Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CHITINASES AND OTHER FACTORS AFFECTING INFECTION OF KIWIFRUIT BY *BOTRYTIS CINEREA*.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University Palmerston North New Zealand.

Kirstin V. Wurms
October 1996
Frontispiece: An infected kiwifruit pedicel with sporulation of *Botrytis cinerea*.

This thesis is dedicated to the three most inspirational women in my life, Una Blair Wurms, Winifred McDonald and Edith May McGillan, and to my partner and best friend, Darryl Wayne Marshall Cook.
This thesis examines the role of kiwifruit host resistance and, in particular, of kiwifruit chitinases, in preventing infection by *Botrytis cinerea*. The effects of various host and pathogen factors on disease incidence were studied in artificial inoculation trials. High inoculum loads and addition of yeast extract to spore suspensions significantly increased infection, and most rots were visible within 6-8 weeks of harvest. In contrast, the average time taken for symptoms to appear increased (8-12 weeks), and total infection decreased when fruit were harvested later in the season or exposed to a curing treatment (6-24 h at 20°C) following pedicel removal. These findings indicate that kiwifruit can develop postharvest resistance to *B. cinerea*.

A range of chitinase assays, including four colorimetric, two fluorometric, a viscometric and a radiometric assay, were evaluated and adapted for use in the kiwifruit-*B. cinerea* system. Most published methods proved too insensitive to quantify the levels of chitinase in this system (160-6400 ng solubilized substrate/minute/g of stem plug tissue). However, a radioassay resolved two-fold concentration differences and distinguished ng/min/g amounts of activity in plant extracts. For detection of chitinase activity in gels after isoelectric focusing, a highly sensitive gel overlay assay was used. This assay was also adapted for use in petri dishes to facilitate rapid, qualitative screening of large numbers of fractions generated in the process of protein purification. Exochitinase activity was assessed using *p*-nitrophenyl-β-D-N,N’-diacetylchitobiose as a substrate in a colorimetric assay.

Differences between plant and fungal chitinases were evaluated by measuring exo- and endochitinase activities in healthy and diseased regions on live and autoclaved leaves. Endochitinase activity was associated with the plant, since it was found in both healthy and diseased areas on leaves, but was absent in autoclaved tissue which had been subsequently inoculated with the fungus. Conversely, equivalent amounts of exochitinase activity were present in diseased lesions on live and autoclaved leaves, but were absent from uninfected areas, showing that all exochitinase activity was of fungal origin.
Enzyme activity was measured in the stem plug (picking scar wound and the underlying sclerified tissue), because this area was found to have higher chitinase and lower protease activity than the main body of the fruit. The initial level of endochitinase activity at harvest was not affected by fruit maturity, but subsequent increases in activity during coolstorage were most marked in later harvested, more mature fruit. Levels of chitinase in the stored fruit from four different harvests correlated with resistance to *B. cinerea*. Curing treatments (1-7 days at 20°C prior to coolstorage) significantly reduced infection and induced activity of a single constitutive basic (pI≈9) 30 kDa protein with putative chitinase activity, but did not significantly increase total chitinase activity. At least one basic and two acidic isoforms were present in uncured, uninoculated healthy tissue, and inoculation with spores of *B. cinerea* appeared to induce new basic and acidic isoforms.

Application of chitosan was evaluated as a potential technique for controlling stem end rot. Solubilization of chitosan required an acidic solvent, but use of this solvent without pH adjustment predisposed host tissue to disease. No chitosan treatment significantly decreased infection below the level found in the inoculated control, hence chitosan is considered unlikely to have commercial application.

Cation exchange and gel filtration chromatography were used to purify to apparent homogeneity a protein with associated chitinase activity from cured kiwifruit stem plugs. The N-terminal sequence of this protein did not resemble any known chitinases, but exhibited 65-72% amino acid identity with thaumatin-like (TL) proteins in barley and tobacco and 66% with zeamatin in maize. This represents the first record of a TL protein in kiwifruit. Further analysis of the extract by Western blotting indicated that the previously ascribed chitinase activity was most probably due to small levels of contaminant chitinases. Properties of TL proteins include enzyme inhibition and membrane permeabilization of fungal hyphae. In addition, some thaumatins are sweet tasting. Further investigation is required to determine whether this compound influences resistance and taste in kiwifruit.

Overall, the results from this study support the theory that chitinases are involved in kiwifruit resistance against *B. cinerea*, although the low level of induction relative to
other crops and slowness of the response suggest that they are not the primary defence mechanism.
ACKNOWLEDGEMENTS

This project has been possible only through the help and support of many people. I am extremely grateful to my competent and positive supervisors Drs. Peter Long, Siva Ganesh, Keith Sharrock and David Greenwood. Dr. Long has been an excellent chief supervisor and friend, who provided both invaluable advice through the course of my studies and a great sense of humour to help me through the tough times. Dr. Siva Ganesh performed miracles by translating statistics into English. Very special thanks to Dr. Sharrock for generous use of resources, equipment and lab space at HortResearch and for excellent editorial comments. Dr. Greenwood’s enthusiasm for science and willingness to help at any time has also been inspirational. Thanks also to all the staff at HortResearch, Mt Albert, especially Martin Heiffer for skilful photography. I extend my gratitude to the staff in the Plant Science Department at Massey University, particularly Hugh Nielsen, Lorraine Davis, Lois Mather and the secretaries for providing a helpful and friendly work environment.

I would like to express special appreciation to my fiancé and best friend, Darryl Cook, for his enormous contribution to this project. Darryl has provided constant encouragement and emotional support through the good times and the bad. He was a sounding board for many scientific ideas and his advice was always wise and valuable. I am also deeply grateful for his practical assistance, including entry of many references, production of DrawPerfect diagrams, technical help with experiments, loan of his car on numerous occasions for late night visits to the laboratory, and use of his computer. His love, support and companionship have been indispensable.

I am also deeply grateful to my whole family for always believing in me. Their support and confidence has given me motivation throughout my thesis. In particular, I would like to thank my caring and gentle mother, Una Wurms, who is role model for me now and in the future.

