Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Growth Analysis and Plant Hormone Studies
in Apple (Malus sylvestris Mill.)

A thesis submitted in partial fulfilment of the
requirements for the degree of Doctor of Philosophy

at

Department of Horticulture
Massey University
Palmerston North
New Zealand

Heung Sub Park

1975
To My parents, Soon Ja, Jin Soo, Si Young, and Jin Hyoung.

Since we are assured that the all-wise Creator has observed the most exact proportions, of number, weight and measure, in the make of all things; the most likely way therefore, to get any insight into the nature of those parts of the creature, which come within our observation, must in all reason be to number, weigh and measure.

"God has not only comprehended the dust of the earth in a measure, and weighed the mountains in scales, and the hills in a balance, Isai. Xl. 12." (Hales, 1727).
Acknowledgements

Sincere thanks to my supervisor Professor J.A. Veale; other members of the Department of Horticulture particularly Dr. D. J. Woolley for his advice on experimental procedures and assistance with the manuscript; Professor R. E. Munford for assistance with the growth analysis data; Dr. E. D. Penny for advice on techniques in the early stages; Dr. J. P. Kerr Plant Physiology Division, D. S. I. R. for assistance with the preparation of the thesis; several who assisted with proofreading; tolerance of the Botany/Zoology Department in the use of equipment and facilities; Mr. K. J. Fourneau who encouraged field experimentation in his orchard and Mr. K. W. Kiddle (Apple and Pear Board) who organized for the experimental field in Hastings.

Further extended thanks for gifts of 3H-zeatin, Gibberellins, and Tan-ginbozu dwarf rice seeds; to Dr. D. S. Letham (Research School of Biological Science, Australian National University Canberra, Australia), Dr. D. Broadbent (I. C. I. Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire, England), and Dr. Y. Murakami (National Institute of Agricultural Science, Tokyo, Japan) respectively.

Special thanks to my wife for support, encouragement, and typing.

Gratitude expressed to the following organization which gave financial support and encouragement; Korean Government, UNESCO, Colombo Plan and Massey University.
Abstract

Part I

Growth analysis studies

Previous data on gravitational effects on shoot growth and flowering have been inconsistent. Attempts have been made to investigate shoot growth and flowering on shoots with a 3/8 phyllotaxis in 90 cm and 150 cm laterals. These were bent at different times to the horizontal or to a pendulous position in apple varieties Red Delicious and Granny Smith on MM 106 rootstocks grown under a semi-intensive system on a commercial orchard in the major apple growing area of Hastings. The four treatments comprised: horizontal or pendulous bending during the dormant period, at petal fall, second cover stage and with normal vertical laterals as controls.

Horizontal bending increased total shoot growth and flowering relative to the vertical controls in the 90 cm treatment in both varieties. There seemed to be a tendency to decrease total shoot growth when the time of bending was later in the season and no differences in flowering occurred among the horizontal bending treatment. On the other hand shoot growth was relatively constant in all treatments in the 150 cm treatment. A very significant increase in flowering, however, was found in the petal fall pendulous bending. In the dormant period pendulous bending there was a slight effect on the flower promotion relative to the verticals.

The production of laterals and flower buds was always more pronounced on the upper side of the bent shoots, with an intermediate on the flanks, and greatly inhibited effects on the lower side, indicating a steep linear relationship from the lower to the upper during the dormant period treatment in all experiments. Generally, the percentages of shoot growth and flower production were increased from the dormant period bending to the petal fall, second cover and to the vertical control.

The greatest increase in shoot length and increased percentage of flowering in all experiments were found in the apical whorl zone, and these further decreased from the 1st to the 2nd, and to the 3rd whorl; this was the case for shoot growth and flowering in the first whorl was no increased due to the inherent properties in Red Delicious. The shoot growth and flowering at the different whorls in 150 cm length laterals bent pendulously in Red Delicious showed a quadratic relationship due to the longer shoots in the apical and the arch position on the shoot when bent at the 5th whorl in all treatments. But at the 5th whorl flowering was reduced considerably, because of substantial lateral growth.
In order to describe the growth relationship between shoot volume and total leaf area an index based on the ratio of vegetative and reproductive responses was established e.g. vegetative 10.83 and reproductive 19.80-24.40.

