Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CHEMICAL MANIPULATION OF
WHITE CLOVER (*Trifolium repens* L.)
GROWN FOR SEED PRODUCTION

A thesis presented in partial
fulfilment of the requirements for the degree of
DOCTOR OF PHILOSOPHY IN SEED TECHNOLOGY
in the Plant Science Department
of Massey University, Palmerston North
New Zealand

BAMBANG BUDHIANTO
1992
ABSTRACT

The effects of chemical manipulation through the use of plant growth regulators on white clover (*Trifolium repens* L.) cv. Grasslands Pitau grown for seed were investigated in this study, using both sward and individual plant trials.

A white clover seed crop was established in autumn 1988, certified breeders seed of cv. Grasslands Pitau being sown at 3 kg/ha in 45 cm rows. Three plant growth regulators, chlormequat chloride (1.5 and 3.0 kg a.i./ha), paclobutrazol (0.5 and 1.0 kg a.i./ha) and triapenthenol (0.5 and 1.0 kg a.i./ha) were applied at two growth stages; during reproductive initiation (11 October) or at the appearance of the first visible bud (8 November). A further plant growth regulator, daminozide (2.0 and 4.0 kg a.i./ha) was applied only in November. Chlormequat chloride, daminozide and triapenthenol did not significantly affect node production, inflorescence production or seed yield, although thousand seed weight (TSW) was reduced. Paclobutrazol significantly reduced petiole length and increased the number of nodes/m², but did not affect dry matter production. The October application of paclobutrazol at 1.0 kg a.i./ha significantly increased potential harvestable seed yield by 71% through increasing the number of inflorescences produced, but the 57% increase following the November application at the same rate did not differ significantly from the control. Actual seed yield differences (+25 and 26%) were also not significant.

In the following season (1989/1990), three of the plant growth regulators (chlormequat chloride at 3.0 kg a.i./ha, paclobutrazol at 1.0 kg a.i./ha, triapenthenol at 1.0 kg a.i./ha) were applied using the same site as for the 1988/1989 trial (i.e. a second year crop), but avoiding plots previously sprayed with paclobutrazol to eliminate possible soil residual effects. Applications were either during early reproductive initiation (September), during peak reproductive initiation (October) or when reproductive buds/early flowers were first visible (November). Chlormequat chloride did not affect either vegetative or reproductive growth and development. Triapenthenol initially retarded growth (e.g. by reducing petiole length), but this effect was only transitory, and was no longer evident 3 weeks after application. Although triapenthenol applied in November increased inflorescence number at peak flowering, seed yield was not increased. Triapenthenol applied in October did not affect inflorescence number at peak flowering, but reduced TSW. Paclobutrazol applied in September, October and November reduced petiole length and leaf size,
but only application in November increased both node and stolon production. Application in October and November increased inflorescence numbers at peak flowering and harvest respectively, but seed yield was not increased. Data recorded from plots sprayed with paclobutrazol the previous season (1988/1989) provided no evidence of growth retardation through soil residual activity.

In an attempt to clarify the effects of paclobutrazol on white clover growth and development, individual plants grown from seeds selected at random from a lot of certified breeders seed were established as spaced plants (80 x 80 cm) in the field in spring of 1990. Paclobutrazol was applied at 1.0 kg a.i./ha on 6 November 1990 (when more than 75 % of the plants were initiating reproductive buds at their terminal buds) or 23 November 1990 (when more than 50 % of the plant population had reproductive buds visible on their stolons). Petiole length and leaf size were initially reduced, but beginning two months after application, vigorous regrowth occurred, to the extent that paclobutrazol treated plants became as tall as the control plants. However, retardation effects occurred again at harvest. Total plant dry matter and root:shoot ratios were not affected by paclobutrazol. Chlorophyll content/unit leaf area and leaf thickness increased following paclobutrazol application, but increases were not correlated. Seed yield and yield components did not differ from that of the control plants, mainly because plant to plant variation was very large, irrespective of treatment.