My gratitude also goes to many special friends, particularly Anne Morgan, Cathy Louden, Geraldine Canham, Kerry Smith, Caryl Skelton, Melanie Newfield, Carol
Stewart, Alison Gianotti, Tony Withers, Tessa Mills, Stephanie Parkes and Diane Webster for making life so much fun and for wonderful friendship. Thanks also to Christine Matthews for providing many opportunities to earn some extra cash, to all of my flatmates for providing a pleasant living environment and to members of my Church for their support and encouragement. I am also deeply grateful to God and Jesus Christ for providing all good things. My faith has made life a wonderful experience thus far.

This Ph.D research was supported by the New Zealand Vice Chancellors, C. Alma Baker, Helen Akers, Farmers Union, Graduate Assistance and Fruit Federation scholarship trusts, for which I am immensely grateful.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxxii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 KIWIFRUIT - BOTANICAL INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>1.2 ECONOMIC IMPORTANCE</td>
<td>1</td>
</tr>
<tr>
<td>1.3 NZ KIWIFRUIT INDUSTRY</td>
<td>2</td>
</tr>
<tr>
<td>1.3.1 Distribution</td>
<td>2</td>
</tr>
<tr>
<td>1.3.2 Orchard Management And Harvesting Practices</td>
<td>2</td>
</tr>
<tr>
<td>1.3.3 Postharvest Practices</td>
<td>4</td>
</tr>
<tr>
<td>1.3.4 Industry Losses</td>
<td>5</td>
</tr>
<tr>
<td>A Abiotic</td>
<td>5</td>
</tr>
<tr>
<td>B Biotic</td>
<td>6</td>
</tr>
<tr>
<td>1.4 BOTRYTIS CINEREA</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1 Taxonomy And Morphology</td>
<td>8</td>
</tr>
<tr>
<td>1.4.2 Host Range</td>
<td>8</td>
</tr>
<tr>
<td>1.5 BOTRYTIS CINEREA INFECTIONS OF KIWIFRUIT</td>
<td>9</td>
</tr>
<tr>
<td>1.5.1 Etiology And Symptoms Of Infection</td>
<td>9</td>
</tr>
<tr>
<td>1.6 CONTROL OF B. CINEREA ON KIWIFRUIT</td>
<td>12</td>
</tr>
<tr>
<td>1.7 COMPONENTS OF HOST RESISTANCE AND THEIR IMPORTANCE IN KIWIFRUIT/B. CINEREA INTERACTIONS</td>
<td>16</td>
</tr>
<tr>
<td>1.7.1 Physical Barriers</td>
<td>16</td>
</tr>
<tr>
<td>1.7.2 Antifungal Compounds</td>
<td>20</td>
</tr>
<tr>
<td>1.7.3 Pathogenesis Related Proteins Of Unknown Function</td>
<td>23</td>
</tr>
<tr>
<td>1.7.4 Enzymes</td>
<td>24</td>
</tr>
</tbody>
</table>
1.8 CHITINASE ... 26
1.8.1 Classification ... 26
 A Nomenclature .. 26
 B Genetic Classes ... 27
 i Class I ... 27
 ii Class II ... 28
 iii Class III .. 28
 iv Class IV ... 29
1.8.2 Endogenous Functions 29
1.8.3 Tracking Chitinases ... 34
1.9 OVERALL OBJECTIVES ... 34

2 GENERAL MATERIALS AND METHODS 36
2.1 FIELD TRIALS ... 36
 2.1.1 Harvest Details ... 36
 2.1.2 Treatment Application 36
 2.1.3 Inoculum Production 37
 2.1.4 Field Trial Controls 38
 2.1.5 Maturity Indicators 38
 2.1.6 Assessment Of Infection 38
2.2 LABORATORY EXPERIMENTS 38
 2.2.1 Preparation Of Crude Enzyme Extracts 39
 2.2.2 Classification Of Enzyme Extracts 41
 2.2.3 Preparation Of Substrates 41
 A Glycol chitin (1% (w/v), pH 4) 41
 B Regenerated chitin (pH 6) 42
 C Tritiated chitin ... 42
 2.2.4 Enzyme Activity Measurements 43
 A Colorimetric assay of Roberts & Selitrennikoff (1988) . 43
 B Viscometric assay ... 44
 C Calcofluor petri dish assay 48
 D Colorimetric assay of Boller et al. (1983) 49
E Radioactive assay of Molano et al. (1977) 52

2.2.5 Protein Estimation 53

2.2.6 Electrophoresis 54

A Electrophoresis equipment 54

B Gels, buffers, and protein markers 54

C Sample/standard preparation and application 55

D Running conditions 56

E Gel staining ... 57

F Rotofor .. 57

2.2.7 Lyophilisation 58

2.2.8 Protein Purification 58

A General information 58

B Buffer exchange 59

C Chromatography 59

2.2.9 Antibody Studies 60

A Enzyme linked immunosorbent assay (ELISA) 60

B Western blotting 61

2.3 STATISTICAL ANALYSIS 61

2.3.1 ANOVA And The Need To Transform Data 62

2.3.2 Multiple Comparison Tests 63

2.3.3 Standard Error Bars 63

2.3.4 Experimental Designs 65

A Completely randomized design (CRD) 65

B Randomized block design (RBD) 65

C Factorial ... 66

D Split plot .. 70

E Nested .. 70

F Repeated measures 71

3 HOST AND INOCULUM FACTORS AFFECTING DISEASE INCIDENCE RESULTING FROM ARTIFICIAL INOCULATION 72

3.1 INTRODUCTION 72

3.1.1 Why Artificial Inoculation? 72
3.1.2 The Effect Of Maturity 73
3.1.3 The Effect Of Plant Water Status 73
3.1.4 The Condition Of The Picking Wound 74
3.1.5 Nutrients At The Stem Scar 74
3.1.6 Silicon Application 74
3.2 OBJECTIVES ... 75
3.3 MATERIALS AND METHODS 75
 3.3.1 Experiment No. 1 75
 3.3.2 Experiment No. 2 77
 3.3.3 Experiment No. 3 78
 3.3.4 Experiment No. 4 79
 A Fresh picking wounds 79
 i Pedicel removal 79
 ii Cut pedicel 79
 iii Wounded scar 80
 B Old picking wounds 80
 3.3.5 Experiment No. 5 82
 3.3.6 Experiment No. 6 82
3.4 RESULTS .. 83
 3.4.1 Experiment No. 1 83
 3.4.2 Experiment 2 87
 3.4.3 Experiment 3 90
 3.4.4 Experiment 4 93
 A Fresh picking wounds 93
 B Old picking wounds 94
 3.4.5 Experiment 5 94
 3.4.6 Experiment 6 94
3.5 DISCUSSION ... 99
4 EXO- OR ENDOCHITINASES? 110
 4.1 INTRODUCTION 110
 4.1.1 Host Resistance In The Stem Plug 110
 4.1.2 Importance Of Chitinases In Kiwifruit Defence 110
4.1.3 Plant And Fungal Chitinases 111
4.1.4 Enzyme Assays .. 112

