Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE KINETICS OF MILD ACID HYDROLYSIS OF GLUTEN

AND THE FUNCTIONAL PROPERTIES OF THE MODIFIED PROTEINS

AT VARIOUS LEVELS OF HYDROLYSIS

A Thesis presented in partial fulfilment of the requirements

for the degree of Doctor of Philosophy in Biotechnology

at Massey University

JOHN JOSEPH HIGGINS

1988
ABSTRACT

Gluten is the mixture of proteins remaining in wheat flour after starch and water soluble components have been extracted by washing. Its unique dough forming properties are due to the structure of the proteins. A feature of the protein is the high glutamine content, about 30% of the total amino acids. A number of studies have shown that gluten's properties of insolubility and water-binding can be substantially modified by mild acid hydrolysis. The principal effect of the mild acid treatment is to hydrolyse the amide side chain of glutamine such that the amide group is replaced by a carboxyl group. In addition, it is known that hydrolysis of peptide bonds can have a large influence on the functional properties of proteins.

The aims of this study were to determine the kinetics of the acid catalysed deamidation and peptide bond hydrolysis reactions, and to comment on the resultant changes in functional properties.

A statistically designed experiment was used to determine the effect of temperature, hydrogen ion concentration and gluten concentration. An initial rate analysis of the results showed that reactions could be described by equations of the form:

\[
\text{Rate of amide bond hydrolysis} = k_1 [\text{Amide}][H^+] \\
\text{and Rate of peptide bond hydrolysis} = k_2 [\text{Peptide}][H^+] \\
\text{where } k = k_0 e^{-\frac{E_a}{R} \cdot \frac{1}{T}}
\]

A stoichiometric analysis of the experimental data confirmed that hydrogen ions were consumed in both reactions.

A numerical solution was developed to predict the extent of reaction with time. A computer program incorporating the solution was used to simulate the reaction and test the
solution. The simulation results appeared to overestimate the progress of the reaction with time.

A series of ten gluten powders, hydrolysed to different extents was prepared at small pilot scale. The composition of the samples was determined and compared with the extent of hydrolysis predicted by the reaction simulation. Reasonable agreement was achieved.

A selection of the functional properties of the prepared samples was examined.

The quantity of alkali required to dissolve each preparation to the extent of its solubility at pH 7.6 increased markedly with the extent of hydrolysis due to the additional carboxyl groups requiring neutralization.

The flavour of each preparation was examined. A cereal flavour was found to decrease with the extent of hydrolysis. A lingering bitter flavour was found to increase with the extent of hydrolysis.

The solubility of all preparations at pH 7.6 in 0.1 M phosphate buffer increased with the extent of treatment so that the most hydrolysed samples were almost completely soluble. No (significant) difference was found between freeze dried and spray dried samples. Samples prepared without dialysis showed no solubility difference from those prepared with dialysis at a similar extent of hydrolysis.

The hydrophobicity of the preparations was measured using two different fluorescent probes and was found to increase with the extent of hydrolysis. The emulsion-forming properties of the preparations were found to depend on the oil used in the test, as would be expected if hydrophobicity was equivalent to the hydrophile lipophile balance, which is commonly used to classify emulsifying agents. The preparations did not, however, show the additivity properties of emulsifiers. It was also shown
that only the soluble portion of the preparations was responsible for emulsion formation.

The possibility of achieving deamidation of gluten using the enzymes peptidoglutaminase I and II was examined. No activity against gluten or partially hydrolysed gluten was found.
I am deeply grateful to the New Zealand Dairy Research Institute for giving me the opportunity to complete this work. I am indebted to many of my colleagues there for assistance with various aspects of this work and many helpful discussions. Particular mention must be made of Julie Anderson for her patient assistance with statistical design and interpretation.

My supervisors Professor Earle, Dr Maddox and Dr Sanderson have provided thoughtful guidance and shown commendable patience.