To attempt to reduce this source of variation, a further spaced plant trial was established in 1991/1992 using plants produced by clonal propagation from three distinct genotypes from within cv. Grasslands Pitau. Paclobutrazol was applied at the same rate and time as in the previous season, and while not affecting the number of nodes developed along stolons or inflorescence initiation at the stolon apices, it did significantly increase stolon production in all three genotypes through increasing secondary, tertiary and to a lesser extent quaternary branch numbers. However, not all these extra stolons were able to produce inflorescences, and this ability varied significantly with genotype. As a consequence, inflorescence number and potential harvestable seed yield were significantly increased only in one genotype following paclobutrazol application. However, paclobutrazol reduced seed abortion and increased seed weight in all three genotypes.
In individual plants, inflorescence growth and development from emergence to the seed ripening stage occurred more quickly in paclobutrazol treated plants than untreated plants. A simulated sward trial was used in 1990/1991 to determine whether the previous failures to significantly increase actual seed yield were because paclobutrazol treated plots had ripened earlier than control plots, and as a consequence more seed had been shed by the time of harvest. However, no significant paclobutrazolXharvest time interactions for seed yield or seed yield components were recorded. These results suggest that paclobutrazol did not affect seed maturity in a sward situation. Irrespective of treatment, greatest seed yield came from harvesting 25 days after peak flowering, but this did not differ significantly from harvesting 35 days after peak flowering. Delaying harvest to 40 and 45 days after peak flowering significantly reduced seed yield. As in previous sward trials, paclobutrazol application significantly increased inflorescence numbers, but large (+56 %) differences in potential harvestable and actual seed yield were statistically not significant. In each case, high data variation (CV > 30 %) was recorded. Factors responsible for the failure of apparent biological increases to be statistically real are briefly discussed.
ACKNOWLEDGEMENTS

Bismillahirrahmaanirrahiim
In the name of Allah the most gracious and merciful

I wish to express my sincere gratitude to Dr John G. Hampton, my chief supervisor and also to Professor Murray J. Hill, my second supervisor, particularly for their valuable guidance in the planning and writing of this thesis, constructive criticism, helpfulness in many ways and most importantly, encouragement throughout my four years of study at the Seed Technology Centre.

My sincere thanks are also extended to:

Professor Roderick G. Thomas for his advice during the conduct of my experiments, for his patience during the long and in depth discussions in the preparation of my manuscript, and especially the time he took to read and correct my manuscript.

Dr Ian Gordon for his valuable advice in the use of statistical analysis in this study.

Drs Michael Hare and John Caradus of AgResearch, Grasslands for supplying seed and plant materials used in this study.

Mr. Allan Hardacre of Crop and Food Research for his advice in the chlorophyll content experiment.

Mr Robert Southward and Mr Daniel Hampton for their technical help during the field trials.

Mrs Karen Hill for her advice in conducting seed germination testing and especially, during my final preparation for thesis binding.

All other staff of the Seed Technology Centre: Dr Peter Coolbear, Mr Craig McGill, Mrs Dulcie Humphrey and Mrs Colette Gwynne for provision of facilities and assistance in so many ways.
My Indonesian friends, especially Supanjani, Kusmintonjo, Mohammad Chozin and Hari Eko Irianto for their help in the field work.

All postgraduate students in the Seed Technology Centre for their friendship and for making my stay in New Zealand pleasant.

The New Zealand Ministry of External Relation and Trade for financing my study and living in New Zealand.

Massey University for awarding me the Helen E. Akers Scholarship.

The Ministry of Agriculture of the Republic of Indonesia for giving me an opportunity to study in New Zealand.

Finally, I would like to express my gratitude to my parents for their love, understanding and encouragement, and to Eileen Shee-Mei for her support, understanding, help and more importantly, for being by my side. To them, I dedicate this thesis.
TABLE OF CONTENTS

ABSTRACT ..i
ACKNOWLEDGEMENTS ..iv
TABLE OF CONTENTS ..vi
LIST OF TABLES ..xiii
LIST OF FIGURES ...xviii
LIST OF PLATES ..xx
LIST OF APPENDICES ..xxii