The relationship of shoot growth and flowering are discussed in terms of a hormone balance theory.
Abstract

Part II

Plant hormone studies

In order to establish a ratio of different plant hormones for an understanding of physiological phenomena, appropriate extraction procedures are required for especially apple leaves which are rich in phenolic compounds and other inhibitors. Therefore extraction procedures and purification were examined using 14C-IAA and 3H-zeatin.

Loss of 14C-IAA during extraction procedures was due to a high pH in the aqueous phase during solvent partitioning. The final recovery of 14C-IAA was 3.9% at pH 8.0 and 81.1% at pH 2.5 through solvent partition and column chromatography. 14C-IAA was chromatographed on a silica gel-celite column and a Sephadex LH-20 column, giving 80% recovery in 30 ml elution volume around the main peak and 90% recovery in 20 ml elution volume around the main peak respectively. Nearly 100% recovery from a Sephadex G-10 column was obtained. 50-57% recovery of 14C-IAA was obtained in cellulose thin layer chromatography at the Rf of IAA, and no loss of 14C-IAA occurred during 3 days storage in a dark cabinet.

The partition coefficient of 3H-zeatin at pH 8.3 was 13.12 with ethyl acetate and 0.438 with n-butanol; at pH 2.5, 108-89 with ethyl acetate and 15.73 with n-butanol. Backwashing can recover 3H-zeatin from ethyl acetate phase which was partitioned at pH 2.5. 80% recovery of 3H-zeatin in the first 1,000 ml was obtained from Sephadex G-10 and Dowex 50 W x 8. 88.6% recovery of 3H-zeatin could be obtained in a 20 ml peak using Sephadex LH-20 eluted with 95% EtOH containing 0.001 M HCl. The behaviour of 3H-zeatin was studied in paper chromatography and cellulose, DEAE cellulose and silica gel, thin layer chromatography, about 82-60% of 3H-zeatin the Rf of 3H-zeatin being recovered.

Four series of plant hormones were determined from apple leaves by ethyl acetate partitioning, Sephadex G-10 column, silica gel-celite column and cellulose thin layer chromatography of acidic fractions containing auxin-, gibberellin-, and ABA-like substances, and by butanol partitioning, Sephadex G-10, Sephadex LH-20, and DEAE cellulose thin layer chromatography for cytokinin-like substances from basic fractions. Possibly two kinds of auxin-like substances were found and possibly GA9, GA4, GA5, GA1, or GA3 and GA8-like substances were eluted from a silica gel-celite adsorption column. Several groups of cytokinin-
like substances were obtained from Sephadex LH-20 column chromatography, possibly zeatin, zeatin-riboside and other cytokinins were found in apple leaves.

Based on the estimation of each plant hormone from thin layer chromatography, a relative plant hormone index was established, i.e., Relative Auxin Activity Index, Relative Inhibitor Activity Index, Relative Gibberellin Activity Index, and Relative Cytokinin Activity Index, representing 0.39, 1.04, 2.64, and 8.16 respectively, the hormone giving the highest ratio being considered the dominant hormonal factor at that stage of development.

GLC techniques were also studied for plant hormone analysis, using 3% OV-1 and NAA, IAA, IPA, GA₁, GA₂, GA₄, GA₅, GA₇, GA₉, GA₁₃ and ABA markers to establish retention times and detector response at the 2.5 ng level. N.O.-bis(trimethylsilyl)trifluoracetamide (BSTFA) together with Trimethylchlorosilane (TMCS) silyl reagents produced the best peak heights for IAA, IPA, GA₃ and GA₁ but reduced the ABA peak by half and the GA₉ peak by 20%.
Table of Contents

Acknowledgements
Abstract Part I: Growth analysis studies
Part II: Plant hormone studies
Table of Contents
List of Tables
List of Figures
Abbreviations

Part I Growth analysis studies

1 Introduction

2 Review of Literature

2.1 Historical outline of gravimorphic studies
2.2 Bending techniques in general orchard practice
2.3 The effect of gravity on flowering
 2.3.1 Precocious flowering
 2.3.2 Apple trees
 2.3.3 Silviculture
2.4 The effect of gravity on vegetative growth
 2.4.1 Extension of shoot growth
 2.4.2 Outgrowth of buds
 2.4.3 Distribution of shoots on the lateral
 2.4.4 Shoot position on outgrowth of lateral buds
 2.4.5 The interaction between apical dominance and effect of gravity
2.5 Gravitational stimulus
 2.5.1 Rotation effect
 2.5.2 Distribution of nutrient, assimilates, and enzymes
 2.5.3 Growth substances
 2.5.4 Anatomy of wood and gravitational effect
 2.5.4.1 Compression wood
 2.5.4.2 Tension wood
 2.5.4.3 Phloem
2.6 The outgrowth of shoot and shoot growth (Apical dominance)
 2.6.1 Availability of cytokinins
 2.6.2 IAA conjugating system with aspartate
 2.6.3 A significant role of aspartate

