Role of Calcium and Mechanical Damage in the Development of Localised Premature Softening in Coolstored Kiwifruit

A dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University

Ivan John Davie

1997
This thesis is dedicated to Nigel, Cliff and Nagin.

My thanks for the opportunity they provided, patience shown, motivation given and standard of excellence set.

"...know the truth and the truth will set you free."
Preharvest, harvest, and postharvest factor(s) were examined to identify the causes of premature quality loss during long term coolstorage of kiwifruit (*Actinidia deliciosa*). Investigation centred around the role of mechanical damage and calcium in the development of softening disorders, including soft patches (localised soft areas on fruit surface), premature softening, and low temperature breakdown (LTB) during storage.

Kiwifruit were vulnerable to compression and impact from harvest onwards, with damage usually being expressed after a period of coolstorage. Physical damage normally just affected the fruit tissue in direct contact with the applied force. Impact damage, and to a lesser extent compression damage, depended on the size of the force and firmness of fruit when damaged. As kiwifruit softened, their susceptibility to soft patch development as a result of physical damage increased whereas the likelihood of flesh fracture in response to impact declined. These changes are attributed to the change in nature of the flesh, which is ‘brittle’ at harvest and ‘viscoelastic’ after softening. Physical damage to coolstored kiwifruit caused a slight drop in final firmness whereas there was no effect on firmness if it occurred at harvest.

Fruit with softening disorders consistently had lower calcium contents (about 12% less) than equivalent healthy fruit. Fruit with soft patches had a high phosphate content, low dry matter, and at harvest, a low soluble solids content. A causative role for calcium in soft patch development was demonstrated by preharvest calcium treatments that elevated calcium content of the harvested fruit. Other orchard factor(s) were probably the cause of a weaker relationship between calcium content at harvest and storage behaviour of fruit. Although firmness at harvest declined with later picking, after coolstorage, fruit harvested more mature had a higher firmness and lower incidence of LTB. Symptoms for LTB were consistent with chilling injury whereas soft patches appeared to be due to localised premature senescence and not low temperature.

A conceptual model of key factor(s) which cause the initiation and development of softening disorders in kiwifruit is proposed. Implications of this model for further investigation of these phenomena and for commercial handling of fruit are discussed. Further development of this model to produce a predictive model of fruit storage potential would require further characterisation of other important influences in storage behaviour.
I mention the following people which may go some way to express my thanks and appreciation for the contribution they made to the completion of this thesis.

My supervisors, Prof Nigel H. Banks, Dr Clifford J. Studman and Dr Nagin Lallu for their help in design, construction and completion of this thesis.

To the New Zealand Kiwifruit Marketing Board for their financial support of projects and stipends. The many kiwifruit growers who made their time, orchards, packhouses, and fruit available for setting up and running of experiments.

To Massey University and its people who are dedicated to provide the opportunity and environment for education and research. Staff and students within the Department of Plant Science, the Plant Growth Unit, and Fruit Crops Unit.

Thanks to Anthony for his friendship. To all past and present flatmates of 116 Cuba street, such as Elana, Leanne, Sharn and Cory. Thanks to the "family" at the Good News Apostolic church for their support and humour over the years. To Mr and Mrs Yeoman for their friendship and support.

I would also like to acknowledge the help and moral support I received from my parents (Betty and Jack), brother (Craig), and sister (Suzanne). Thanks to Mandy, for the number of times she put my thesis first and herself second.

Finally, and most importantly my thanks go to the Banks family, for the time they sacrificed being with Nigel while he was helping me complete this thesis.
Table of Contents

Dedication page .. ii
Abstract ... iii
Acknowledgements .. iv
Contents .. v
List of tables ... xii
List of figures .. xiv
Abbreviations ... xix

Chapter 1
General introduction ... 1
1.1 BACKGROUND .. 1
1.2 SCOPE .. 3
1.3 REFERENCES .. 4