CHAPTER 1 GENERAL INTRODUCTION ..1

CHAPTER 2 LITERATURE REVIEW ...4

2.1 THE WHITE CLOVER PLANT ..4

2.2 REPRODUCTIVE GROWTH AND DEVELOPMENT, AND FACTORS THAT AFFECT GROWTH AND DEVELOPMENT ..5

2.2.1 Inflorescence initiation ...6
2.2.2 Inflorescence growth and development ...13
2.2.3 Anthesis, pollination and fertilisation ...15
2.2.4 Seed development ..16

2.3 SEED PRODUCTION ..18

2.3.1 Seed yield and seed yield components ..18
2.3.2 Main obstacles for seed production ...19
2.3.3 Management for high seed yield ...21

2.4 CHEMICAL MANIPULATION OF REPRODUCTIVE GROWTH AND DEVELOPMENT WITH THE USE OF PLANT GROWTH REGULATORS ..27
2.4.1 Plant growth regulators ... 27
 2.4.1.1 Paclobutrazol .. 30
 2.4.1.2 Triapenthenol ... 31
 2.4.1.3 Chlormequat chloride ... 32
 2.4.1.4 Daminozide .. 32
 2.4.2 The use of plant growth regulators in herbage legume seed production ... 33

CHAPTER 3 EFFECT OF PLANT GROWTH REGULATORS ON THE GROWTH, DEVELOPMENT AND SEED YIELD OF A FIRST YEAR CROP OF WHITE CLOVER CV. GRASSLANDS PITAU ... 37

 3.1 INTRODUCTION ... 37
 3.2 MATERIALS AND METHODS .. 40
 3.2.1 Experimental site, management and treatments 40
 3.2.2 Plant measurements and statistical analysis 42
 3.3 RESULTS .. 46
 3.3.1 Meteorological conditions .. 46
 3.3.2 Effect of plant growth regulators on plant growth and development ... 47
 3.3.2.1 Morphological characteristics .. 47
 3.3.2.2 Dry matter accumulation and distribution 47
 3.3.2.3 Vegetative and reproductive nodes 50
 3.3.2.4 Composition of reproductive nodes 50
 3.3.3 Effect of plant growth regulators on flowering pattern 53
 3.3.4 Effect of plant growth regulators on seed yield components, seed yield and seed quality 56
 3.4 DISCUSSION .. 59
CHAPTER 4 EFFECT OF PLANT GROWTH REGULATORS ON THE GROWTH, DEVELOPMENT AND SEED YIELD OF A SECOND YEAR CROP OF WHITE CLOVER CV. GRASSLANDS PITAU

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.2.1 Experimental site, management and treatments