My family too have been tolerant throughout.
INTRODUCTION AND LITERATURE REVIEW

1.1 Wheat gluten
1.1.1 Wheat gluten preparation
1.1.2 Chemistry of gluten
1.1.3 Functional properties of gluten
1.1.4 Solubility of gluten

1.2 Acid hydrolysis
1.2.1 Determination of kinetic data
1.2.2 Acid hydrolysis of amides
1.2.3 Acid hydrolysis of proteins
1.2.4 Acid hydrolysis of amide bonds in proteins
1.2.5 Acid hydrolysis of peptide bonds in proteins
1.2.6 Acid hydrolysis and pyrrolidone carboxylic acid
1.2.7 Review of previous studies of acid hydrolysis of gluten

1.3 Glutaminase enzymes

1.4 Functionality of proteins
1.4.1 Definition and review
1.4.2 Review of previous studies of functionality of acid hydrolysed gluten
1.5 Emulsions and emulsifiers 37
1.5.1 Definition and review 37
1.5.2 The emulsion stabilizing properties of proteins 40
1.5.3 The use of the hydrophilic-lipophilic balance (HLB) concept in food systems 45
1.5.4 Proteins and the HLB concept 45
1.5.5 Criticism of previous studies 46
1.5.6 Hypothesis for test in this work 48

1.6 Statement of research objectives 48

2 EXPERIMENTAL MATERIALS AND METHODS 49

2.1 Materials 49
2.2 Measurement of pH 49
2.3 Preparation of buffer solutions 50
2.4 Preparation of sodium dodecyl sulphate (SDS) solutions 50
2.5 Determination of ammonia 50
2.6 Determination of N-terminal amino groups 52
2.6.1 Determination using fluorescamine 52
2.6.2 Determination using 2,4,6-trinitrobenzene sulfonic acid (TNBS) 54
2.7 Determination of total and non-protein nitrogen 55

3 EXPERIMENTS TO VERIFY ANALYTICAL METHODS 56

3.1 The effect of SDS in solubilization of gluten 56
3.1.1 Experimental method 56
3.1.2 Results 57
3.1.3 Discussion 57

3.2 The effect of buffer pH on the determination of N-terminal amino groups using fluorescamine 59
3.2.1 Experimental method 59
3.2.2 Results 59
3.2.3 Discussion 59

3.3 The effect of buffer concentration and the use of SDS on the determination of N-terminal amino groups using fluorescamine 60
3.3.1 The effect of buffer concentration on the fluorescence response of a standard sample 60
3.3.1.1 Experimental method 60
3.3.1.2 Results 60
3.3.2 The effect of buffer concentration on the fluorescence response of gluten with fluorescamine 62
3.3.2.1 Experimental method 62
3.3.2.2 Results 62
3.3.2.3 Discussion 62
3.3.3 Further experiments with buffer concentration on the fluorescence response from gluten 65
3.3.3.1 Experimental method 65
3.3.3.2 Results 65
3.3.3.3 Discussion 65
3.3.4 The effect of buffer concentration, mercaptoethanol and centrifugation on the fluorescence response from gluten 65
3.3.4.1 Experimental method 67
3.3.4.2 Results 67
3.3.4.3 Discussion 67

3.4 Conclusions from experiments described in Sections 3.1 to 3.3 70

3.5 Measurement of gluten concentration using fluorescamine 70
3.5.1 Experimental method 70
3.5.2 Results 71
The effect of ammonia on the determination of N-terminal amino groups using fluorescamine

Experimental method

Results

Discussion

The determination of N-terminal amino groups of gluten using trinitrobenzene sulfonic acid (TNBS)

Experimental method

Results

Discussion

The effect of ammonia on the determination of N-terminal amino groups using TNBS

Experimental methods

Results

Discussion

Conclusions from experiments described in sections 3.5 to 3.8

EXPERIMENTAL DETERMINATION OF THE KINETICS OF ACID HYDROLYSIS OF GLUTEN

General approach

Preliminary experiments

Determination of maximum gluten concentration

Determination of the specific volume of gluten

Determination of the heating rate in reaction bottles

Monitoring of gluten quality for the duration of the experiments

Characterization of pH electrode

Experimental design for hydrolysis experiments

Experimental methods

Acid hydrolysis of gluten
4.4.2 Analysis of hydrolysate

4.5 Results of hydrolysis experiments
4.5.1 Presentation of data
4.5.2 Discussion of some unexpected features

4.6 Analysis of experimental error in hydrolysis experiments

4.7 Determination of initial concentration of peptide and amide bonds
4.7.1 Determination of total available peptide bonds
4.7.2 Determination of the level of free amino groups in gluten
4.7.3 Determination of total available amide bonds
4.7.4 Discussion of initial concentration determinations