Chapter 2
Softening of kiwifruit: literature review ... 5
2.1 ONTOGENETIC DEVELOPMENT ... 5
2.1.1 Normal pattern of kiwifruit development ... 5
2.1.2 Preharvest changes in kiwifruit composition .. 5
2.1.3 Physiological processes associated with softening ... 6
2.2 FACTOR(S) AFFECTING KIWIFRUIT SOFTENING .. 7
2.2.1 Time ... 7
2.2.2 Turgor ... 8
2.2.3 Temperature .. 9
2.2.3.1 Physical effects of temperature .. 10
2.2.3.2 Physiological effects of temperature ... 11
2.2.4 Ethylene ... 12
2.2.4.1 Endogenous .. 12
2.2.4.2 Exogenous ... 14
2.2.5 Light ... 14
2.2.6 Maturity ... 15
2.2.7 Mechanical damage ... 15
Chapter 3

Compression damage in kiwifruit 35

3.1 INTRODUCTION 37

3.2 MATERIALS AND METHODS 38

3.2.1 Fruit 38

3.2.2 Experimental design 38

3.2.3 Assessment 39

3.2.4 Mineral analysis 40

3.2.5 Data analysis 41

3.3 RESULTS 41

3.3.1 Compression effects on area of soft patches 41

3.3.2 Storage effects on area of soft patches 41

3.3.3 Variation in area of soft patches under different compression loads 42

3.3.4 Variation in area of soft patches between orchard lines 42

3.3.5 Firmness 42

3.3.6 Calcium 43

3.4 DISCUSSION 44

3.4.1 Compression 44

3.4.2 Control fruit 46

3.4.3 Firmness 46

3.4.4 Calcium 48

3.5 CONCLUSIONS 48
Table of Contents

3.6 ACKNOWLEDGEMENTS .. 48
3.7 REFERENCES .. 49
3.8 TABLES .. 50
3.9 FIGURES .. 51

Chapter 4

Impact damage in kiwifruit .. 56

4.1 Abstract .. 57
4.ii Keywords .. 57
4.1 INTRODUCTION .. 58
4.2 MATERIALS AND METHODS 59
 4.2.1 Fruit .. 59
 4.2.2 Experiment 1: effect of impact energy 60
 4.2.3 Experiment 2: effect of storage on response to impact 61
 4.2.4 Assessment .. 62
 4.2.5 Data analysis .. 62
4.3 RESULTS ... 63
 4.3.1 Experiment 1: effect of impact energy 63
 4.3.2 Experiment 2: effect of storage on response to impact 65
4.4 DISCUSSION .. 66
4.5 CONCLUSIONS .. 68
4.6 ACKNOWLEDGEMENTS 68
4.7 REFERENCES .. 69
4.8 FIGURES .. 70

Chapter 5

Soft patch development in kiwifruit: effects of grading damage and packaging .. 75

5.i Abstract .. 76
5.ii Keywords .. 76
5.1 INTRODUCTION .. 77
5.2 MATERIALS AND METHODS 78
 5.2.1 Fruit .. 78
 5.2.2 Experiment 1: grading 78
 5.2.3 Experiment 2: packaging 79
 5.2.4 Transportation and storage 79
 5.2.5 Assessment .. 80
 5.2.6 Data analysis .. 80
5.3 RESULTS ... 80
 5.3.1 Experiment 1: grading 80
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2 Experiment 2: packaging</td>
<td>81</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>81</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>84</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>84</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>84</td>
</tr>
<tr>
<td>FIGURES</td>
<td>86</td>
</tr>
</tbody>
</table>

Chapter 6

Grader damage to kiwifruit after controlled atmosphere storage 89

6.i Abstract 90
6.ii Keywords 90
6.1 INTRODUCTION 91
6.2 MATERIALS AND METHODS 92
 6.2.1 Fruit 92
 6.2.2 Experimental design 93
 6.2.2.1 Experiment 1 93
 6.2.2.2 Experiment 2 93
 6.2.3 Transportation 94
 6.2.4 Assessment 95
 6.2.5 Mineral analysis 95
 6.2.6 Data analysis 97
6.3 RESULTS 97
 6.3.1 Experiment 1 97
 6.3.2 Experiment 2 98
6.4 DISCUSSION 99
6.5 CONCLUSIONS 102
6.6 ACKNOWLEDGEMENTS 103
6.7 REFERENCES 103
6.8 TABLES 105
6.9 FIGURES 107