4.2 OBJECTIVES .. 112

4.3 MATERIALS AND METHODS .. 113

4.3.1 Experiments 1-3 .. 113

A Non-catalysed reaction (Experiment 1) 113
B Linearity tests (Experiments 2-3) 114

4.3.2 Experiment No. 4 .. 114

4.3.3 Experiment No. 5 .. 117

4.3.4 Experiment No. 6 .. 118

4.4 RESULTS .. 119

4.4.1 Experiments 1-3 .. 119

A Non catalysed reaction (Experiment 1) 119
B Linearity tests (Experiments 2-3) 119

4.4.2 Experiment No. 4 .. 119

A Leaf exochitinase activity .. 119
B Leaf endochitinase activity .. 124

4.4.3 Experiment No. 5 .. 124

4.4.4 Experiment No. 6 .. 124

A Stem plug exochitinase activity 124
B Stem plug endochitinase activity 124

4.5 DISCUSSION .. 124

5 ENDOCHITINASE ASSAY DEVELOPMENT 127

5.1 SECTION 1 - CALCOFLUOR PETRI DISH ASSAY 128

5.1.1 Introduction ... 128

5.1.2 Materials And Methods .. 128

A Linearity test ... 129
B Sensitivity versus resolution 129
i 2-5 h incubation ... 129
ii 5-48 h incubation ... 130

5.1.3 Results .. 130

A Linearity test ... 130
5.2 SECTION 2 - STAGES IN THE MODIFICATION OF THE COLORIMETRIC ASSAY OF BOLLER ET AL. (1983) 135

5.2.1 Introduction .. 135

A First and second incubations 135

B Reduction in variability .. 136

C Increasing sensitivity ... 136

5.2.2 Materials And Methods ... 136

A First and second incubations 137

i Length of the first incubation 137

ii Length of the second incubation 137

iii pH and temperature of the first incubation 138

iv Length and temperature of the second incubation ... 138

B Reduction in variability .. 138

i Heat stability of the substrate 138

ii Variability of snail gut enzyme batches 138

iii Variability of different mixing methods 138

C Increasing sensitivity ... 139

5.2.3 Results .. 139

A First and second incubations 139

i Length of the first incubation 139

ii Length of the second incubation 140

iii pH and temperature of the first incubation ... 140

iv Length and temperature of the second incubation ... 140

v Overall results from first and second incubation experiments 140

B Reduction in variability .. 142

i Heat stability of the substrate 142

ii Variability of snail gut enzyme batches 142
5.3 SECTION 3 - RADIOMETRIC ASSAY OF MOLANO ET AL. (1977)

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii</td>
<td>Variability of different mixing methods</td>
<td>142</td>
</tr>
<tr>
<td>iv</td>
<td>Summary of reduction in variability</td>
<td>142</td>
</tr>
<tr>
<td>C</td>
<td>Increasing sensitivity</td>
<td>142</td>
</tr>
</tbody>
</table>

5.3.1 Introduction

- **A** Assay optimisation
 - i. Length of incubation
 - ii. Temperature of incubation
 - iii. Suitability of selected conditions for measuring low and high chitinase activity

- **B** Quench curve correction

5.3.2 Materials And Methods

- **A** Assay optimisation
 - i. Length of incubation
 - ii. Temperature of incubation
 - iii. Suitability of selected conditions for measuring low and high chitinase activity

- **B** Quench curve correction

5.3.3 Results

- **A** Assay optimisation
 - i. Length of incubation
 - ii. Temperature of incubation
 - iii. Suitability of selected conditions for measuring low and high chitinase activity

- **B** Quench curve correction

5.4 SECTION 4 - ASSAY COMPARISONS

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>Comparison of the Boller et al. (1983), viscometric and Calcofluor assays</td>
<td>152</td>
</tr>
<tr>
<td>B</td>
<td>Comparison of the Boller et al. (1983) and Molano et al. (1977) assays</td>
<td>153</td>
</tr>
</tbody>
</table>

5.4.2 Materials and Methods

- **A** Comparison of the Boller et al. (1983), viscometric and Calcofluor assays

- **B** Comparison of the Boller et al. (1983) and Molano et al. (1977) assays

5.4.3 Results

- **A** Comparison of the Boller et al. (1983), viscometric and Calcofluor assays

- **B** Comparison of the Boller et al. (1983) and Molano et al. (1977) assays

- **C** Overall assay comparisons
5.5 DISCUSSION .. 156

6 CORRELATIVE EVIDENCE FOR THE ROLE OF CHITINASES IN
KIWIFRUIT DEFENCE AGAINST B. CINEREA 164
6.1 INTRODUCTION .. 164
 6.1.1 Collection Of Correlative Evidence 164
 6.1.2 Chitinase Levels And Fruit Maturity 165
 6.1.3 Chitinase Levels And Curing 165
 6.1.4 Use Of Chitosan As An Elicitor 165
 6.1.5 Chitinases In Storage 166
6.2 OBJECTIVES .. 167
6.3 MATERIALS AND METHODS 167
 6.3.1 Experiment No. 1 167
 6.3.2 Experiment No. 2 168
 6.3.3 Experiment No. 3 169
 6.3.4 Preparation For Chitosan Experiments 170
 6.3.5 Experiment No. 4 170
 6.3.6 Experiment No. 5 171
 6.3.7 Experiment No. 6 172
 6.3.8 Cautionary Note 173
 6.3.9 Experiment No. 7 173
6.3.10 Experiments 8-9 .. 174
 A Stem plug extracts from uncured fruit
 (Experiment 8) 174
 B Stem plug extracts from cured fruit
 (Experiment 9) 174
6.4 RESULTS ... 175
 6.4.1 Experiment No. 1 175
 6.4.2 Experiment No. 2 175
 6.4.3 Experiment No. 3 180
 6.4.4 Experiment No. 4 180
 6.4.5 Experiment No. 5 182
 6.4.6 Experiment No. 6 182
6.4.7 Experiment No. 7 .. 188
6.4.8 Experiment No. 8 .. 188
6.4.9 Experiment No. 9 .. 191
6.5 DISCUSSION .. 191