4.8 Analysis of experimental design and kinetic models
4.8.1 Initial rate determination
4.8.1.1 Determination of initial rate of amide bond hydrolysis
4.8.1.2 Determination of initial rate of peptide bond hydrolysis
4.8.1.3 Determination of initial rate of hydrogen ion consumption
4.8.2 Kinetic analysis of the experimental data
4.8.2.1 Analysis of the ammonia rate data
4.8.2.2 Analysis of the N-terminal amino group rate data
4.8.2.3 Analysis of the hydrogen ion consumption rate data
4.8.3 An alternative form of analysis for some data
4.8.4 Conclusions from results of kinetic analysis

4.9 Simulation of reaction using kinetic equations
4.10 An analysis of the data of Vickery (1922) 174

4.11 Further discussion of kinetics experiments 182

5 PREPARATION OF TEST SAMPLES FOR FUNCTIONAL ANALYSIS 186

5.1 Choice of sample preparation conditions 186
5.2 Choice of sample recovery conditions 186
5.3 Sample preparation details 189
5.4 Analysis of process samples 192
5.5 Comparison of experimental and simulated hydrolysis 198
5.6 Discussion 207

6 FUNCTIONAL PROPERTIES OF TEST SAMPLES 208

6.1 Determination of the alkali requirement of hydrolysed glutens 208
6.1.1 Introduction 208
6.1.2 Method 208
6.1.2.1 Method test 209
6.1.2.2 Variation of method for two samples 211
6.1.3 Results 211
6.1.4 Discussion of results 211

6.2 Flavour analysis of sample preparations 211

6.3 Determination of solubility of sample preparations 214
6.3.1 Determination method 214
6.3.2 Results 218

6.4 Further analysis of alkali requirement and degree of amide bond hydrolysis results 218
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Determination of emulsification properties</td>
<td>220</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Experimental methods</td>
<td>220</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Confirmation of the required HLB values of oils</td>
<td>225</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Emulsification properties of sample preparations</td>
<td>225</td>
</tr>
<tr>
<td>6.6</td>
<td>Determination of hydrophobicity of sample preparations</td>
<td>249</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Introduction</td>
<td>249</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Test methods</td>
<td>253</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Results</td>
<td>254</td>
</tr>
<tr>
<td>6.7</td>
<td>Discussion of results of functional property testing</td>
<td>256</td>
</tr>
<tr>
<td>6.8</td>
<td>Conclusions</td>
<td>263</td>
</tr>
<tr>
<td>7</td>
<td>AN ASSESSMENT OF THE POTENTIAL OF PEPTIDOGLUTAMINASES 1 AND II IN DEAMIDATION OF GLUTEN</td>
<td>264</td>
</tr>
<tr>
<td>7.1</td>
<td>Basis of investigation</td>
<td>264</td>
</tr>
<tr>
<td>7.2</td>
<td>Method of investigation</td>
<td>264</td>
</tr>
<tr>
<td>7.3</td>
<td>Results</td>
<td>265</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td>269</td>
</tr>
<tr>
<td>8</td>
<td>BIBLIOGRAPHY</td>
<td>271</td>
</tr>
<tr>
<td>TABLE</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>Amino acid composition of gluten, gliadin and glutenin</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Research needed to develop an understanding of the physico-chemical basis of functionality</td>
<td>33</td>
</tr>
<tr>
<td>1.3</td>
<td>Functional properties of proteins in food applications</td>
<td>34</td>
</tr>
<tr>
<td>1.4</td>
<td>Some of the factors influencing the functional properties of proteins in food</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Protein solubility for each gluten source and diluent</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>The effect of buffer pH on the determination of N-terminal groups using fluorescence determined with fluorescamine</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>The effect of buffer concentration on the fluorescence response from a standard sample</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>The effect of buffer concentration on the fluorescence response from gluten</td>
<td>63</td>
</tr>
<tr>
<td>3.5</td>
<td>The effect of buffer concentration on the fluorescence response for gluten samples (no SDS in determination buffer)</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>The effect of buffer concentration, mercaptoethanol and centrifugation on the fluorescence response of gluten</td>
<td>68</td>
</tr>
</tbody>
</table>
3.7 The effect of the concentration of the determination buffer on the fluorescence response of gluten
3.8 The effect of the volume of HCl added to quench the reaction with TNBS
4.1 Chemical analysis of the gluten used for determination of hydrolysis kinetics
4.2 Water absorption measurements on the stored gluten used in experiments for determination of hydrolysis kinetics
4.3 pH measurements obtained in pH electrode characterization experiments
4.4 Selected levels for each independent variable
4.5 Experimental design for determination of the kinetics of acid hydrolysis of gluten
4.6 Quantities of gluten, water and hydrochloric acid to give required concentrations in a total volume of 5.0 ml
4.7 Summary of results of hydrolysis experiment, run 1
4.8 Summary of results of hydrolysis experiment, run 2
4.9 Summary of results of hydrolysis experiment, run 3
4.10 Summary of results of hydrolysis experiment, run 4
4.11 Summary of results of hydrolysis experiment, run 5
4.12 Summary of results of hydrolysis experiment, run 6
4.13 Summary of results of hydrolysis experiment, run 7
4.14 Summary of results of hydrolysis experiment, run 8
4.15 Summary of results of hydrolysis experiment, run 9
4.16 Summary of results of hydrolysis experiment, run 10
4.17 Summary of results of hydrolysis experiment, run 11
4.18 Summary of results of hydrolysis experiment, run 12
4.19 Summary of results of hydrolysis experiment, run 13
4.20 Summary of results of hydrolysis experiment, run 14
4.21 Summary of results of hydrolysis experiment, run 15
4.22 Quantities calculated in hierarchical analysis of variance
4.23 Values calculated by analysis of variance of ammonia determination data
4.24 Values calculated by analysis of variance for determination of N-terminal amino groups using fluorescamine