Chapter 7

Preharvest manipulation of kiwifruit calcium levels 109

7.i Abstract 110
7.ii Keywords 110
7.1 INTRODUCTION 111
7.2 MATERIALS AND METHODS 113
 7.2.1 Fruit 113
Chapter 8

Soft patches and low temperature breakdown in kiwifruit: development in coolstorage 130

8.i Abstract .. 131
8.ii Keywords 131
8.1 INTRODUCTION 132
8.2 MATERIALS AND METHODS 134
 8.2.1 Fruit 134
 8.2.2 Experimental Design 134
 8.2.3 Assessment 134
Table of Contents

8.2.3.1 Firmness and soluble solids content at harvest 134
8.2.3.2 Firmness, soluble solids content, soft patches and low temperature breakdown after storage . 135
8.2.4 Mineral analysis ... 135
8.2.5 Data analysis ... 135
8.3 RESULTS .. 136
 8.3.1 Experiment 1 ... 136
 8.3.1.1 Soft patches ... 136
 8.3.1.2 Low temperature breakdown 136
 8.3.1.3 Firmness ... 136
 8.3.1.4 Soluble solids content .. 137
 8.3.1.5 Calcium ... 137
 8.3.2 Experiment 2 ... 137
 8.3.2.1 Soft patches and low temperature breakdown 137
 8.3.2.2 Firmness and soluble solids content 138
 8.3.2.3 Calcium ... 138
8.4 DISCUSSION .. 139
8.5 CONCLUSIONS .. 141
8.6 ACKNOWLEDGEMENTS ... 141
8.7 REFERENCES ... 141
8.8 TABLE ... 143
8.9 FIGURES ... 144

Chapter 9

General discussion ... 148

9.1 INTRODUCTION ... 148
9.2 KEY FRUIT ATTRIBUTES, HANDLING AND STORAGE 150
 9.2.1 Calcium ... 150
 9.2.2 Phosphate ... 152
 9.2.3 Carbohydrate .. 152
 9.2.4 Maturity ... 153
 9.2.5 Compression ... 153
 9.2.6 Impact .. 154
 9.2.7 Vibration ... 156
 9.2.8 Grading .. 157
 9.2.9 Packaging .. 157
 9.2.10 Water loss ... 158
 9.2.11 Ethylene .. 159
 9.2.12 Temperature .. 159
 9.2.13 Time .. 160
9.3 CONCEPTUAL MODEL .. 160
 9.3.1 Soft patches .. 161
Table of Contents

9.3.2 Premature softening of the whole fruit 164
9.3.3 LTB .. 165

9.4 IMPLICATIONS OF MODEL .. 165
9.4.1 Flowering ... 165
9.4.2 Early fruit growth ... 166
9.4.3 Fruit maturation ... 169
9.4.4 Harvest .. 171
 9.4.4.1 Fruit attributes 171
 9.4.4.2 Initial handling when harvested 174
9.4.5 Grading .. 176
 9.4.5.1 At harvest .. 176
 9.4.5.2 After CA storage 177
9.4.6 Packing .. 177
9.4.7 Bulk storage .. 178
9.4.8 Coolstorage .. 178
9.4.9 Condition checking .. 179
9.4.10 Export .. 180
9.4.11 Market .. 181
9.4.12 Consumer ... 182

9.5 CONCLUSIONS .. 183
9.6 REFERENCES .. 184
9.7 TABLES .. 187
9.8 FIGURES .. 190
List of Tables

Chapter 2

General introduction

Table 2.1 Different growth phases associated with kiwifruit development (Pratt & Reid 1974). 32

Chapter 3

Softening of kiwifruit: literature review

Table 3.1 Mean Ap and percentage rejects (averaged over orchard lines and storage periods) of kiwifruit with and without compression at: (i) contact site between fruit; (ii) fruit surface outside the contact site; and (iii) total area of fruit. 50