7 PROTEIN PURIFICATION 199
7.1 PART 1 - PRELIMINARY EXPERIMENTS 199
 7.1.1 Introduction ... 199
 A Optimisation of the extraction step 199
 i Choice of extraction buffer 199
 ii Importance of protease inhibition 199
 iii Efficiency of protein extraction 200
 B Subsequent purification steps 200
 7.1.2 Materials and Methods 200
 A Optimisation of the extraction step 201
 i Choice of extraction buffer 201
 ii Importance of protease inhibition 201
 iii Efficiency of protein extraction 202
 B Subsequent purification steps 202
 7.1.3 Results .. 203
 A Optimisation of the extraction step 203
 i Choice of extraction buffer 203
 ii Importance of protease inhibition 203
 iii Efficiency of protein extraction 206
 B Subsequent purification steps 206
7.2 PART 2 - PROTEIN PURIFICATION 210
 7.2.1 Introduction ... 210
 7.2.2 Materials And Methods 210
 A First Run ... 211
 B Second Run .. 212
 7.2.3 Results .. 213
 A First Run ... 213
 B Second Run .. 216
7.3 DISCUSSION .. 224

8 GENERAL DISCUSSION ... 230

REFERENCES .. 243

APPENDIX I - BUFFER RECIPES 275
APPENDIX II - ASSAY CALCULATIONS 281
APPENDIX III - ADDITIONAL SUBSTRATE RECIPES 286
APPENDIX IV - GEL ELECTROPHORESIS RECIPES 287
APPENDIX V - GEL STAINING PROTOCOLS 289
APPENDIX VI - SAMPLE SAS PROGRAMMES AND OUTPUT 290
APPENDIX VII - MEASUREMENT OF ENVIRONMENTAL PARAMETERS IN THE ARTIFICIAL INOCULATION EXPERIMENTS 310
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>6</td>
</tr>
<tr>
<td>2-1</td>
<td>62</td>
</tr>
<tr>
<td>3-1</td>
<td>90</td>
</tr>
<tr>
<td>3-2</td>
<td>93</td>
</tr>
<tr>
<td>3-3</td>
<td>106</td>
</tr>
<tr>
<td>4-1</td>
<td>119</td>
</tr>
<tr>
<td>5-1</td>
<td>132</td>
</tr>
<tr>
<td>5-2</td>
<td>134</td>
</tr>
<tr>
<td>5-3</td>
<td>152</td>
</tr>
<tr>
<td>5-4</td>
<td>153</td>
</tr>
</tbody>
</table>

1-1. Principal causes of kiwifruit losses in the 1991 season.

2-1. ANOVA of the effect of first incubation time on absorbance (raw data) in the Boller et al. (1983) assay.

3-1. Percentage infection (square root transformed means ± SEM) of fruit at four different maturities with three inoculum loadings, assessed after 12 weeks storage at 0 ± 0.3°C in 1993.

3-2. Percent infection (raw means ± SEM) of fruit harvested on 13 May and 19 May, averaged over harvest interval, assessed after 12 weeks coolstorage at 0 ± 0.3°C in 1992.

3-3. Effect of delays in pedicel removal, inoculation, and coolstorage on the incidence of rots developing in coolstorage in kiwifruit inoculated with *Botrytis cinerea* (1993). Percentage rots are presented with SEMs in parenthesis (Table reproduced from Poole & McLeod 1994.)

4-1. Increase in absorbance (mean ± SEM) in preinhibited enzyme and water controls in the Roberts & Selitrennikoff (1988) exochitinase assay following 2 h incubation at 37°C in 1992.

5-1. Chitinase activities (means ± SEM) of kiwifruit stem plug extracts, expressed as radial extension (mm) of enzyme-digested regions on glycol chitin plates after 2 and 5 h incubation at 37°C in 1994.

5-2. Chitinase activities (means ± SEM) of kiwifruit stem plug extracts, expressed as radial extension (mm) of enzyme-digested regions on 0.01, 0.05 and 0.1% glycol chitin plates after 5 and 48 h incubation at 37°C in 1994.

5-3. Percent counting efficiency (mean ± SEM) in heavily colour quenched and unquenched tritium labelled toluene, using uncured, inoculated, healthy extract (93/N/I/H) as a quench.