3 Materials and Methods

3.1 Organisation of field experiments
3.2 Application of treatments
3.2.1. General
3.2.2. Experiment 1
3.2.3. Experiment 2
3.2.4. Experiment 3
3.3. Measures of shoot growth
3.3.1. Shoot diameters
3.3.2. Leaf areas
3.3.3. Ratio of total leaf area to total increment of shoot volume
3.3.4. Shoot length
3.4. Statistical analyses
3.4.1. Classification of bud positions (See Fig. 4)
3.4.2. Analysis of variance models
3.4.3. Orthogonal subdivision of main effects and interactions
4. Experimental results
4.1. Shoot length section
4.1.1. Experiment 1 (Red Delicious with 29 positions of laterals, horizontal bending)
4.1.1.1. Effect of treatments
4.1.1.2. Effect of position
4.1.2. Experiment 2 (Red Delicious with 45 positions of laterals, pendulous bending)
4.1.2.1. Effect of treatments
4.1.2.2. Effect of positions
4.1.3. Experiment 3 (Granny Smith, horizontal bending)
4.1.3.1. Effect of treatments
4.1.3.2. Effect of positions
4.2. Flowering section
4.2.1. Experiment 1 (Red Delicious 90 cm lateral)
4.2.1.1. Effect of treatments
4.2.1.2. Effect of positions
4.2.2. Experiment 2
4.2.2.1. Effect of treatments
4.2.2.2. Effect of positions
4.2.3. Experiment 3
4.2.3.1. Effect of treatments
4.2.3.2. Effect of positions
4.3. Relative growth relationship (between leaf area and shoot growth)
4.3.1. Leaf area
4.3.2. Studies of ratios of total leaf area to total increment of shoot volume (R)

Discussion

5.1. Shoot growth
5.1.1. Total shoot length
5.1.2. Orientation effect
5.1.3. Whorl effect

5.2. Flowering
5.2.1. Total flowering
5.2.2. Orientation effect
5.2.3. Whorl effect

5.3. Relative growth relationship
5.3.1. Leaf area
5.3.2. Ratio of total leaf area to total increment of shoot volume

5.4. Summary of discussion

Part II Plant hormone studies

6. Introduction

7. Review of literature

7.1. Auxin-like substances
7.1.1. The historical development of extraction procedures for acidic, neutral, and basic fraction in the determination of auxin-like substances
7.1.2. The acidic auxin-like substances at pH 2.5-3.0 and pH 8.0-8.5
7.1.3. A bound or conjugate-auxin-like substance
7.1.4. Column chromatography
7.1.4.1. Adsorption column
7.1.4.1.1. Alumina column
7.1.4.1.2. Silica gel-celite column
7.1.4.2. Ion exchange column
7.1.4.3. Partition column
7.1.4.3.1. Silica gel column
7.1.4.3.2. Gel chromatography

7.2. Abscisic acid and other inhibitors
7.2.1. Historical progress in the isolation of ABA
7.2.2. Solvent partition at different pH's with different organic solvents
7.2.3. A neutral inhibitor in the neutral fraction 108
7.2.4. A conjugate of abscisic acid 108
7.2.5. Column chromatography for purification of ABA 109