Table 3.2 Mean Ap (mm²; averaged over orchard lines with and without compression during storage in pipes) at: (i) contact site between fruit; (ii) remainder of fruit surface; and (iii) total area of kiwifruit. 50

Chapter 6

Grader damage to kiwifruit after controlled atmosphere storage

Table 6.1 Overall mean final firmness (ffinal), area of soft patches (Afinal), and percentage of rejects caused by the presence of soft patches for graded and control (not graded) kiwifruit after storage in CA at 0°C for Experiment 1. After grading, fruit were further stored for 7 weeks air coolstorage and 1 week simulated shelf-life; data are averaged over orchard lines (experimental unit = collection of 6 trays from 1 grading treatment). 105

Table 6.2 Mean calcium, phosphate, and dry matter contents of healthy, population (random sample), and soft patch affected kiwifruit averaged over orchard lines for control fruit in Experiment 1 (experimental unit = 2 subsamples from 33 fruit in 1 control (not graded) tray from 1 orchard line). 105

Table 6.3 Mean finitial (before grading) and ffinal (after being graded) of kiwifruit, stored for 7 weeks at 0°C and 1 week at 20°C, Afinal (area of soft patches) and rejects for grading treatments in Experiment 2. Fruit had previously been stored for 20 weeks in CA storage and then 2 weeks air storage at 0°C. Each finitial observation is the mean of 72 fruit. Each ffinal, Afinal, and Rejects observation is the mean of 792 fruit. Treatments were T: top layer of bin; B: bottom layer of bin; C: control; G: graded; Gm: modified grader; G16: fruit at 16°C, graded; C16: fruit at 16°C, control; G0: fruit at 0°C, graded; C0: fruit at 0°C, control. 105
List of Tables

Chapter 8

Soft patches and low temperature breakdown in kiwifruit: development in coolstorage

Table 8.1 Mean \(f \) (firmness) and soluble solids content (ss) at harvest, and after 20 weeks coolstorage mean \(f \), ss, \(A^{19} \), and \(Ca^{2+} \) (calcium concentration) for 3 orchards averaged over 3 storage temperatures and 3 harvest maturities for Experiment 1. Each \(f \) and ss value is the mean of 324 fruit. Each \(A^{19} \) value is the mean of 972 fruit. Each \(Ca^{2+} \) value is the mean of 36 fruit.

Chapter 9

General discussion

Table 9.1 Symptoms and exacerbating factor(s) associated with premature senescence of kiwifruit as a result of: A, physically induced soft patches; B, physiologically induced soft patches; C, rapid softening of whole kiwifruit; or D, the development of low temperature breakdown (LTB).

Table 9.2 Mean calcium contents of soft patch or healthy fruit amongst kiwifruit from 3 different populations in 3 different experiments.

Table 9.3 Sensory qualities of ripened kiwifruit.
Chapter 2

Softening of kiwifruit: literature review

Figure 2.1 Diagrammatic representation of softening in kiwifruit, where: A, is the lag phase; B, is the period of accelerated softening; and C, is the period of softening deceleration. .. 33

Figure 2.2 Relationship between temperature and storage life of fruit (Fidler et al. 1973). Curve A, is a fruit that has an extended storage life as temperature is lowered until the tissue freezes. Curves B and C, are for fruit that have differing levels of susceptibility to chilling injury (likely to be of subtropical and tropical in origin, respectively), in which storage life peaks and then decreases as temperature is lowered. .. 34

Chapter 3

Compression damage in kiwifruit

Figure 3.1 Experimental arrangement of fruit placed in pipes which exposed them to compression for a particular storage period due to the weight of fruit above them. In the 'no compression' treatments, pipes were stored horizontally. .. 51

Figure 3.2 Mean A_p at the contact site of individual fruit at different positions (p) in vertically (compression treatment) and horizontally (control) stored pipes during: A, LC (late coolstorage); and B, SL (simulated shelf-life) storage periods averaged over orchard lines. Fruit were assessed after a total storage period of 30 weeks at 0°C. Lines fitted to data for the compression treated fruit were: A, $A_p = 98 \pm 41.1 - (3.1 \pm 0.75) p$; $r^2 = 0.35$; and B, $A_p = 392 \pm 74.9 - (11 \pm 1.4) p$; $r^2 = 0.70$. Symbols represent means of 32 fruit. ... 52