4.2.2 Plant measurements and statistical analysis

4.3 RESULTS

4.3.1 Meteorological conditions

4.3.2 Effect of plant growth regulators on plant growth and development

4.3.2.1 Morphological characteristics

4.3.2.2 Dry matter accumulation and distribution

4.3.2.3 Vegetative nodes and growing points

4.3.2.4 Reproductive nodes and their composition

4.3.2.5 Growth and development of main stolons

4.3.3 Effect of plant growth regulators on flowering pattern

4.3.4 Effect of plant growth regulators on seed yield components, seed yield and seed quality

4.4 DISCUSSION

CHAPTER 5 EFFECT OF PACLOBUTRAZOL ON THE VEGETATIVE AND REPRODUCTIVE GROWTH AND DEVELOPMENT OF INDIVIDUAL PLANTS OF WHITE CLOVER CV. GRASSLANDS PITAU PROPAGATED BY SEED AND BY CLONAL PROPAGATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A</td>
<td>THE 1990/1991 TRIAL-INDIVIDUAL PLANTS FROM SEED</td>
<td>103</td>
</tr>
<tr>
<td>5A.1</td>
<td>INTRODUCTION</td>
<td>103</td>
</tr>
<tr>
<td>5A.2</td>
<td>MATERIALS AND METHODS</td>
<td>105</td>
</tr>
<tr>
<td>5A.2.1</td>
<td>Experimental site, management and treatments</td>
<td>105</td>
</tr>
<tr>
<td>5A.2.2</td>
<td>Plant measurements and statistical analysis</td>
<td>107</td>
</tr>
<tr>
<td>5A.3</td>
<td>RESULTS</td>
<td>112</td>
</tr>
<tr>
<td>5A.3.1</td>
<td>Meteorological conditions</td>
<td>112</td>
</tr>
<tr>
<td>5A.3.2</td>
<td>Effect of paclobutrazol on plant growth and development</td>
<td>112</td>
</tr>
<tr>
<td>5A.3.2.1</td>
<td>Morphological characteristics</td>
<td>112</td>
</tr>
<tr>
<td>5A.3.2.2</td>
<td>Chlorophyll content</td>
<td>113</td>
</tr>
<tr>
<td>5A.3.2.3</td>
<td>Dry matter accumulation and distribution</td>
<td>115</td>
</tr>
<tr>
<td>5A.3.2.4</td>
<td>Growth and development of main stolons</td>
<td>117</td>
</tr>
<tr>
<td>5A.3.2.5</td>
<td>Total number and proportion of whole plant stolons at harvest</td>
<td>119</td>
</tr>
<tr>
<td>5A.3.3</td>
<td>Inflorescence growth</td>
<td>121</td>
</tr>
<tr>
<td>5A.3.4</td>
<td>Seed yield components and seed yield</td>
<td>122</td>
</tr>
<tr>
<td>5B</td>
<td>INDIVIDUAL PLANTS FROM CLONAL PROPAGATION 1991/1992</td>
<td>123</td>
</tr>
<tr>
<td>5B.1</td>
<td>INTRODUCTION</td>
<td>123</td>
</tr>
<tr>
<td>5B.2</td>
<td>MATERIALS AND METHODS</td>
<td>123</td>
</tr>
<tr>
<td>5B.2.1</td>
<td>Experimental site, management and treatments</td>
<td>123</td>
</tr>
<tr>
<td>5B.2.2</td>
<td>Plant measurements and statistical analysis</td>
<td>125</td>
</tr>
</tbody>
</table>
5B.3 RESULTS ..133

5B.3.1 Meteorological conditions ...133
5B.3.2 Effect of paclobutrazol on plant growth and development133
5B.3.2.1 Plant morphology ...133
5B.3.2.2 Peduncle growth ...141
5B.3.2.3 Vegetative and reproductive nodes formed along stolons146
5B.3.2.4 Main stolon branching and the proportion of vegetative and fertile branches ..150
5B.3.2.5 Total stolon number and stolon composition at harvest156
5B.3.2.6 Vegetative dry weight at harvest ...160
5B.3.3 Effect of paclobutrazol on seed yield components and seed yield161
5B.3.3.1 Inflorescence production and its pattern ..161
5B.3.3.2 Initial and final floret numbers per inflorescence164
5B.3.3.3 Ovule numbers/carpel and seed numbers/floret167
5B.3.3.4 Thousand seed weight ..180
5B.3.3.5 Seed yield/plant ...183

5 DISCUSSION ..185

CHAPTER 6 EFFECT OF PACLOBUTRAZOL AND DIFFERENT HARVEST TIMES ON SEED YIELD COMPONENTS AND SEED YIELD IN WHITE CLOVER CV. GRASSLANDS PITAU ..200

6.1 INTRODUCTION ...200

6.2 MATERIALS AND METHODS ...201

6.2.1 Experimental site, management and treatments ...201
6.2.2 Plant measurements and statistical analysis ...202

6.3 RESULTS ...204

6.3.1 Meteorological conditions ..204
6.3.2 Flowering pattern ...204
6.3.3 Inflorescence numbers ... 204
6.3.4 Floret numbers/inflorescence, seed numbers/floret and TSW....... 207
6.3.5 Potential harvestable seed yield, actual seed yield, seed yield recovery and harvest index .. 209

6.4 DISCUSSION .. 212

CHAPTER 7 EFFECTS OF RESIDUAL PACLOBUTRAZOL ON THE GROWTH, DEVELOPMENT AND SEED YIELD OF A SECOND YEAR WHITE CLOVER SEED CROP ... 220