5-4. Kiwifruit stem plug extracts used in a comparison of the Boller et al. (1983) and Molano et al. (1977) assays.
TABLE	PAGE
5-5 | Kiwifruit stem plug extracts ranked in order of descending chitinase activity, as determined by measurements in the Boller et al. (1983), viscometric and Calcofluor assays in 1994, where rank 1 = highest measured activity and rank 6 = lowest activity measurement. 154
5-6 | Chitinase activities (means ± SEM) in kiwifruit stem plug extracts measured by the Boller et al. (1983) assay, viscometric and Calcofluor assays in 1994. 155
5-7 | Chitinase activities (means ± SEM) in kiwifruit stem plug extracts measured by the Boller et al. (1983) and Molano et al. (1977) assays, ranked from highest activity (rank=1) through to lowest activity (rank=5) in 1994. 155
5-8 | Ranking of four chitinase assays with regard to sensitivity, resolution, reliability and ease of use. 156
6-1 | Chitinase activity (mean ± SEM) in stem plug extracts of cured and uncured, uninoculated healthy fruit, after 9 weeks coolstorage at 0°C in 1994. 180
6-2 | Total protein (mean ± SEM) in stem plug extracts of cured and uncured, uninoculated healthy fruit, after 9 weeks coolstorage at 0°C in 1994. 180
6-3 | Chitinase activity (loge transformed means ± SEM) in various healthy and diseased stem plug extracts of cured, uninoculated and inoculated fruit, with and without the addition of acidic solvent and chitosan, after 6 weeks coolstorage at 0 ± 0.3°C in 1993. 188
6-4 | Chitinase activity (raw means ± SEM) in uncured, uninoculated, healthy 94/N/U/H kiwifruit stem plug extracts, as influenced by storage temperature (averaged over storage duration), assessed in 1994/1995. 191
7-1 | Efficiency of kiwifruit stem plug extraction as measured by specific activity of chitinase for four different extraction buffers in 1994. 204
7-2 | Specific activity of chitinase in kiwifruit stem plug and pericarp extracts as affected by sodium tetrathionate (NaTT) inhibition of actinidin, measured in 1994. 204
TABLE | PAGE
--- | ---
7-3 | Total chitinase activity, chitinase specific activity and total protein content of kiwifruit stem plug extracts after varying time lapses before removal of particulate matter, measured in 1994. 207
7-4 | Purification of kiwifruit chitinase activity in 1994. 214
7-5 | Sequence homology between a kiwifruit pathogenesis-related (PR) protein and other members of the PR-5 family. 221
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Diagrammatic representation of the annual work requirements on an established kiwifruit orchard in New Zealand. Sourced from Sale & Lyford (1990).</td>
</tr>
<tr>
<td>1-2</td>
<td>Life cycle of B. cinerea on kiwifruit. C = conidia, M = mycelia, A = ascospores. Arrows represent the dominant inoculum sources, based on systematic sampling of host tissues (on the ground and in the canopy) at key growth stages (flower opening, full bloom, petal fall, mid-fruit and harvest). Solid arrow = strong experimental evidence, broken arrow = no evidence to date. Information adapted from Elmer et al. (1993).</td>
</tr>
<tr>
<td>1-3</td>
<td>Components of host resistance.</td>
</tr>
<tr>
<td>2-1</td>
<td>A) Changes in the viscosity of glycol chitin solution over 40 minutes at 37°C in the presence or absence of kiwifruit chitinase. The reaction mixture in the viscometric assay comprised 400 μl of 1% (w/v) glycol chitin diluted 2.2x in pH 5 McIlvaine buffer, and 10 μl of crude chitinase extract or water. B) The relationship between enzyme concentration and decrease in viscosity, relative to the enzyme-free control.</td>
</tr>
<tr>
<td>2-2</td>
<td>Comparison of treatment means before (solid line) and after (dashed line) a loge transformation.</td>
</tr>
<tr>
<td>2-3</td>
<td>Mean yield as influenced by A) wheat cultivar and fertiliser concentration, B) wheat cultivar averaged over fertiliser concentration and C) fertiliser concentration averaged over wheat cultivar.</td>
</tr>
<tr>
<td>2-4</td>
<td>Mean yield as influenced by A) interaction between wheat cultivar and fertiliser concentration, and B) wheat cultivar averaged over fertiliser concentration.</td>
</tr>
<tr>
<td>2-5</td>
<td>Mean yield as influenced by interaction between wheat cultivar and fertiliser concentration.</td>
</tr>
<tr>
<td>3-1</td>
<td>Cumulative percent infection (raw data) in fruit collected from two vine positions on three harvest dates and A) left uninoculated, or B) inoculated with 1,000-125,000 B. cinerea spores per stem scar. Assessments were done after 4, 8 and 12 weeks storage at 0 ± 0.3°C in 1992.</td>
</tr>
</tbody>
</table>
FIGURE | PAGE
--- | ---
3-2 | Cumulative percent infection (raw data) in fruit collected from two vine positions on three harvest dates, and inoculated with A) 1,000, B) 5,000, C) 25,000 or D) 125,000 *B. cinerea* spores per stem scar, assessed after 4, 8 and 12 weeks storage at 0 ± 0.3°C in 1992. 85
3-3 | Percent infection (square root transformed) of fruit as influenced by inoculum loading nested within maturity and vine position, assessed after 12 weeks storage at 0 ± 0.3°C in 1992. Fruit were taken from VP1, vine position 1<1m from central leader, and from VP2, vine position 2>1m from central leader. LSD = least significant difference. The LSD bar applies to within-column comparisons only, owing to the hierarchical nature of the nested design. 86
3-4 | Cumulative percent infection (raw data) in fruit collected on three harvest dates and inoculated with A) no spores ("uninoculated"), B) 25,000 spores or C) 125,000 *B. cinerea* spores per stem scar, assessed after 4, 8 and 12 weeks storage at 0 ± 0.3°C in 1993. 16/6/93 data were not included in Fig. 3-4 because percent infection for this data was assessed after 12 weeks coolstorage only. 88
3-5 | Percent infection (square root transformed) of fruit as influenced by A) the interaction between fruit maturity and inoculum loading, B) maturity averaged over inoculum loading, and C) inoculum loading averaged over maturity, assessed after 12 weeks storage at 0 ± 0.3°C in 1993. a,b,c represent significant differences in Duncan’s Multiple Range test, (α=0.05). 89
3-6 | Cumulative percent infection (raw data) in fruit harvested at two hourly intervals on A) 13 May, and B) 19 May, assessed after 4, 8 and 12 weeks storage at 0 ± 0.3°C in 1992. 91
3-7 | Water potential (raw data) measured in megapascals, and percent infection (raw data) in fruit harvested on two separate days, assessed after 12 weeks storage at 0 ± 0.3°C in 1992. A) 13 May, percent infection, B) 13 May, water potential, C) 19 May, percent infection, and D) 19 May, water potential. LSD = least significant difference. 92
Cumulative percent infection (raw data) in fruit with fresh and old picking scar wounds, and four different time lapses before treatment application, assessed after 4, 8 and 12 weeks storage at 0 ± 0.3°C in 1992. A) fresh wound, pedicel removed, B) fresh wound, pedicel trimmed, C) fresh wound, drilled scar, and D) old wound, aged scar.