Figure 3.3 Firmness (f) of individual fruit at different positions in pipes for compression treatments for: A, LC (late coolstorage); and B, SL (simulated shelf-life) storage treatments averaged over orchard lines assessed after a total storage period of 30 weeks at 0°C. Symbols represent means of 32 fruit. ... 53

Figure 3.4 Relationship between A_p of different orchard lines of fruit and their firmness (f) for: A, the entire fruit surface; and B, the area outside contact site, averaged across compression and storage treatments assessed after a total storage period of 30 weeks at 0°C (fitted equations are $A_p = 190 \pm 18.4 - (12 \pm 3.6) f$; $r^2 = 0.64$ and $A_p = 89 \pm 6.4 - (6 \pm 2.1) f$; $r^2 = 0.61$, respectively). Symbols represent means of 330 fruit. ... 54

Figure 3.5 Relationship between mean A_p at the contact site of fruit exposed to compression and firmness (f) of non-compressed controls for orchard lines assessed after a total storage period of 30 weeks at 0°C (fitted equation is $A_p = 173 \pm 14.6 - (10 \pm 3.1) f$; $r^2 = 0.62$). Symbols represent means of 165 fruit. ... 56
Chapter 4

Impact damage in kiwifruit

Figure 4.1 A, Mean A' (area of soft patches at the impact site); and B, mean A^7 (area of soft patches on the total fruit surface), plotted against impact energies for impacts onto kiwifruit from 0 through 0.08 to 1.6 J at harvest. Fruit were assessed after 19 weeks at 0°C, with or without simulated shelf-life (SED = 18 and 26, respectively) averaged over orchard lines. Symbols represent the means of 128 fruit. 70

Figure 4.2 Impact (1.6 J) at harvest to fruit with damage symptoms (whitening of flesh; right hand fruit) that stained blue-black (left hand fruit) in the presence of iodine due to unconverted starch after 27 weeks coolstorage at 0°C. 71

Figure 4.3 Mean percentage of kiwifruit rejectable because of area of soft patches at the impact site and over the total fruit surface, following impacts with different impact energies applied at harvest and assessed after 19 weeks storage at 0°C (averaged over orchard lines and simulated shelf-life treatment). Symbols represent the means of 256 fruit. 72

Figure 4.4 Change in: A, firmness (f); and B, mean A' assessed after 27 weeks storage at 0°C as functions of time of impact (t; impact energies 0.94 J; $r^2 = 0.93$; fitted equation for A' is $A = 192 \pm 2.9 + (2.9 \pm 0.39) t$. Symbols represent the means of 38 and 114 fruit for f and A', respectively. 73

Figure 4.5 Mean A' (area of soft patches at the impact site) assessed after 27 weeks storage at 0°C, plotted against mean firmness (f) of fruit when impact during coolstorage. Symbols represent the means of 38 and 114 fruit for f and A', respectively. 74

Chapter 5

Soft patch development in kiwifruit: effects of grading damage and packaging

Figure 5.1 Percentage of rejectable (R_j) fruit on the basis of A^p after 19 weeks in coolstorage following different grader treatments plotted as a function of severity of grading (sg) averaged over orchard lines ($r^2 = 0.95$; equation for fitted line $R_j = 1.6 \pm 0.34 + (0.36 \pm 0.042) sg$; each symbol represents the mean of 792 fruit). 86

Figure 5.2 A, Mean A^p; and B, percentage of rejectable fruit on the basis of A^p for different packaging types after 19 weeks in coolstorage and averaged across 8 orchard lines of fruit (each symbol represents the mean of 792 fruit; cardboard single layer tray (card), wooden single layer tray (wood), tri-pack bottom layer fruit (tpb), tri-pack middle layer (tpM), and tri-pack top layer (tpT)). 87
Chapter 6