7.3. Gibberellin-like substances

7.3.1. Historical progress of isolation for gibberellins 111
7.3.2. Gibberellin-like substances in different fractions

7.3.2.1. An acidic fraction

7.3.2.1.1. Extraction of gibberellins at pH 2.5-3.0 111
7.3.2.1.2. Extraction of gibberellins at pH 8.0-8.5 112

7.3.2.2. A neutral fraction 112

7.3.2.3. Bound or conjugate gibberellins 113

7.3.3. Partition of gibberellin with different solvent 113

7.3.4. Counter current distribution 114

7.3.5. Column chromatography

7.3.5.1. Partition column 115
7.3.5.3. Gel chromatography 116
7.3.5.4. Ion exchange column 116

7.4. Cytokinin-like substances

7.4.1. Discovery of kinetin 116

7.4.2. Historical progress of isolation for zeatin 117

7.4.3. An outline of extraction procedures and column chromatography

7.4.3.1. The 6-substitute purines and their ribosides

7.4.3.1.1. Dowex 50 column 120
7.4.3.1.2. Zeo-Karb 225 column 120
7.4.3.1.3. An anion exchange resin column as Dowex 1 120
7.4.3.1.4. Other columns 120
7.4.3.1.5. Precipitation 121
7.4.3.1.6. Paper and thin-layer chromatography 121

7.4.3.2. Zeatin ribotid e and other bound forms of cytokinins 121

7.4.4. The occurrence of cytokinins in different plants 122
7.5. Determination of plant hormones by gas-liquid chromatography (GLC)
 7.5.1. Auxins by GLC
 7.5.2. Abscisic acid by GLC
 7.5.2.1. Determination of ABA by a flame ionization detector
 7.5.2.2. Determination of ABA by an electron capture detector
 7.5.2.3. Identification of ABA
 7.5.2.3.1. GC-MS for ABA
 7.5.2.3.2. Identification of ABA by racemisation with UV irradiation
 7.5.3. Gibberellins by GLC and GC-MS
 7.5.4. Cytokinins by GC-MS

7.6. Loss of authentic plant hormones during extraction procedure
 7.6.1. Loss of IAA
 7.6.2. Loss of other plant hormones

8. Materials and Methods

8.1. Loss of 14C-IAA during extraction and purification procedures
 8.1.1. The plant materials
 8.1.2. Solvent partition chromatography
 8.1.3. Column chromatography
 8.1.3.1. Sephadex gel chromatography
 8.1.3.2. Adsorption column chromatography
 8.1.4. Cellulose thin layer chromatography
 8.1.5. Determination of radioactivity

8.2. Behaviour of 3H-zeatin in chromatography
 8.2.1. Solvent partition chromatography
 8.2.1.1. Preparation and determination of 3H-zeatin
 8.2.1.2. Back washing from ethyl acetate phase
 8.2.1.3. Back washing from BuOH phase
 8.2.2. 3H-zeatin in column chromatography
 8.2.2.1. Sephadex G-10
 8.2.2.2. Sephadex LH-20
 8.2.2.3. Dowex 50 W x 8
 8.2.2.4. Behaviour of 3H-zeatin in paper and thin layer chromatography

8.3. Bioassay techniques for IAA, ABA and GA
8.3.1. The combination of 5 mm oat and 10 mm wheat coleoptile sections for IAA and ABA 139
8.3.2. Tan-ginbozu dwarf rice seedlings and lettuce hypocotyl bioassay for gibberellins 141
8.3.2.1. Dwarf rice bioassay with glass tubes 141
8.3.2.2. Modified dwarf rice bioassay 142
8.3.2.3. Lettuce hypocotyl bioassay 142
8.4. Endogenous plant hormones in apple leaves 144
8.4.1. Extraction procedures of IAA, ABA, and GAs 144
8.4.1.1. Leaf samples and extraction procedures 144
8.4.1.2. Ethyl acetate phase 144
8.4.1.2.1. The system A silica gel-celite column 144
8.4.1.2.1.1. Determination of IAA- and ABA-like substances 145
8.4.1.2.1.2. Determination of gibberellins 145
8.4.1.2.2. The system B silica gel-celite column chromatography 145
8.4.1.3. Bioassay for IAA and ABA 147
8.4.1.4. Bioassay for gibberellins 147
8.4.1.4.1. Barley endosperm test 148
8.4.2. Extraction procedure for cytokinins 148
8.4.2.1. Aqueous phase 148
8.4.2.2. Bioassay for cytokinin-like substances 149
8.5. Authentic plant hormones and plant materials in gas liquid chromatography 151
8.5.1. General procedure of GLC 151
8.5.1.1. Packing column 151
8.5.1.2. The GLC conditions 151
8.5.1.3. Preparation of derivatives 151
8.5.2. Gas chromatographic separation of hormones from apple leaves and comparison with bioassay results 152
8.5.2.1. Plant extract 152
8.5.2.2. GLC of plant extracts 152
8.5.2.3. The IAA- and ABA-like substances in the aliquot of ether acidic fraction by bioassay 153
8.5.3. GLC calibration of natural plant hormones and related compounds 153
8.5.4. GLC of natural plant hormones and related
synthetic plant hormones after cellulose thin layer chromatography