4.25 Coefficient of variation and confidence intervals for sources of variation in determination of ammonia and N-terminal amino groups using fluorescamine

4.26 Peak heights and equivalent concentration of L-glutamic acid resulting from total hydrolysis of duplicate samples of gluten

4.27 Absorbance (A_{340}) and concentration of ammonia resulting from complete deamidation of gluten

4.28 Revision of initial reaction rate estimates for some ammonia evolution data

4.29 Reaction rates and reaction rate coefficients calculated from initial rate measurements

4.30 Peptide bond hydrolysis rates by alternative analysis

4.31 Determination of the mean initial pH for alternative analysis

4.32 Calculation of reaction rate constants for alternative analysis

4.33 Regression equations for analysis of amide bond hydrolysis rate data. Ammonia determination data is tested for fit to various models
4.34 Regression equations for analysis of peptide bond hydrolysis rate data. Data from the determination of N-terminal amino groups using fluorescamine is tested for fit to various models

4.35 Regression equations for analysis of hydrogen ion consumption rate data. The rate data is tested for fit to various models and regression against other rate data

4.36 Initial concentrations and reaction rate constants for simulation of run 6

4.37 Combinations of reaction rate constants and activity correction factors for test of reaction simulation

4.38 The data of Vickery (1922)

4.39 Reaction rate coefficients calculated from the data of Vickery (1922)

5.1 Design and actual reaction conditions for the preparation of hydrolysed gluten powders

5.2 Analysis of liquid samples during hydrolysate preparation

5.3 Analysis of gluten before hydrolysis

5.4 Analysis of hydrolysed gluten powders

5.5 Determination of the degree of amide bond hydrolysis of spray dried samples by complete deamidation and also by ammonia determination of stored liquid hydrolysates
5.6 Determination of the degree of amide bond hydrolysis of freeze dried samples determined by complete deamidation

5.7 Determination of the degree of amide bond hydrolysis of samples prepared without dialysis

5.8 Determination of the degree of peptide bond hydrolysis of spray dried samples by determination of N-terminal amino groups

