987). In developed countries, there is an upward trend in the mortality and hospital admission rates for childhood asthma (Mitchell, 1985; Jackson et al., 1988). Its prevalence has been estimated to be of the order of 3-5% of the population in the United States, and 3-12% in Britain (Tattersfield and McNicol, 1987; Drazen et al., 1987). In New Zealand, about 27% of children suffer from asthma at some time before age 9 (Jones and Sears, 1987), and the hospital admission rates and mortality in childhood asthma are higher than in most other countries (Jackson et al., 1988; Sears, 1988; Mitchell et al., 1990). In 1985, there were 11,038 admissions to hospital for asthma with a mean length of stay of 4.6 days, the cost of which was about 17.3 million New Zealand dollars (Mitchell, 1989).

It is difficult to properly classify the clinical types of asthma because of an incomplete understanding of its pathogenesis. The disease has been divided into two subtypes: extrinsic (allergic) asthma and intrinsic (non-allergic) asthma (Daniele, 1980; Dunnill, 1982). The allergic type is of the most common, accounting for 25-30% of all cases of asthma and probably contributing to another third (McFadden and Ingram, 1980a), and is believed to be mediated by type I hypersensitivity. This type of asthma is generally associated with a personal and/or family history of atopy, positive skin reaction, raised serum immunoglobulin E levels and positive bronchial provocation tests (McFadden and Ingram, 1980a). The disease begins at
any age, but about half of the cases develop before age 10. Most acute attacks of allergic asthma tend to be short-lived, following which the patients can clinically recover completely, although sometimes severe airway obstruction persists for days or weeks as status asthmaticus (McFadden and Ingram, 1980a).

The airway reaction which occurs in asthmatics following bronchial provocation may be one of three types: an isolated early asthmatic reaction, an early followed by a late asthmatic reaction, and an isolated late asthmatic reaction (Tattersfield and McNicol, 1987). The early asthmatic reaction usually develops within 10 minutes of provocation by inhalation, reaches its maximum within 30 minutes and is generally resolved within 1-3 hours. The late reaction usually starts after 3-4 hours, reaches its maximum over the next few hours and clears within 24 hours or more (O’Byrne et al., 1987).

The pathogenesis of allergic asthma has yet to be fully clarified. Episodes of asthma can be evoked by many stimuli, such as infections, exercise, antigens, occupational stimuli, environmental causes, pharmacological stimuli and emotional stress (McFadden, 1984). Several theories have been proposed to explain the development of airway hypersensitivity and allergic asthma. These include the type I hypersensitive reaction, the β-adrenergic blockade theory, the inherent twitch of bronchial smooth muscle, and neurogenic mechanisms (Daniele, 1980; Tattersfield and McNicol, 1987). Recent studies have favoured the concept that asthma is a chronic inflammatory disease involving the interaction of many inflammatory cells (Hogg, 1982; Borish, 1987; Kay, 1987; Barnes, 1989).

Investigation of basic mechanisms in the pathogenesis of asthma has been hampered by difficulties in gaining direct access to human asthmatic airways because of ethical and safety reasons. Although the use of fibre-optic bronchoscope in asthmatics has widened the possibilities of studying asthma directly in volunteers (Flint et al., 1985a,b), results from such studies have been usually compromised by a smoking history and low grade of other inflammatory diseases in the patients. Recent studies have also shown that there are great variations in the inflammatory cell counts between bronchial biopsy specimens (Azzawi et al., 1990). Alternative animal models are, therefore, necessary to advance our understanding of the pathogenesis of this disease.

Several animal models, including rats, guinea pigs, dogs, monkeys, rabbits and sheep, have been used to study the pathogenesis of airway hypersensitivity and allergic asthma (Booth et al., 1970; Patterson and Kelly, 1974; Hogg et al., 1979; Wanner et al., 1979; Kallos and Kallos, 1984; Hamel et al., 1986; Murphy et al., 1986; Eidelman et al., 1988). Among these species, the sheep is considered to be one of the most satisfactory models (Wanner and
Abraham, 1982). Most sheep tested overseas have a natural skin reaction and an immediate airway response to Ascaris suum extract (Wanner et al., 1979; Bosse et al., 1987; Okayama et al., 1989). The airway response in this species is similar in both physiological and pharmacological aspects to that seen in human asthmatics, and is more consistent than the antigen-induced bronchoconstriction in dogs and guinea pigs (Wanner and Abraham, 1982). In addition, some allergic sheep also exhibit late airway reaction (Abraham et al., 1983). Both the early and late airway reactions in sheep have been demonstrated to be antigen-specific and mast cell mediator-dependent (Wanner et al., 1979; Abraham et al., 1983; Okayama et al., 1989). Over the past decade, the sheep has been increasingly used as a model of allergic airway hypersensitivity (Wanner et al., 1979; Kleeberger et al., 1985; Bosse et al., 1987; Okayama et al., 1989). Investigations using this model have produced much useful information. However, almost all studies to date have focused on physiological and pharmacological aspects of the disease (Wanner and Abraham, 1982), and morphological and immunological studies on this model are relatively scant. Further information on these aspects will be useful for fully using this model and for a better understanding of the mechanism of the development of allergic airway hypersensitivity.

It is important to state here, that like most animals, the sheep is not a complete animal model of human asthma since sheep do not spontaneously show clinical symptoms of asthma. Also sheep do not exhibit pathological changes characteristic of asthma. However, the term "asthma model" will be used throughout this thesis since this term has already been used for the sheep model by several workers (Wanner and Abraham, 1982; Ahmed et al., 1983).

In New Zealand, only very limited studies of airway hypersensitivity and asthma have been carried out using animals; the guinea pig being the main animal model available (Galland and Blackman, 1989).

Morphological studies of human asthma undertaken to date suffer from the disadvantage that most of the features described are likely to be associated with the end result of the disease process and it is not known which (if any) morphological features may predispose an individual to develop airway hypersensitivity. Recent studies by Hopp et al. (1990) have shown that enhanced airway reactivity usually precedes the development of asthma. It is therefore of interest to examine the possibility that certain morphological and cellular abnormalities may exist before the development of airway hypersensitivity.

The present study had two main aims. The first was to evaluate the suitability of locally bred Romney sheep as a model to study human asthma in New Zealand. Knowledge of the prevalence of natural responders in sheep in New Zealand would thus be available for future
workers in this country wishing to use the ovine model. The second aim was to use the sheep model established to determine whether or not morphological and inflammatory factors in the ovine respiratory tract could be associated with a predisposition to develop allergic airway hypersensitivity to inhaled *A. suum* antigen.