8.5.5. Effect of different silylation methods on retention time and peak height of natural plant hormones

8.5.5.1. Gibberellin A₃

8.5.5.2. Several authentic plant hormones

Experimental results

9.1. Loss of ¹⁴C-IAA during extraction and purification procedures

9.1.1. Effect of pH in the aqueous phases on the degradation of ¹⁴C-IAA in the extraction procedure

9.1.1.1. At pH 8.0 in the aqueous phase

9.1.1.2. At pH 2.5 in the aqueous phase

9.1.2. Column chromatography

9.1.2.1. Recovery of ¹⁴C-IAA from Sephadex G-10 column chromatography

9.1.2.2. Behaviour of ¹⁴C-IAA in the gradient elution of the silica gel-celite column chromatography

9.1.3. Recovery of ¹⁴C-IAA from cellulose thin layer chromatography

9.2. Behaviour of ³H-zeatin in chromatography

9.2.1. Solvent partition chromatography

9.2.1.1. Effect of pH in the aqueous phase on partition of ³H-zeatin by ethyl acetate and butanol

9.2.1.2. Back washing from ethyl acetate phase

9.2.1.3. Back washing from butanol phase by 0.5 M phosphate buffer

9.2.2. ³H-zeatin in column chromatography

9.2.2.1. Sephadex G-10

9.2.2.2. Dowex 50 W x 8

9.2.2.3. Sephadex LH-20

9.2.3. ³H-zeatin in paper and thin layer chromatography

9.3. Bioassay techniques for IAA, ABA, and GAs

9.3.1. The combination of 5 mm oat and 10 mm wheat coleoptile sections
9.3.2. The dwarf rice seedlings and lettuce hypocotyl bioassay for gibberellins 171
9.3.2.1. Tan-ginbozu dwarf rice seedling in the glass tubes and agar culture medium 171
9.3.2.2. Comparison of different lettuce varieties for use in the lettuce hypocotyl bioassay for gibberellins 173

9.4. Endogenous plant hormones in apple leaves 173
9.4.1. IAA- and ABA-like substances in apple leaves 173
9.4.1.1. IAA-like substances 173
9.4.1.2. ABA-like substances 178
9.4.2. Gibberellin-like substances in ethyl acetate phase 178
9.4.2.1. Gibberellin-like substances in the fraction from the system A silica gel-celite column 179
9.4.2.1.1. Fractions from column 179
9.4.2.1.2. Cellulose thin layer chromatography from the pooled fractions of column 182
9.4.2.2. Gibberellin-like substances from the system B silica gel-celite column eluted by hexane, diethyl ether, ethyl acetate, and methanol 182
9.4.3. Cytokinin-like substances of apple leaves from Sephadex LH-20 and DEAE cellulose thin layer chromatography 183
9.4.3.1. On Sephadex LH-20 column chromatography 183
9.4.3.2. On DEAE cellulose thin layer chromatography 186

9.5. GLC of authentic plant hormones and plant amterials 190
9.5.1. Gas chromatographic separation from the apple leaves and comparison with bioassay results 190
9.5.1.1. GLC of plant extracts 190
9.5.1.2. The IAA and ABA-like substances in the aliquot of acidic ether fraction by bioassay 190
9.5.2. Standard calibration of several authentic plant hormones by GLC 194
9.5.3. GLC of authentic plant hormones and realted synthetic plant hormones after cellulose TLC 194
9.5.4. Effect of different reagents on formation of ME- and ME-TMS derivatives of several authentic plant hormones and on the retention time and peak heights