Experiment 4, part A. Percent infection (square root transformed) of fruit as influenced by A) time lapse before treatment application, averaged over type of wound treatment, and B) wound treatment, nested within time lapse before treatment application, assessed after 12 wk storage at 0 ± 0.3°C in 1992. LSD = least significant difference. The LSD bar in B) applies to within-column comparisons only.

Experiment 4, part B. Percent infection (square root transformed) of fruit as influenced by wound age, assessed after 12 weeks storage at 0 ± 0.3°C in 1992. LSD = least significant difference.

Cumulative percent infection (raw data) of fruit inoculated with three different nutrient-amended spore suspensions, and assessed after 4, 6, 10 and 12 weeks storage at 0 ± 0.3°C in 1992.

Sample sites for measurement of exo- and endochitinase activity in kiwifruit leaves. Area A = diseased inoculation site; Area B = leaf tissue immediately adjacent to the diseased lesion; Area C = healthy tissue remote from the lesion.

Linearity of p-nitrophenol absorbance (raw data) at 405 nm in the Roberts and Selitrennikoff (1988) assay, as affected by A) incubation time (hours) and B) enzyme concentration. Enzyme concentration is expressed as a percentage of undiluted, uncured, inoculated, diseased (92/N/I/D) kiwifruit stem plug extract.
Chitinase activity from three separate areas of autoclaved and live kiwifruit leaves, assessed in 1992. A) exochitinase (square root transformed) and B) endochitinase (log_e transformed). Exochitinase activity is expressed as nmol of p-nitrophenol released per minute per ml of crude extract. Endochitinase activity is expressed as percent decrease in viscosity relative to the enzyme-free controls. a,b represent significant differences in Duncan's Multiple Range test (α=0.05).

Exochitinase activity (raw data) of fruit in healthy and diseased stem plugs collected on three harvest dates in 1992 and not inoculated or inoculated (5,000 spores B. cinerea per stem scar), assessed after 12 weeks storage at 0 ± 0.3°C. Exochitinase activity is expressed as nmol of p-nitrophenol released per minute per ml of crude extract. a,b represent significant differences in Duncan's Multiple Range test (α=0.05).

Chitinase activity in healthy and diseased kiwifruit stem plugs, assessed after 0 h, 3 d and 6 wk storage at 0 ± 0.3°C in 1993. A) exochitinase (log_e transformed) and B) endochitinase (raw data). Enzyme-free controls show averaged background noise. Exo- and endochitinase activities are expressed as nmol of N-acetylglucosamine released per minute per ml of crude extract. LSD = least significant difference.

Relationship between area of glycol chitin substrate degradation (mm) and enzyme concentration in the Calcofluor assay after 24 h incubation at 37°C in 1993. Enzyme concentration is expressed as a percentage of undiluted, uncured, uninoculated, healthy kiwifruit stem plug extract (92/N/U/H).

Absorbance (raw data) of uncured, inoculated, diseased kiwifruit stem plug extract (92/N/I/D) in the Boller et al. (1983) assay, as influenced by A) first incubation time, B) first incubation temperature and C) second incubation time, measured in 1993. LSD = least significant difference. a,b,c represent significant differences in Duncan’s Multiple Range test (α=0.05).
Absorbance (square root transformed) at 585 nm in the Boller et al. (1983) assay, as affected by A) substrate heat stability, B) presence/absence of different batches of snail gut enzyme, and C) variability of different mixing methods, measured in 1993. *S. griseus* chitinase was used in A) and B), and uncured, inoculated, diseased kiwifruit stem plug extract (92/N/I/D) was substituted for *S. griseus* chitinase in C). The enzyme-free controls in A) and B) show averaged background noise. Batch 3 of snail gut enzyme was used in the "no 1st incubation" treatment in B). LSD = least significant difference.

Absorbance (raw data) of uncured, uninoculated, healthy kiwifruit stem plug extract (93/N/U/H) in the Boller et al. (1983) assay, as affected by A) interaction between enzyme concentration and type of substrate, B) enzyme concentration averaged over substrate type, and C) substrate type averaged over enzyme concentration, measured in 1994. Enzyme concentration is expressed as a percentage of undiluted 93/N/U/H extract. a,b,c represent significant differences in Duncan’s Multiple Range test ($\alpha=0.05$).

Number of disintegrations per minute (square root transformed) of uncured, inoculated, healthy kiwifruit stem plug extract (93/N/I/H) in the Molano et al. (1977) assay, as affected by A) incubation time averaged over enzyme concentration, and B) enzyme concentration averaged over incubation time, measured in 1994. Enzyme concentration is expressed as a percentage of undiluted 93/N/I/H extract. a,b,c represent significant differences in Duncan’s Multiple Range test ($\alpha=0.05$).

Number of disintegrations per minute (square root transformed) of uncured, inoculated, healthy kiwifruit stem plug extract (93/N/I/H) in the Molano et al. (1977) assay, as affected by A) interaction between enzyme concentration and temperature, and B) enzyme concentration averaged over temperature, measured in 1994. Enzyme concentration is expressed as a percentage of undiluted 93/N/I/H extract. LSD = least significant difference.
FIGURE PAGE

5-7 Relationship between enzyme concentration and number of disintegrations per minute (raw data) of low activity, uncured, inoculated, healthy kiwifruit stem plug extract (93/N/I/H) and high activity, cured, uninoculated, healthy (94/C/U/H) kiwifruit stem plug extracts in the Molano et al. (1977) assay, measured in 1994. Enzyme concentration is expressed as a percentage of undiluted 93/N/I/H or 94/C/U/H extract. 151

6-1 Chitinase activity (square root transformed) in uninoculated, healthy kiwifruit, assessed before and after 12 wk storage at 0 ± 0.3°C in 1993. Chitinase activity is expressed as ng of tritiated chitin solubilised per minute per ml of crude extract. LSD = least significant difference. 176

6-2 Chitinase activity (square root transformed) in healthy and diseased kiwifruit inoculated with 5,000 spores of B. cinerea per stem scar before storage, assessed before and after 12 wk storage at 0 ± 0.3°C in 1993. Chitinase activity is expressed as ng of tritiated chitin solubilised per minute per ml of crude extract. LSD = least significant difference. 177