7.1 INTRODUCTION .. 220

7.2 MATERIALS AND METHODS .. 221
7.2.1 Experimental site, management and treatments 221
7.2.2 Plant measurements and statistical analysis 221
7.3 RESULTS ... 222
7.3.1 Meteorological conditions .. 222
7.3.2 Effect of paclobutrazol residues on plant growth and development ... 222
7.3.2.1 Morphological characteristics .. 222
7.3.2.2 Node numbers and growing point numbers 224
7.3.2.3 Plant dry weight .. 224
7.3.2 Seed yield components and seed yield .. 224
7.4 DISCUSSION .. 228

CHAPTER 8 GENERAL DISCUSSION AND CONCLUSIONS 231

8.1 WHITE CLOVER SEED PRODUCTION PROBLEMS AND THE USE OF PLANT GROWTH REGULATORS 231
8.2 CHLORMEQUAT CHLORIDE ..232
8.3 DAMINOZIDE EFFECTS ..233
8.4 TRIAPENTHENOL EFFECTS ...234
8.5 PACLOBUTRAZOL EFFECTS ...235

8.5.1 Plant growth retardation and assimilate supply maintenance......236
8.5.2 Plant development and its relation with seed production..........236
8.5.3 Inflorescence initiation and production237
8.5.4 Florets per inflorescence, seeds per floret and seed weight238
8.5.5 Harvest timing in paclobutrazol treated plants239
8.5.6 The future of paclobutrazol for use in white clover seed crops....240