9.5.4.1. Gibberellin A₃

9.5.4.2. Several authentic plant hormones

10 Discussion

10.1. Loss of ¹⁴C-IAA during extraction and purification procedures

10.1.1. Effect of pH in the aqueous phases on the loss of ¹⁴C-IAA

10.1.2. Column chromatography of ¹⁴C-IAA

10.1.3. Recovery of ¹⁴C-IAA from cellulose thin layer chromatography

10.2. Behaviour of ³H-zeatin in chromatography

10.2.1. Solvent partition chromatography

10.2.1.1. Effect of pH in aqueous phase on partition of ³H-zeatin with ethyl acetate and butanol

10.2.1.2. Back washing

10.2.2. ³H-zeatin in column chromatography

10.2.3. ³H-zeatin in paper and thin layer chromatography

10.3. Bioassay techniques for IAA, ABA and GAs

10.3.1. The combination of 5 mm and 10 mm wheat coleoptile section

10.3.2. The dwarf rice seedlings and lettuce hypocotyl bioassay for gibberellins

10.3.2.1. Tan-ginbozu dwarf rice seedling in the glass tubes and agar culture medium

10.3.2.2. Comparison of different varieties for use in the lettuce hypocotyl bioassays for gibberellins

10.4. Endogenous plant hormones in apple leaves

10.4.1. IAA- and ABA-like substances in apple leaves

10.4.2. Gibberellin-like substances
10.4.3. Cytokinin-like substances
10.5. GLC of authentic plant hormones and plant materials
10.6. General discussion in conjunction with further work and conclusion

Literature cited
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effect of horizontal bending at various times on shoot length, total leaf area and number of leaves: Experiment 1 Red Delicious - All 29 shoot positions</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>Effect of horizontal bending at various times on shoot length and flowering at the end of the growing season and at blossom: Experiment 1 Red Delicious - Analysis of variance for all whorls other than the apical whorl</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Effect of pendulous bending at various times on shoot length and flowering measured at the end of the growing season and at blossom: Experiment 2 Red Delicious - Analysis of various for all whorls other than the apical whorl</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Effect of horizontal bending at various times on shoot length and flowering measured at the end of the growing season and at blossom: Experiment 3 Granny Smith - Analysis of various for all whorls other than the apical whorl</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>Studies on shoot growth in relation to leaf area in the vertical and horizontal treatments</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>A flow chart of extraction procedure for IAA-, ABA-, GA-, and Ck-like substances in apple leaves</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>Effect of pH in the aqueous phase on loss of 14C-IAA in the extraction procedure</td>
<td>156</td>
</tr>
<tr>
<td>8</td>
<td>Recovery of 14C-IAA from a silica gel-celite column by the gradient elution method</td>
<td>160</td>
</tr>
<tr>
<td>9</td>
<td>Effect of solvent on the partition of 3H-zeatin at pH 2.5 and 8.3 and partition co-efficients with ethyl acetate and butanol</td>
<td>161</td>
</tr>
<tr>
<td>10 A and B</td>
<td>Back washing from ethyl acetate and butanol phase</td>
<td>163</td>
</tr>
<tr>
<td>11</td>
<td>Partition of 3H-zeatin from Sephadex G-10 column chromatography</td>
<td>164</td>
</tr>
<tr>
<td>12</td>
<td>Pattern in the fractionation of 3H-zeatin from Dowex 50 W x 8</td>
<td>164</td>
</tr>
<tr>
<td>13</td>
<td>Behaviour of different cytokinins in Sephadex LH-20 column chromatography</td>
<td>166</td>
</tr>
</tbody>
</table>
Table 14. Standard calibration of the oat and wheat coleoptile bioassays either singly or combined in the test tube for the response to IAA and ABA

Table 15. Comparison of dwarf rice seedlings at different concentration of GA$_3$ in the glass tubes and agar culture medium

Table 16. Comparison of dwarf rice seedlings for their response to different concentrations of GA$_3$ under different growth conditions

Table 17. Comparison of different lettuce varieties for use in the lettuce hypocotyl bioassay for gibberellins

Table 18. Estimation of IAA- and ABA-like substances from silica gel-celite column as ug equivalents

Table 19. The ug equivalent to GA$_3$ per gram dry weight of apple leaves from the elution of silica gel-celite columns by gradient elution with different solvents used

Table 20. Determination of cytokinin-like activity in apple leaves using the radish cotyledon bioassay and purification by Sephadex LH-20 and DEAE cellulose chromatography

Table 21. GLC retention times and height of peaks of authentic plant hormones with the different methyl esters and methyl esters trimethylsilyl ether derivatives

Table 22. An example of the use of Relative Plant Hormone Indices (RPHI) to represent the balance of plant hormones; in this case apple leaves taken on the 12th of November
List of Figures

Fig. 1. Speculative flow chart representing the integration between biochemical and physiological phenomena in the whole plant. 20

Fig. 2. Speculative scheme of juvenility and flowering. 22

Fig. 3-A and B. Effect of bud scale removal on the bud burst at the 15th January.
A = photograph taken on 22/2/75.
B = photograph taken on 29/2/75.
C and D. Effect of heavy rain after drought season on the bud burst.
C = Bud bourse of Granny Smith, photographed on 13/3/70.
D = Spur buds of Sturmer Pippin, photographed on 13/3/70.