Grader damage to kiwifruit after controlled atmosphere storage

Figure 6.1 A, Relationship between final firmness (f_{final}) and initial firmness (f_{initial}) of graded and control (not graded) kiwifruit after 7 weeks at 0°C and 1 week 20°C storage; and B, difference between f_{initial} and f_{final} values (Δf) for graded and control fruit against f_{final} averaged across fruit within orchard lines for Experiment 1 (equations for fitted lines for: A, $f_{\text{final}} = 7.3 \pm 1.29 + (0.074 \pm 0.0193) f_{\text{initial}}$; $r^2 = 0.28$; and B, $\Delta f = -7.3 \pm 1.29 + (0.93 \pm 0.019) f_{\text{final}}$; $r^2 = 0.98$; Symbols represent means of 33 fruit). Fruit had previously been stored for 20 weeks CA and then 2 weeks air storage at 0°C. ... 107

Figure 6.2 Mean A^p of control (not graded) kiwifruit plotted against mean f_{final} assessed after 7 weeks at 0°C and 1 week at 20°C for orchard lines for Experiment 1 (equation for fitted line $A^p = 614.4 \pm 62 - (47.0 \pm 0.97)f$; $r^2 = 0.56$; symbols represent means of 33 fruit). Fruit had previously been stored for 20 weeks CA and then 2 weeks air storage at 0°C. ... 108

Chapter 7

Preharvest manipulation of kiwifruit calcium levels

Figure 7.1 Change in: A, mean calcium concentrations ([Ca], mmol/kg, $r^2 = 0.94$, equation of line is [Ca] = $8.8 \pm 0.41 + (0.40 \pm 0.070) d$); B, mean A^c outside the impact site ($r^2 = 0.85$, equation of line is $A^c = 85 \pm 9.5 - (5 \pm 1.6) d$); and C, mean rejects ($R^c$) due to soft patches on fruit outside the impact site ($r^2 = 0.81$, equation of line is $R^c = 20 \pm 2.3 - (1.1 \pm 0.38) d$) for differing number of calcium dips (d) assessed after coolstorage at 0°C for 24 weeks. Each data point is the mean value of 320 fruit. 128
List of Figures

Figure 7.2 Effects of differing number of oil applications (ap) applied to whole vines: A, permeance to water vapour ($P_{H,O}$) after the 6th application ($P_{H,O}$; $r^2 = 0.97$; equation of fitted line $P_{H,O} = 21.2 \pm 0.73 + (1.4 \pm 0.16) \, ap$) and at harvest ($P_{H,O}$; $r^2 = 0.99$; equation of fitted line $P_{H,O} = 16.8 \pm 0.41 + (1.44 \pm 0.091) \, ap$), respectively; B, firmness at harvest (f; $r^2 = 0.74$; equation of fitted line is $f = 85 \pm 2.3 - (1.2 \pm 0.52) \, ap$); C, harvest soluble solids content (ss; $r^2 = 0.98$; equation of fitted line is $ss = 7.81 \pm 0.062 - (0.15 \pm 0.014) \, ap$); and D, mean calcium of harvested fruit ([Ca], mmol/kg; $r^2 = 0.83$; equation of fitted line, [Ca] = 9.3 ± 0.38 - (0.26 ± 0.084) \, ap) assessed after 26 weeks at 0°C. Each data point is the mean value of 30 fruit.

Chapter 8

Soft patches and low temperature breakdown in kiwifruit: development in coolstorage

Figure 8.1 A, A^{op}; and B, rejects due to LTB in kiwifruit harvested from 3 orchard lines 3 different times, assessed after 20 weeks storage and averaged over storage temperatures for fruit from Experiment 1. Each symbol represents the mean of 324 fruit.

Figure 8.2 Incidence of rejects due to LTB in kiwifruit for 3 orchard lines in 3 storage temperatures and assessed after 20 weeks storage averaged over time of harvest for fruit from Experiment 1. Each symbol represents the mean of 324 fruit.

Figure 8.3 Incidence of rejects due to LTB in kiwifruit stored at 3 temperatures from 3 different times of harvest and assessed after 20 weeks storage averaged over 3 orchard lines for fruit from Experiment 1. Each symbol represents the mean of 324 fruit.