8.6 VARIATION IN HERBAGE LEGUME SEED PRODUCTION TRIALS..241
8.7 CONCLUSIONS ..244

REFERENCES ...246

APPENDICES ...267
<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Optimal conditions for components of seed yield (Thomas, 1987; Pasumarty and Thomas, 1990)</td>
</tr>
<tr>
<td>3.1</td>
<td>Effect of plant growth regulators on leaf score and peduncle and petiole lengths at peak flowering for a first year crop of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of plant growth regulators on reproductive node composition at peak flowering for a first year crop of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of plant growth regulators on seed yield components at harvest for a first year crop of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of plant growth regulators on vegetative dry matter, potential harvestable seed yield (PHSY), actual seed yield (ASY) and harvest index</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of plant growth regulators on leaf score for a second year crop of white clover cv. Grasslands Pitau at reproductive initiation (October), reproductive buds visible/early flowering (November), peak flowering (December) and harvest (January)</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of plant growth regulators on petiole and peduncle lengths for a second year crop of white clover cv. Grasslands Pitau at reproductive initiation (October), reproductive buds visible/early flowering (November), peak flowering (December) and harvest (January)</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of plant growth regulators on growing points (stolon apices) for a second year crop of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of plant growth regulators on reproductive nodes and their composition at peak flowering for a second year crop of white clover cv. Grasslands Pitau</td>
</tr>
</tbody>
</table>
4.5 Effect of plant growth regulators on the growth and development of a second year crop's main stolons ..86
4.6 Effect of plant growth regulators on seed yield components for a second year crop of white clover cv. Grasslands Pitau89
4.7 Effect of plant growth regulators on potential harvestable seed yield and actual seed yield, seed loss and harvest index for a second year crop of white clover cv. Grasslands Pitau92
5A.1 Effect of paclobutrazol on leaf score and petiole and peduncle lengths ...113
5A.2 Effect of paclobutrazol on leaf chlorophyll content and leaf thickness ...115
5A.3 Effect of paclobutrazol on leaf, stolon, reproductive and dead dry matter (g/plant) ...116
5A.4 Effect of paclobutrazol on main stolon branch development ...117
5A.5 Effect of paclobutrazol on stolon length, nodes and inflorescences formed on main stolons, and inflorescences developed on total secondary branches, total tertiary branches and a whole developed main stolon ..119
5A.6 Effect of paclobutrazol on the total number and proportion of lateral branches, lateral stolons and main stolons at harvest120
5A.7 Effect of paclobutrazol on yield components and seed yield ...122
5B.1 Effect of paclobutrazol on stolon length for main stolons, secondary branches and tertiary branches in three different genotypes ...140
5B.2 Effect of paclobutrazol on peduncle length (mm) for three different genotypes ...142
5B.3 Effect of paclobutrazol on the angle (°) between the peduncle and the ground surface for three different genotypes142
5B.4 Effect of paclobutrazol on the percentage of inflorescences falling under the plant canopy at the ripening stage for three different genotypes ...145
5B.5 Effect of paclobutrazol on the time (days) needed for inflorescences to elevate above the plant canopy for two different genotypes ...145
5B.6 Effect of paclobutrazol on the number of nodes formed along main stolons in three different genotypes147
5B.7 Effect of paclobutrazol on the number of nodes formed along secondary branches in three different genotypes .. 148
5B.8 Effect of paclobutrazol on the number of nodes formed along tertiary branches in three different genotypes .. 149
5B.9 Effect of paclobutrazol on the number of secondary branches/plant (original main stolon) for three different genotypes 151
5B.10 Effect of paclobutrazol on the number of tertiary branches/secondary branch for three different genotypes .. 152
5B.11 Effect of paclobutrazol on the number of quarternary branches/tertiary branch for three different genotypes .. 153
5B.12 Effect of paclobutrazol on stolon number/plant for fertile and total stolons at harvest for three different genotypes 157
5B.13 Effect of paclobutrazol on stolon number/plant for main stolons, lateral stolons and lateral branches at harvest for three different genotypes .. 158
5B.14 Effect of paclobutrazol on fertile stolon number/plant for main stolons, lateral stolons and lateral branches at harvest for three different genotypes .. 159
5B.15 Effect of paclobutrazol on vegetative dry weight (g/plant) at harvest in three different genotypes .. 160
5B.16 Effect of paclobutrazol on the initial number of florets/inflorescence in different genotypes .. 165
5B.17 Effect of paclobutrazol on the final number of florets/inflorescence in different genotypes .. 166
5B.18 Initial floret numbers/inflorescence, floret numbers/inflorescence at ripening and floret abortion in different inflorescence categories for three different genotypes .. 168
5B.19 Effect of paclobutrazol on ovule numbers/carpel from early inflorescences for three different genotypes .. 169
5B.20 Effect of paclobutrazol on ovule numbers/carpel from middle inflorescences for three different genotypes .. 171
5B.21 Effect of paclobutrazol on ovule numbers/carpel from late inflorescences for two different genotypes .. 172
5B.22 Effect of paclobutrazol on seed numbers/floret from early inflorescences for three different genotypes .. 174
5B.23 Effect of paclobutrazol on seed numbers/floret from middle inflorescences for three different genotypes .. 175
5b.24 Effect of paclobutrazol on seed numbers/floret from late inflorescences for two different genotypes ... 176
5B.25 Mean ovule number/carpel, seed number/floret and % seed abortion in different inflorescence categories for three different genotypes .. 179
5B.26 Effect of paclobutrazol on thousand seed weight (g) in different genotypes .. 181
5B.27 Thousand seed weight in different inflorescence categories for three different genotypes .. 182
6.1 Effect of paclobutrazol and different harvest times on the number of inflorescences .. 206
6.2 Effect of paclobutrazol and different harvest times on floret numbers/inflorescence, seed numbers/floret and thousand seed weight .. 208
6.3 Effect of paclobutrazol and different harvest times on potential harvestable seed yield/m², actual yield/m² and seed yield recovery .. 210
6.4 Effect of paclobutrazol and different harvest times on vegetative dry weight/m² and harvest index .. 211
7.1 Effect of residual paclobutrazol on the leaf score of white clover cv. Grasslands Pitau at reproductive initiation (October), reproductive bud visible/early flowering (November), peak flowering (December) and harvest (January) .. 223
7.2 Effects of residual paclobutrazol on the petiole and peduncle lengths of white clover cv. Grasslands Pitau at reproductive initiation (October), reproductive bud visible/early flowering (November), peak flowering (December) and harvest (January) .. 223
7.3 Effects of residual paclobutrazol on vegetative and reproductive node numbers and growing point numbers in white clover cv. Grasslands Pitau at reproductive initiation (October), reproductive bud visible/early flowering (November), peak flowering (December) and harvest (January) .. 225
7.4 Effects of residual paclobutrazol on plant dry weight/unit area of white clover cv. Grasslands Pitau at reproductive initiation
(October), reproductive bud visible/early flowering
(November), peak flowering (December) and harvest (January)........226