Fig. 4. Experimental trees and definition for orientation and classification of whorl groups.
A. 3 year old tree.
B. 4 year old tree.
C. Definition for orientation of the shoots in the whorl group.
D. Lateral shoot; classification of position, orientation, and whorl group.

Fig. 5. Seasonal change of shoot growth in horizontal and vertical treatments at different time.
A. Dormant period bending (August)
B. Petal fall bending (October)
C. Second cover horizontal bending (November)
D. Vertical treatment (Control)

Fig. 6. Effect of horizontal bending on shoot growth and flowering at different orientation, whorl, and class of shoots in 29 positions of Red Delicious (Exp.1).
A. Dormant period horizontal bending (August). 42
B. Petal fall horizontal bending (October). 43
C. Second cover horizontal bending (November). 44
D. Vertical treatment (Control). 45

Fig. 7. The effect of bending for Red Delicious (Exp. 1 and 2) and Granny Smith (Exp.3) on shoot growth and flowering at the whorl group and orientation.
A. Red Delicious (29) in Experiment 1.
B. Red Delicious (45) in Experiment 2.
C. Granny Smith (29) in Experiment 3.
Fig. 8. Effect of pendulous bending on shoot growth and flowering at different orientation, whorl, and class of shoots in 45 positions of Red Delicious (Exp.2).

A. Dormant period pendulous bending (August) 51
B. Petal fall pendulous bending (October) 52
C. Second cover pendulous bending (November) 53
D. Vertical treatment (Control) 54

Fig. 9. Effect of horizontal bending on shoot growth and flowering at different orientation, whorl, and class of shoots in 29 positions of Granny Smith (Exp.3).

A. Dormant period horizontal bending (August) 57
B. Petal fall horizontal bending (October) 58
C. Vertical treatment (Control) 59

Fig. 10. Effect of horizontal bending on leaf area at different orientation, whorl, and class of shoots in 29 positions of Red Delicious (Exp.1.).

A. Dormant period horizontal bending (August) 67
B. Petal fall horizontal bending (October) 68
C. Second cover horizontal bending (November) 69
D. Vertical treatment (Control) 70

Fig. 11. Relationship of the seasonal horizontal treatments on the shoot length and leaf area.

71

Fig. 12. Shoot growth at the different angle (After Edminister, 1917).

76

Fig. 13. Density of ethyl acetate in chloroform and methanol in ethyl acetate in each 10 ml fraction, leaving the B flask to the A flask in gradient elution.

134

Fig. 14-A. Cutter of coleoptile sections.

140

14-B. Turn-table for coleoptile bioassays.

140

Fig. 15. Density of diethyl ether in hexane, ethyl acetate in diethyl ether, and methanol in ethyl acetate in each 10 ml fraction leaving the B cylinder flask to the A cylinder.

146

Fig. 16. Recovery of \(^{14}\)C-IAA after cellulose TLC.

158

Fig. 17. Paper and thin layer chromatography of \(^3\)H-zeatin.

167

Fig. 18. Standard calibration of the oat and wheat coleoptile bioassays either singly or combined in the test tube for the response to IAA and ABA.

169

Fig. 19. Comparison of dwarf rice seedlings at different concentrations of \(GA_3\) in the glass tubes and agar culture medium.