Figure 8.4 Mean A^{op} on kiwifruit after 20 weeks storage plotted against the product of harvest soluble solids content (ss) and calcium concentrations ([Ca], mmol/kg) for 6 orchard lines averaged over harvest times and storage temperatures from Experiment 2. Symbols represent means of 108 fruit. Fitted equations for line A^{op} = $225 \pm 19 - (3.0 \pm 0.46) \, ss \times [Ca]$; $r^2 = 0.78$.

Chapter 9

General discussion

Figure 9.1 A conceptual model of factor(s) which initiate and develop: physically induced soft patches (A); physiologically induced soft patches (B); premature softening of the whole fruit (C); and low temperature breakdown (LTB; D) in kiwifruit.
Figure 9.2 Implications of the model for the initiation and development of premature fruit senescence due to soft patches, rapid softening of whole fruit, and low temperature breakdown (LTB) for the management of kiwifruit during the preharvest, harvest, and storage phases to minimise loss of fruit quality. 191
List of Abbreviations

Abs ... absorbance
A^e ... area of soft patches on fruit excluding those
at the impact site (m^2; Sections 4.2.4, 7.2.2.2)
A^f ... area of soft patches at the impact site (m^2; Sections 4.2.4, 7.2.2.2)
ap ... number of oil applications
A^p ... area of soft patches (m^2; Sections 3.2.3, 5.2.5, 6.2.4, 7.2.5.2, 8.2.3.2)
A^t ... area of soft patches on the total fruit surface (m^2; Section 4.2.4)
B ... treatment: fruit taken from the bottom layer of bin (Section 6.2.2.2)
C ... treatment: control fruit, not graded (Section 6.2.2.2)
CA ... controlled atmosphere
card .. treatment: fruit held in a cardboard single layer tray (Section 6.2.2.2)
cp ... phosphorous concentration (mmol/kg)
C^o ... treatment: fruit not graded with a flesh at 0°C (Section 6.2.2.2)
C^u ... treatment: fruit not graded with a flesh at 16°C (Section 6.2.2.2)
d ... number of calcium dips
DT ... treatment: compression when fruit transported by truck (450 km: Section 3.2.2)
E^f ... differences between initial and final firmness (N)
f ... firmness (N)
f^initial .. initial firmness (N)
f^final ... final firmness (N)
g ... gravitational constant (m/s^2)
G ... treatment: graded (Section 6.2.2.2)
G^m ... treatment: modified grader (Section 6.2.2.2)
G^o ... treatment: fruit graded with flesh at 0°C (Section 6.2.2.2)
G^u ... treatment: fruit graded with flesh at 16°C (Section 6.2.2.2)
h ... hours
h^f ... drop height (m)
LC ... treatment: compression during late coolstorage (Section 3.2.2)
LTB ... Low temperature breakdown
m ... mass (kg)
NZKMB .. New Zealand Kiwifruit Marketing Board
p ... individual fruit positions within pipes
P^\text{H}_2O .. permeance to water vapour (mol/s·m^2·Pa)
R^f ... percentage of rejectable fruit due to soft patches outside the impact site (%)
R^i ... percentage of rejectable fruit due to soft patches (%)
s^g ... severity of grading
SL ... treatment: compression during simulated shelf-life (Section 3.2.2)
SP^contact ... soft patches present on fruit at the contact site (m^2; Section 3.2.3)
SP^outside ... soft patches present on fruit, but not at the contact site (m^2; Section 3.2.3)
s^s ... soluble solids (%)
t ... time (weeks)
T ... treatment: fruit taken from the top layer of bin (Section 6.2.2.2)
TP^b ... treatment: fruit held in tri-pack bottom layer (Section 5.2.2)
TP^m ... treatment: fruit held in tri-pack middle layer (Section 5.2.2)
TP^t ... treatment: fruit held in tri-pack top layer (Section 5.2.2)
wood .. treatment: fruit held in wooden single layer tray (Section 5.2.2)