7.5 Effect of residual paclobutrazol on seed yield components at
 harvest..227

7.6 Effect of residual paclobutrazol on seed yield..227

8.1 Effect of paclobutrazol on potential harvestable seed yield
 and actual seed yield during the three years of sward trials.................243
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Drawing of a main stolon (MS) of white clover showing axillary buds (AB), lateral branches (LB) and a lateral stolon (LS) (Thomas, 1987a)</td>
</tr>
<tr>
<td>2.2</td>
<td>Pattern of gibberellin biosynthesis and points of inhibition by plant growth retardants (Schott et al., 1984)</td>
</tr>
<tr>
<td>3.1</td>
<td>Early stages of development of inflorescence primordia at main stolon apices of white clover grown in continuous light (CL) at 23°C after pretreatment with warm short days (Thomas, 1987c)</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of plant growth regulators on dry matter accumulation and distribution at peak flowering for a first year crop of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of plant growth regulators on vegetative and reproductive node numbers at peak flowering in white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>3.4</td>
<td>Flowering pattern in paclobutrazol treatments</td>
</tr>
<tr>
<td>3.5</td>
<td>Flowering pattern in triapenthenol treatments</td>
</tr>
<tr>
<td>3.6</td>
<td>Flowering pattern in chlormequat chloride treatments</td>
</tr>
<tr>
<td>3.7</td>
<td>Flowering pattern in daminozide treatments</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of plant growth regulators on total dry matter accumulation for a second year crop of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of plant growth regulators on vegetative node development for a second year crop of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of plant growth regulators on the flowering pattern of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>5A.1</td>
<td>Effect of paclobutrazol on seed moisture content during seed development</td>
</tr>
<tr>
<td>5B.1</td>
<td>Structure of the terminal apex of a stolon as revealed by successive stages of dissection (Redrawn from Thomas, 1987b)</td>
</tr>
<tr>
<td>5B.2</td>
<td>The sequence of node initiation in relation to the time of paclobutrazol applications</td>
</tr>
</tbody>
</table>
5B.3 The height of three genotypes of white clover cv. Grasslands Pitau ...137
5B.4 Effect of paclobutrazol on the height of white clover cv. Grasslands Pitau..138
5B.5 The position of peduncle growth following paclobutrazol application (original) ..144
5B.6 Effect of paclobutrazol on inflorescence numbers/plant in three cv. Grasslands Pitau white clover genotypes162
5B.7 Effect of paclobutrazol on seed yield/plant in three cv. Grasslands Pitau white clover genotypes184
6.1 Effect of paclobutrazol on flowering pattern ..205
LIST OF PLATES

<table>
<thead>
<tr>
<th>PLATE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Scanning electron micrograph of the apical meristem and adjacent tissues at a vegetative stolon tip (Seed Technology Centre, 1992)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Scanning electron micrograph of the apical meristem and adjacent tissues at a reproductive stolon tip (Reproduced from Maldonado, 1985)</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Inflorescence development along a main stolon.</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>The Frewin's block of the Pasture and Crop Research Unit, Massey University, Palmerston North, New Zealand</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>White clover inflorescences showing different ripeness</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>White clover plants at 23 days after plant growth regulator application</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Second year white clover plants, showing the effect of paclobutrazol on plant height (1 month after application)</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>White clover plants at 55 days after plant growth regulator application</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of paclobutrazol on main stolon length (Photographed on 7 December 1989)</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>Plant's condition at harvest (Photographed on 3 January 1990, one day before harvest)</td>
<td>90</td>
</tr>
<tr>
<td>4.7</td>
<td>White clover inflorescences showing different stages of maturity</td>
<td>100</td>
</tr>
<tr>
<td>5A.1</td>
<td>Tagged inflorescences at anthesis</td>
<td>111</td>
</tr>
<tr>
<td>5A.2</td>
<td>Leaf colour change following paclobutrazol application (Photographed three weeks after application)</td>
<td>114</td>
</tr>
<tr>
<td>5A.3</td>
<td>Structure of developed main stolons for both control and paclobutrazol treated main stolons (Photographed at harvest)</td>
<td>118</td>
</tr>
<tr>
<td>5B.1</td>
<td>The angle between the peduncle and the ground surface</td>
<td>132</td>
</tr>
<tr>
<td>5B.2</td>
<td>Effect of paclobutrazol on the height of genotype I (Photographed on 9 December 1991)</td>
<td>134</td>
</tr>
<tr>
<td>5B.3</td>
<td>Effect of paclobutrazol on the height of genotype II (Photographed on 9 December 1991)</td>
<td>135</td>
</tr>
</tbody>
</table>
5B.4 Effect of paclobutrazol on the height of genotype III
 (Photographed on 9 December 1991) .. 136