5.9 Initial conditions and reaction rate coefficients for simulation of product preparation reactions

6.1 Determination of the alkali requirement of gluten at various reaction temperatures

6.2 Variation in alkali requirement determination procedure for samples 12 and 13

6.3 Sample codes of sample preparations for flavour analysis

6.4 Alkali additions, measured pH and nitrogen solubility of sample preparations in 0.1M phosphate buffer

6.5 Regression analysis of alkali requirement and degree of amide bond hydrolysis

6.6 Results of Pearce-Kinsella test for determination of required HLB of oils

6.7 Results of micro-haematocrit test for determination of required HLB of oils
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>Results of Pearce-Kinsella test for determination of emulsification properties of sample preparations</td>
<td>229</td>
</tr>
<tr>
<td>6.9</td>
<td>Results of micro-haematocrit test for determination of emulsification properties of sample preparations</td>
<td>230</td>
</tr>
<tr>
<td>6.10</td>
<td>Analysis of samples prepared for emulsions with constant soluble total nitrogen</td>
<td>234</td>
</tr>
<tr>
<td>6.11</td>
<td>Results of Pearce-Kinsella test for determination of emulsification properties of sample preparations with constant soluble total nitrogen</td>
<td>236</td>
</tr>
<tr>
<td>6.12</td>
<td>Results of micro-haematocrit test for determination of emulsification properties of sample preparations with constant soluble total nitrogen</td>
<td>237</td>
</tr>
<tr>
<td>6.13</td>
<td>Results of Pearce-Kinsella test for determination of emulsification properties of sample preparations with constant soluble total nitrogen</td>
<td>239</td>
</tr>
<tr>
<td>6.14</td>
<td>Results of Pearce-Kinsella test, pH and soluble total nitrogen determinations for determination of emulsification properties of sample preparations at various levels of sample</td>
<td>244</td>
</tr>
<tr>
<td>6.15</td>
<td>Results of Pearce-Kinsella test for determination of emulsification properties of mixtures of sample preparations</td>
<td>251</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.16</td>
<td>Sediment and total nitrogen (TN) values of supernatants of preparations dispersed with and without SDS</td>
<td>255</td>
</tr>
<tr>
<td>6.17</td>
<td>Surface hydrophobicity of supernatants of sample preparations dispersed without SDS</td>
<td>257</td>
</tr>
<tr>
<td>7.1</td>
<td>The evolution of ammonia when N-acetyl-L-glutamine, carbobenzoxy-L-glutamine, gluten and sample were reacted with peptidoglutaminases I and II</td>
<td>266</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1.1 Extent of gluten deamidation after 30 minutes reaction (data from various authors) 25
1.2 Effect of temperature on deamidation reaction (data from various authors) 27
1.3 Emulsification properties of deamidated gluten (data from Tables 2 and 4 of Wu (1975)) 47
3.1 The fluorescence response obtained with gluten and fluorescamine 72
3.2 The fluorescence response obtained with L-glu and L-glu plus gluten and fluorescamine 73
3.3 The fluorescence response for ammonia with fluorescamine 75
3.4 The fluorescence response for ammonia with fluorescamine 76
3.5 The reaction of L-glu and L-glu plus gluten with 2, 4, 6 - trinitrobenzene sulfonic acid (TNBS) 80
3.6 The effect of ammonia on the determination of N-terminal amino groups using TNBS 82
3.7 A correction for the effect of ammonia on the determination of N-terminal amino groups using TNBS 83
4.1 The rate at which bottle contents are heated to bath temperature 88
4.2 Illustration of acid error data for pH electrode

4.3 Illustration of experimental data from Run 6

4.4 Illustration of experimental data from Run 12

4.5 Plot of peak height against sample concentration to check for linearity in measurement of total peptide bonds available for acid hydrolysis of gluten

4.6 Ammonia evolution with time for initial rate estimation for Run 7

4.7 Ammonia evolution with time for initial rate estimation for Run 8

4.8 Ammonia evolution with time for initial rate estimation for Run 6

4.9 Peptide bond hydrolysis at reduced gluten concentration with 2M acid

4.10 Peptide bond hydrolysis at reduced gluten concentration with 0.2M acid

4.11 Peptide bond hydrolysis at reduced gluten concentration with 0.02M acid

4.12 Reaction rate coefficients for amide bond hydrolysis plotted to show that the rate data can be represented by Arrhenius' Law

4.13 Reaction rate coefficients for peptide bond hydrolysis plotted to show that the rate data can be represented by Arrhenius' law
4.14 Measured hydrogen ion activity
4.15 Peptide bond hydrolysis for Run 6
4.16 Amide bond hydrolysis for Runs 2 and 9
4.17 Amide bond hydrolysis for Run 6
4.18 Ammonia data from repetition runs of experimental design used for test of reaction simulation
4.19 N-terminal amino group determination data from repetition runs of experimental design used for test of reaction simulation
4.20 Hydrogen ion activity data from repetition runs of experimental design used for test of reaction simulation
4.21 The amide bond hydrolysis data of Vickery (1922)
4.22 The peptide bond hydrolysis data of Vickery (1922)
5.1 Predicted and experimental levels of peptide bond hydrolysis for product preparations
5.2 Predicted and experimental levels of amide bond hydrolysis for product preparations
5.3 Predicted and experimental levels of peptide bond hydrolysis for product preparations
6.1 Alkali requirement levels of acid hydrolysed gluten samples
6.2 Effect of increasing levels of acid hydrolysis on the burning/bitter attribute of gluten 215
6.3 The relationship between alkali requirement and solubility for acid hydrolysed gluten samples 219
6.4 The relationship between alkali requirement and degree of amide bond hydrolysis for sample preparations 222
6.5 Differences in apparent optimum degree of amide bond hydrolysis for emulsification with different oils using the Pearce-Kinsella test 231
6.6 Differences in apparent optimum degree of amide bond hydrolysis for emulsification with different oils using the microhaematocrit test 232
6.7 Separation under gravity of castor oil emulsified with sample preparations 233
6.8 The effect of the degree of amide bond hydrolysis on emulsification properties of sample preparations with constant soluble total nitrogen as determined by the Pearce-Kinsella test 238
6.9 Separation under gravity of castor oil emulsified with different levels of sample 241
6.10 Results of Pearce-Kinsella test for determination of emulsification properties of sample preparation at various levels of sample 242
6.11 Results of Pearce-Kinsella test for determination of emulsification properties of sample preparation at various levels of soluble total nitrogen