171-a
Fig. 20. Comparison of the lettuce bioassay at different concentrations of GA$_3$ between different varieties 173a

Fig. 21. The activities of IAA and ABA-like substances in apple leaves after silica gel-celite column, and cellulose thin layer chromatography. 175

Fig. 22. Cellulose TLC of gibberellin-like substances in apple leaves before and after eluting from the system A silica gel-celite column. 177

Fig. 23. Gibberellin-like substances in the fraction eluted from the silica gel-celite column with different solvent systems in the gradient elution. 181

Fig. 24. Cytokinin-like activities after Sephadex LH-20 column and DEAE cellulose thin layer chromatography as detected by the radish cotyledon bioassay. 185

Fig. 25. GLC chromatogram of methylated plant materials and co-chromatograms of authentic plant hormones. 189

Fig. 26. Auxin- and ABA-like substances of apple leaves in the acidic fraction on cellulose thin layer chromatography. 191

Fig. 27. Standard calibration of authentic plant hormones by GLC. 192-3

Fig. 28. A and B. A behaviour of authentic plant hormones in cellulose thin layer chromatography detected by GLC. 196

Fig. 29. Recovery of authentic plant hormones by GLC from cellulose thin layer chromatography. 197

Fig. 30. Comparison of chromatograms in methyl esters and TMS derivatives of several authentic plant hormones. 198

Fig. 31. Loss of 14C-IAA in vacuum dry filtration. 204

Fig. 32. Fractionation of ABA in Sephadex G-10 column. 213

Fig. 33. Cytokinin-like activity in the shoot tips of apple variety Sturmer Pippin (Silica gel TLC developed by water saturated butanol with two replicates). 213

Fig. 34. A Relative Plant Hormone Index in the apple leaves taken on the 12th of November. 228

Fig. 35. An interpretation of Khan's hypothetical model in seed dormancy and germination in terms of Relative Plant Hormone Index. 231
Abbreviations

ABA Abscisic acid
Alar Succinic acid 2,2-dimethyl hydrazide
AW-DMCS Acid washed Dimethyldichlorosilane
Axs Auxins
BSA (bis(trimethylsilyl)acetamide
BSTFA N.O.-bis(trimethylsilyl)trifluoroacetamide
BuOH n-butanol
CKs Cytokinins
CHCl₃ Chloroform
CH₂Cl Methyl chloride
DC-11 Silicone grease
EDTA Ethylenediamine tetraacetic acid
EtOH Ethyl alcohol
Epon 1001 Exoxy resin
GA Gibberellin
GAs Gibberellins
GLC Gas liquid chromatography
HCl Hydrochloric acid
HIEFF=8BP Cyclohexane dimethanol Apipate
HMDS Hexamethyldisilazane
IAA Indolyl-3-acetic acid
IAAp Indolyl-aspartate
ICA Indolyl-3-carboxylic acid
ILÁ DL-3-(3-indolyl)lactic acid
IPA 3-(3-indolyl)-propionic acid
IPA 6-(3-methyl-2-butenylamino)adenosine (pp. 207)
msIPA 6-(3-methyl-2-butenylamino)-2-methylthioadenosine
IpyA Indolepyruvic acid
I Iodine
Ibs Inhibitors
K₂HPO₄ Potassium phosphate
KI Potassium iodide
KOH Potassium hydroxide
LSD Least Significant Difference
MAAW Methyl acetate:Acetonitrile:Ammonium hydroxide:water
MeOH Methyl alcohol
NAA Naphthalene acetic acid
Na₂CO₃ Anhydrous sodium carbonate
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaHCO₃</td>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>Anhydrous sodium sulphate</td>
</tr>
<tr>
<td>Na₂S₂O₅</td>
<td>Sodium pyrosulfate</td>
</tr>
<tr>
<td>NH₄OH</td>
<td>Ammonium hydroxide</td>
</tr>
<tr>
<td>OV-1</td>
<td>Methyl silicone</td>
</tr>
<tr>
<td>PYR</td>
<td>Pyridine</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidone</td>
</tr>
<tr>
<td>QF-1</td>
<td>50% trifluoropropyl methyl silicone</td>
</tr>
<tr>
<td>SE-30</td>
<td>Methyl silicone</td>
</tr>
<tr>
<td>SE-52</td>
<td>Methyl silicone</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMCS</td>
<td>Trimethylchlorosilane</td>
</tr>
<tr>
<td>TPH₂</td>
<td>Tryptamine</td>
</tr>
<tr>
<td>TOH</td>
<td>Tryptophol</td>
</tr>
<tr>
<td>t-RNA</td>
<td>transfer ribonucleic acid</td>
</tr>
<tr>
<td>TTP</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>UC-W98</td>
<td>Unknown % vinyl methyl silicone</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
</tbody>
</table>