5B.5 Inflorescence production capacity for three genotypes
 (Photographed on 17 January 1992) .. 163

5B.6 Seeds/floret from florets at the top, middle and bottom
 position on the inflorescences. X-rayed from two randomly
 selected genotype II inflorescences (separated by the middle
 line) .. 177
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1A</td>
<td>Soil analysis of the Frewin's block</td>
</tr>
<tr>
<td>3.1B</td>
<td>Tokomaru Soil Series</td>
</tr>
<tr>
<td>3.2</td>
<td>The characteristics of white clover cv. Grasslands Pitau</td>
</tr>
<tr>
<td>3.3</td>
<td>Sixty year averages for temperature (minimum and maximum), sunshine hours and rainfall at Palmerston North, and deviations from these averages during 1988/1989 and 1989/1990</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of plant growth regulators on the germination of 1988/1989 harvested seed following scarification</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of plant growth regulators on dry matter distribution (g/m²) for a second year crop of white clover cv. Grasslands Pitau at reproductive initiation (October), reproductive buds visible/early flowering (November), peak flowering (December) and harvest (January)</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of plant growth regulators on the germination of 1989/1990 harvested seed following scarification</td>
</tr>
<tr>
<td>5A.1</td>
<td>Soil fertility analysis of the nursery block (the 1990/1991 trial)</td>
</tr>
<tr>
<td>5A.2</td>
<td>Sixty year averages for temperature (minimum and maximum), sunshine hours and rainfall at Palmerston North, and deviations from these averages during 1990/1991 and 1991/1992</td>
</tr>
<tr>
<td>5B.1</td>
<td>Soil fertility analysis for the 1991/1992 trial</td>
</tr>
<tr>
<td>5B.2</td>
<td>Effect of paclobutrazol on stolon length for quaternary and quinary branches in two different genotypes</td>
</tr>
<tr>
<td>5B.3</td>
<td>Effect of paclobutrazol on % light penetration at peak flowering for three different genotypes during full sun</td>
</tr>
<tr>
<td>5B.4</td>
<td>Effect of paclobutrazol on % light penetration at peak flowering for three different genotypes during overcast</td>
</tr>
<tr>
<td>5B.5</td>
<td>Effect of paclobutrazol on the number of nodes formed along quaternary branches in two different genotypes</td>
</tr>
<tr>
<td>5B.6</td>
<td>Effect of paclobutrazol on the number of nodes formed along quinary branches in two different genotypes</td>
</tr>
</tbody>
</table>
Effect of paclobutrazol on the number of quinary branches/quaternary branch for two different genotypes .. 283

Inflorescence numbers/m² on 3, 8, 14 and 19 January 1991 for the control plants ... 284

Analysis of variance for actual seed yield data from three harvests (25, 30 and 35 days after peak flowering) .. 285

Analysis of variance for actual seed yield data from two harvests (40 and 45 days after peak flowering) ... 285

Analysis of variance for the number of ripe inflorescences/m² from three harvests (25, 30 and 35 days after peak flowering) 286

Analysis of variance for the number of ripe inflorescences/m² from two harvests (40 and 45 days after peak flowering) 286