6-3 Absorbance values (raw data) from ELISA tests of polyclonal sugar beet chitinase CH4 antibody against kiwifruit antigen. A) 31 July 1995, no replication, B) 2 August 1995, mean of two replicates per treatment. Antigen comprised crude, healthy, cured 94/C/U/H and uncured 94/N/U/H kiwifruit stem plug extracts. CH4 antibody was diluted 1000-fold in PBS-Tween. 178

6-4 Percent infection (square root transformed) of fruit after 12 wk storage at 0 ± 0.3°C in 1993, as influenced by A) inoculation, solvent and/or chitosan application (averaged over elicitation temperature), B) elicitation temperature (averaged over inoculation, solvent and/or chitosan application). LSD = least significant difference. 183

6-5 Relationship between chitosan concentration and percent infection (raw data) of fruit, after 12 wk storage at 0 ± 0.3°C in 1993. LSD = least significant difference. 184
Chitinase activity (log$_e$ transformed) of fruit, as influenced by inoculation, solvent and/or chitosan application, and after 0, 1, 2 or 3 days "curing" exposure to A) 0°C or B) 20°C. Stem plugs were extracted from the fruit 0-6 days after harvest. Chitinase activity is expressed as ng of tritiated chitin solubilised per minute per ml of crude extract. ↓ = end of curing period.

Chitinase activity (log$_e$ transformed) of fruit, as influenced by inoculation, solvent and/or chitosan application, and after 0, 1, 2 or 3 days "curing" exposure to A) 0°C or B) 20°C. Stem plugs were extracted from the fruit 0-42 days after harvest. Only data from healthy stem plug extracts are presented. Chitinase activity is expressed as ng of tritiated chitin solubilised per minute per ml of crude extract. ↓ = end of curing period.

Percent infection (raw data) of fruit assessed after 12 wk storage at 0 ± 0.3°C in 1994, as influenced by A) solvent type (averaged over solvent pH adjustment and chitosan application), B) solvent pH adjustment and chitosan application (averaged over solvent type). a,b,c,d represent significant differences in Duncan’s Multiple Range test (α=0.05).

Chitinase activity (raw data) in cured, uninoculated, healthy 94/C/U/H kiwifruit stem plug extracts as influenced by A) storage duration (averaged over storage temperature), B) storage temperature (averaged over storage duration), assessed in 1994/1995. Chitinase activity is expressed as ng of tritiated chitin solubilised per minute per ml of crude extract. LSD = least significant difference.

Actinidin activity of cured 94/C/U/H kiwifruit pericarp and stem plug extracts with and without sodium tetrathionate (NaTT) protease inhibitor, as measured by percentage increase in absorbance at 340 nm over time, in 1994.

Schematic diagram of corresponding chitinase activities (shaded areas) in the Rotofor fractions of diseased 92/N/I/D kiwifruit stem plug extract, as detected by Calcofluor staining of an overlay gel with a glycol chitin substrate. Dashed line indicates position of applicator strip.
Schematic diagram of chitinase activity (shaded areas) in Rotofor fractions of healthy 92/N/U/H kiwifruit stem plug extract, as detected by Calcofluor staining of an overlay gel with glycol chitin as a substrate. Std, pi standards (1 μl); 1, 2, 3 ... 18, 19, 20, fractions collected after electrofocusing in the Rotofor, where fraction 1 was closest to the Rotofor anode, through to fraction 20 which was adjacent to the cathode. Rotofor fractions were applied as 10 μl aliquots to each well. Dashed line indicates position of applicator strip.

Elution profiles and chitinolytic activity of chromatography fractions of cured 94/C/U/H kiwifruit stem plug extract. A) Econo-Pac S cation exchange, B) SEC-S3000 gel filtration. Chitinase activity is expressed as ng of tritiated chitin solubilised per minute per ml of extract.

Elution profiles from various stages of protein purification using cured 94/C/U/H kiwifruit stem plug extract. Fractions with chitinase activity were identified by the Calcofluor petri dish assay. A) Econo-Pac S cation exchange, B) SEC-S3000 gel filtration of "CHa", C) SEC-S3000 gel filtration of "CHb".

N-terminal amino acid sequence comparisons between a kiwifruit thaumatin-like (TL) protein and other TL proteins. CHb (ii), thaumatin-like protein from kiwifruit stem plug extract; PRR1, tobacco pathogenesis-related protein PRR1; PRR2, tobacco pathogenesis-related protein PRR2; THHR, barley pathogenesis-related protein fragment THHR; ZEAM, maize zeamatin fragment; AP24, tomato pathogenesis-related protein fragment AP24. Amino acids from position 1 up to a maximum position of 29 in CHb(ii), THHR, ZEAM and AP24 are aligned with amino acids in positions 26 to 54 in PRR1 and PRR2. Positions with identical residues in all proteins are marked with asterisks, and conserved positions (amino acid substitutions that are unlikely to alter function) with + signs.
LIST OF PLATES

<table>
<thead>
<tr>
<th>PLATE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Symptoms of Botrytis cinerea stem end rot on kiwifruit. External symptoms (right hand fruit) comprise a darkening of infected fruit tissue that starts at the stem end and advances with a sharply defined front towards the distal end. Infection has progressed about halfway through the fruit in the picture. Internal symptoms (left hand fruit) are the glassy water soaked appearance, initially green but changing to brown, and the mushy texture of the diseased tissue.</td>
</tr>
<tr>
<td>2-1</td>
<td>Longitudinal section through a kiwifruit showing the stem plug - an area comprising the stem scar (created by pedicel removal), and the underlying pin of woody tissue.</td>
</tr>
<tr>
<td>2-2</td>
<td>Stainless steel mortar and pestle used in preparation of enzyme extracts. One to three kiwifruit stem plugs were placed in the mortar, and the pestle was positioned on top then struck with a hammer to crush the tissue.</td>
</tr>
<tr>
<td>2-3</td>
<td>Close-up of the Haake 001-1926 viscometer showing the position of a gold ball bearing (arrowed) moving through liquid in an inverted syringe. The time taken for the bearing to descend 2 cm between the two green lights on the viscometer was recorded in milliseconds.</td>
</tr>
<tr>
<td>2-4</td>
<td>The complete viscometer system. Temperature was maintained at a constant equilibrium by circulating water from a temperature-controlled water bath through the viscometer via rubber hosing. Readings from the viscometer were transferred directly to a computer at 30 second intervals.</td>
</tr>
<tr>
<td>2-5</td>
<td>Glycol chitin petri dish assay for endochitinase activity. Test samples were placed in 30 μl wells punched into agar containing the glycol chitin substrate. After incubation to allow for enzymic digestion of the substrate (typically 5 h at 37°C), the plates were stained with Calcofluor white. Glycol chitin degraded areas were visible as dark circles against a fluorescent blue background. Dark rings surrounding the two wells in the bottom left hand corner of the plate indicate that the samples in these wells have chitinase activity.</td>
</tr>
</tbody>
</table>
Removal of the top 3-4 mm of the stem plug with a 5 mm diam. drill bit.