6.12 Separation under gravity of castor oil emulsified with different levels of sample with and without insoluble material removed by centrifugation

6.13 Results of Pearce-Kinsella test for determination of emulsification properties of sample preparations at various levels of sample with and without insoluble material removed by centrifugation

6.14 Results of Pearce-Kinsella test for determination of emulsification properties of sample preparations at various levels of soluble nitrogen with and without insoluble materials removed by centrifugation

6.15 Total nitrogen in solution at various levels of sample concentration

6.16 Separation under gravity of castor oil emulsified with mixtures of product preparations

6.17 Surface hydrophobicity of the soluble portion of sample preparations measured with 8-anilino-1-naphthalenesulfonate (ANS)

6.18 Surface hydrophobicity of the soluble portion of sample preparations measured with cis parinaric acid (CPA)
7.1 The evolution of ammonia when N-acetyl-L-glutamine and carbobenzoxy-L-glutamine were reacted with peptidoglutaminase I

7.2 The evolution of ammonia when gluten and sample II were reacted with peptidoglutaminase I and peptidoglutaminase II
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The solution properties of ammonia</td>
<td>301</td>
</tr>
<tr>
<td>1.2</td>
<td>Derivation of rate equations for amide hydrolysis using the steady-state treatment</td>
<td>302</td>
</tr>
<tr>
<td>1.3</td>
<td>Further derivation of amide hydrolysis rate equations</td>
<td>303</td>
</tr>
<tr>
<td>3.1</td>
<td>Nitrogen analysis results to show solubilization of gluten by SDS in various buffers</td>
<td>305</td>
</tr>
<tr>
<td>3.2</td>
<td>Peak height data of fluorescence response for L-glu standards and gluten with fluorescamine</td>
<td>306</td>
</tr>
<tr>
<td>3.3</td>
<td>Peak height data of fluorescence response for ammonia with fluorescamine</td>
<td>307</td>
</tr>
<tr>
<td>3.4</td>
<td>Further peak height data of fluorescence response for ammonia with fluorescamine</td>
<td>308</td>
</tr>
<tr>
<td>3.5</td>
<td>The reaction of L-glu and L-glu plus gluten with TNBS</td>
<td>309</td>
</tr>
<tr>
<td>3.6</td>
<td>The reaction of L-glu and ammonia with TNBS</td>
<td>310</td>
</tr>
<tr>
<td>3.7</td>
<td>The reaction of L-glu, gluten and ammonia with TNBS</td>
<td>311</td>
</tr>
<tr>
<td>4.1</td>
<td>Calculation of pH values from other authors</td>
<td>312</td>
</tr>
<tr>
<td>4.2*</td>
<td>Raw data from each hydrolysis experiment</td>
<td>-</td>
</tr>
<tr>
<td>4.3</td>
<td>Calculation of the amount of reaction due to acidified gluten standing at room temperature</td>
<td>316</td>
</tr>
</tbody>
</table>
4.4 Method and example of calculation of confidence limits for components of variance

4.5* Analysis of standards for determination of N-terminal amino groups using fluorescamine for determination of total available peptide bonds

4.6* Analysis of standards for ammonia in determination of total available amide bonds