Western analysis of proteins in crude, cured and uncured kiwifruit stem plug extracts, treated with CH4 antibody raised against a sugar beet basic chitinase. Lane 1, 12.5-fold concentrate of uncured 94/N/U/H extract; lane 2, original uncured extract; lane 3, 12.5-fold concentrate of cured 94/C/U/H extract; lane 4, original cured extract; lane 5, molecular weight standards. Each lane contained 5 µl of extract. CH4 antibody was diluted 500-fold in PBS-Tween.

Total proteins and corresponding chitinase activities of cured and uncured crude kiwifruit stem plug extracts as detected by silver staining on a pH 3-10 isoelectrofocusing polyacrylamide gel (A) and Calcofluor staining of the associated overlay gel with a glycol chitin substrate (B). Lanes 1-2, pI standards; lanes 3-4, replicate uncured 94/N/U/H extracts; lanes 5-6, replicate cured 94/C/U/H extracts.

Silver stained pH 3-10 IEF gel of total proteins in Rotofor fractions of diseased 92/N/I/D kiwifruit stem plug extract. Std, pI standards (1 µl); C, crude unfocused 92/N/I/D extract; 1, 2, 4 ... 18, 19, 20, fractions collected after electrofocusing in the Rotofor, where fraction 1 was closest to the Rotofor anode, through to fraction 20 which was adjacent to the cathode. Rotofor fractions were applied as 10 µl aliquots to each well.

Total protein and corresponding chitinase activities of cured 94/C/U/H kiwifruit stem plug extract after fractionation during protein purification. Proteins on a pH 3-10 IEF polyacrylamide gel were silver stained (A) and chitinase activity in the glycol chitin overlay gel was detected by Calcofluor staining (B). Lane 1, pI standards (1 µl); lane 2, crude cured 94/C/U/H extract; lanes 3-6, 4 µl samples of concentrated 94/C/U/H extract after separation on cation exchange and gel filtration columns; lane 3, unbound chitinase; lane 4, bound chitinase fraction CHa (ii); lane 5, bound chitinase fraction CHb (i); lane 6, bound chitinase fraction CHb (ii).
Coomassie stained SDS-PAGE of total proteins in cured 94/C/U/H kiwifruit stem plug extract after fractionation by HPLC on an Econo-Pac S cation exchange column. Lane 1, unbound chitinase (CH) eluted at 3-10 min; lane 2, unbound CH eluted at 11-20 min; lane 3, bound CHa eluted at 27-30 min; lane 4, bound CHb eluted at 31-36 min; lane 5, molecular weight standards.

Silver stained SDS-PAGE of total proteins in crude and purified cured 94/C/U/H kiwifruit stem plug extract. Lane 1, molecular weight standards; lane 2, crude extract; lane 3, ~5 μg of fraction CHb (ii) recovered from the central peak (14 min) of gel filtration chromatography on a SEC-S3000 HPLC column following adsorption to an Econo-Pac S cation exchange column.

Western analysis of proteins in various chitinase preparations treated with CH2 and SP antibodies raised against sugar beet basic and acidic chitinase. Lanes 1 and 6, molecular weight standards; lane 2, partially purified bean chitinase; lane 3, purified kiwifruit chitinase = fraction CHb (ii); lane 4 uncured 94/N/U/H crude extract; lane 5, cured 94/C/U/H crude extract. Each lane contained ~5 μg of protein. CH2 and SP antibodies were diluted 500-fold in PBS-Tween.
LIST OF ABBREVIATIONS

aa amino acid
ANOVA analysis of variance
AR analytical reagent
BCAs biological control agents
CRD completely randomized design
DMAB dimethylaminobenzaldehyde
DTT dithiothreitol
ELISA enzyme linked immunosorbent assay
GlcNAc N-acetylglucosamine
GRPs glycine-rich proteins
HPLC high performance liquid chromatography
HRGPs hydroxyproline-rich glycoproteins
IEF isoelectric focusing
LR laboratory reagent
LSD Fisher’s least significant difference
LSMeans least squares means
MES 2-(N-morpholino)ethanesulphonic acid
MWCO molecular weight cut off
NaOAc sodium acetate
NaTT sodium tetrathionate
PAGE polyacrylamide gel electrophoresis
PAL phenylalanine ammonia lyase
6-PAP 6-pentyl-α-pyrene
PBS-Tween phosphate buffered saline-Tween 20
PGIPs polygalacturonase-inhibitor proteins
PR pathogenesis-related
PVP polyvinylpyrrolidone
PVPP polyvinylpolypyrrolidone
RBD randomized block design
rh relative humidity
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>reverse osmosis</td>
</tr>
<tr>
<td>SA</td>
<td>sulfosalicylic acid</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N′,N′-tetramethyl-ethylenediamine</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
<tr>
<td>TL</td>
<td>thaumatin-like</td>
</tr>
<tr>
<td>TMV</td>
<td>tobacco mosaic virus</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>TSS</td>
<td>total soluble solids</td>
</tr>
<tr>
<td>UDA</td>
<td>Urtica dioica agglutinin</td>
</tr>
<tr>
<td>VP</td>
<td>vine position</td>
</tr>
<tr>
<td>WGA</td>
<td>wheat germ agglutinin</td>
</tr>
</tbody>
</table>