4.7 Example of information generated by the Minitab programme and calculation of lack of fit (LOF)

4.8 Calculation of t-test for kinetic equation coefficients

4.9 Calculation of activation energy for hydrolysis reactions

4.10 Calculation of standard deviation for hydrogen ion stoichiometry data

4.11 Further calculation of stoichiometry of hydrogen ion consumption

4.12 Manipulation of data from runs 2, 6 and 9 to test for reaction model

4.13 A programme to simulate the mild acid hydrolysis of gluten

4.14 Calculation of reaction rate coefficients from the data of Figures 4.15 and 4.17

4.15 Data from reaction simulation for test of fit to experimental data from run 6 of the experimental design
4.16 Smoothed data from repetition runs of the experimental design

4.17 Data from reaction simulation for test of fit to experimental data from repetition runs of the experimental design

4.18 Calculation of slopes of lines from Figures 4.21 and 4.22

5.1* Absorbance \(A_{340}\) for ammonia standards for total deamidation of spray dried product preparations

5.2* Absorbance \(A_{340}\) for samples from total deamidation of spray dried product preparations

5.3* Absorbance \(A_{340}\) for ammonia standards for stored liquid hydrolysates

5.4* Absorbance \(A_{340}\) for samples for stored liquid hydrolysates

5.5* Absorbance \(A_{340}\) for ammonia standards for total deamidation of freeze dried product preparations and hydrolysate of samples prepared without dialysis

5.6* Absorbance \(A_{340}\) for samples from total deamidation of freeze dried product preparations

5.7* Absorbance \(A_{340}\) for ammonia in hydrolysate of samples prepared without dialysis
5.8* Peak heights of L-glu standards for determination of N-terminal amino groups, using fluorescamine of spray dried product preparations

5.9* Peak heights for samples for determination of N-terminal amino groups, using fluorescamine of spray dried product preparations

5.10 Reaction progress calculated from simulation for Figures 5.1, 5.2 and 5.3

6.1 Evaluation of the flavour characteristics of sample preparations by Product Use and Evaluation Section of the New Zealand Dairy Research Institute

7.1* Absorbance (A_{340}) for ammonia standards for measurement of reaction with peptidoglutaminase enzymes

7.2* Absorbance (A_{340}) for samples for measurement of reaction with peptidoglutaminase enzymes

* In fiche
SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>activity (e.g. a_{H^+} is hydrogen ion activity)</td>
</tr>
<tr>
<td>A_{340}</td>
<td>Absorbance measured at a wavelength of 340 nm</td>
</tr>
<tr>
<td>ANS</td>
<td>8-anilino-1-naphthalenesulfonate</td>
</tr>
<tr>
<td>°C</td>
<td>degrees centigrade</td>
</tr>
<tr>
<td>cc</td>
<td>cubic centimetre</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CPA</td>
<td>cis parinaric acid</td>
</tr>
<tr>
<td>E</td>
<td>activation energy</td>
</tr>
<tr>
<td>E_0'</td>
<td>the observed electrode potential in the Nernst equation</td>
</tr>
<tr>
<td>E_0</td>
<td>the stable fixed potential including reference potential</td>
</tr>
<tr>
<td>F</td>
<td>the Faraday</td>
</tr>
<tr>
<td>GDH</td>
<td>L-glutamate dehydrogenase</td>
</tr>
<tr>
<td>gm</td>
<td>gram</td>
</tr>
<tr>
<td>HLB</td>
<td>hydrophile lipophile balance</td>
</tr>
<tr>
<td>k</td>
<td>reaction rate constant</td>
</tr>
<tr>
<td>°K</td>
<td>degrees Kelvin</td>
</tr>
<tr>
<td>L-glu</td>
<td>L-glutamic acid</td>
</tr>
</tbody>
</table>
ln
logarithm to base e

LOF
Lack of fit

log_e
logarithm to base e

log_{10}
logarithm to base 10

M
molar

ml
millilitre

mm
millimetre

mM
millimolar

N_A
number of moles of component A

N_{Ao}
initial number of moles of component A

NAD
nicotinamide adenine denucleotide

NADH
nicotinamide adenine denucleotide reduced

nm
nanometre

PCA
pyrrolidone carboxylic acid

SDS
sodium dodecyl sulphate

t
statistic calculated in Students t test

T
temperature, °K

TN
total nitrogen content

TNBS
trinitrobenzene sulfonic acid
ideal gas law constant

watt

weight per unit volume

mole fraction of component A

the difference in voltage measured by a pH electrode over the range of ρH

standard deviation estimated using a population sample of size n

ionic strength

microlitre