Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
LEPTOSPIROSIS IN NEW ZEALAND PIG HERDS

An epidemiological study and a computer simulation model of endemic leptospiral infection in New Zealand pig herds, with particular reference to Leptospira interrogans serovar pomona.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Veterinary Science at Massey University.

Ingeborg Bolt
1990
ABSTRACT
A serological survey of pig sera from six regional areas throughout New Zealand indicated that 60% had titres to *Leptospira interrogans* serovar *pomona* and 13% to serovar *tarassovi*. Pig sera from the North Island districts had higher titres to *pomona* than those from the South Island districts, however the converse was true for titres to *tarassovi*. A serological survey of bacon weight pigs at slaughter revealed that 60% had titres to *pomona*, 53% to *bratislava*, while titres to *tarassovi* were undetectable. There was no significant linear association between the magnitude of corresponding *pomona* and *bratislava* titres. *Pomona* was isolated from 53% of pigs kidneys, however attempts to isolate *bratislava* were unsuccessful. The median prevalence of infection in bacon pigs from farms with endemic *pomona* infection, at the time of slaughter was 80%. A retrospective study of farming practices revealed that vaccination of breeding pigs had no effect on the infection status of their grower pigs at slaughter. It was also found that farms which reared their grower pigs to pork weight for slaughter were free of leptospiral infection, as were farms with less than fifty breeding sows.

Cross sectional serological and cultural prevalence studies of grower pigs on farms with endemic *pomona* infection revealed that pigs less than ten weeks of age were not leptospiruric and had low or undetectable titres to *pomona*. Pigs between ten and twenty weeks of age showed an increasing prevalence of both leptospirosis and *pomona* titres. Further prospective studies indicated that piglets acquire passive immunity from their dams, which has a half life of around sixteen days. The majority of pigs less than fourteen weeks of age appear to be resistant to infection, thereafter the level of their passive immunity wanes and they become infected and leptospirosis. The weekly incidence of leptospirosis for pigs in an infected grower house was usually between 10% and 20%. Following infection, the intensity of leptospirosis was greatest in the first three to four weeks and it lasted for at least six weeks. Infection is believed to occur by both direct and indirect transmission of leptospires between infected and susceptible pigs. It was shown that grower pigs are at the centre of the endemic cycle of infection which is perpetuated by the transmission of infection from older infected pigs to younger susceptible pigs. This cycle of endemic infection can persist independently of the breeding herd.
Experimental evidence following the artificial exposure of grower pigs to either serovar *pomona* or *bratislava* supported an hypothesis that the occurrence of *bratislava* titres were associated with early infection of pigs with serovar *pomona*. The heterologous titres were believed to be a serological cross reaction with homologous IgM antibody to which pigs had been exposed.

Experimental evidence demonstrated that leptospires could survive in droplets of less than 50 μm, however hamsters exposed to a leptospiral aerosol containing droplets of less than 50 μm failed to become infected. Infection via the intranasal route in both hamsters and pigs showed that the infective dose of *pomona* was between 10^4 and 10^6 leptospires, indicating the intranasal route as a natural route for infection. Transmission of infection could therefore occur directly by infective droplets lodging in the nasal cavity.

The vaccination of pigs, commencing at ten weeks of age on a farm with endemic *pomona* infection, revealed that multiple inoculations of a commercially available bacterin can be used to control the level of endemic infection within a grower pig herd. There was evidence to suggest that persistent passive immunity in young pigs could interfere with the efficacy of vaccination.

A computer simulation model of endemic *pomona* infection in a pig herd [Simulated Leptospiral Infection within a Pig herd, SLIP89] was developed using the results of investigations described in this thesis by sequentially breaking down the cycle of endemic *pomona* infection into a series of logical events. The model repeats a number of predetermined independent and dependant events for each pig within a simulated herd. The outcome of each event is randomly determined from an appropriately selected probability distribution. Each cycle of repetition represents one week in time. The outcome generated by the simulation can be used to observe varying patterns of infection which are due to either the element of chance or the alteration of key variables within the model. The results generated by the SLIP89 must be viewed with the structure and limitations of the model in mind.
ACKNOWLEDGEMENTS

I wish to acknowledge the financial support given by the Women's Division of Federated Farmers who funded this research, the Phyllis Irene Grey Fellowship Fund which provided a computer and the Muriel Caddie Scholarship for personal funding. The provision of animal remedies from Coopers Animal Health is appreciated.

I would like to thank my supervisors Dr Roger Marshall for his encouragement, enthusiasm and patience throughout the period of research and documentation, Professor Roger Morris for his guidance throughout the development of the computer simulation model, and to Professor David Blackmore for his initiation of the research project, his interest, constructive criticism and advice during his final years at Massey University.

Special thanks to friends and co-workers Ray Corner and Steve Flint for their help with the collection of samples and for providing valid argument and discussion. I thank Wendy Goble for her support in the laboratory, Jan Schrama for her work in the media preparation room, Peter Wildbore for ordering all materials, Pam Slack for the preparing histological sections, Faris Sharpe for incinerating infective tissue and material, Dr. Ramadass for the BRENDA typing of leptospires, and the help of Fiona Dickinson with preparation of the final draft of this thesis.

I am grateful to the management and employees of the Kiwi Bacon Company of Longburn for their co-operation in allowing the collection of samples from their abattoir. I would like to thank the managers and workers of all the pig farms which were contacted throughout this study, with special thanks to Phil Weber, Neil Managh and Alan Taylor for their long term assistance.

Finally, I wish to thank my husband Brad Bridges for his encouragement and support, his sense of humour and love, all of which helped sustain me throughout this study. I am grateful that our son, Bearnard, who was born in the later stages of the preparation of this thesis, proved to be a happy and contented child, and one who accepted my divided attention.
TABLE OF CONTENTS

Abstract ... ii
Acknowledgements ... iv
Table of contents ... v
List of Tables ... vi
List of Figures ... xi
Chapter One Introduction .. 1
Chapter Two Materials and Methods 24
Chapter Three Prevalence Studies of Leptospiral Infection in Pigs .. 48
Chapter Four Observational Studies 74
Chapter Five Experimental Studies 120
Chapter Six Vaccination Trials .. 160
Chapter Seven A Computer Simulation Model of Endemic Leptospiral Infection in a Pig Herd 212
Appendix I Preparation of Media 253
Appendix II Conversion of Titres 257
Appendix III Questionnaire to Farmers 258
Appendix IV Procedure for using SLIP89 260
Appendix V List of SLIP89 data files 278
Appendix VI Program Units in SLIP89 279
References ... 321
LIST OF TABLES

Chapter One

1.1 Maintenance hosts for leptospiral serovars found in New Zealand 18

Chapter Two

2.1 Final test dilutions of serum samples in the microtitre plates used for the MAT 37
2.2 Leptospiral serovars maintained for the Microscopic Agglutination Test 40
2.3 Theoretical number of leptospires inoculated into five culture dilutions of urine 41
2.4 Number of three urine cultures from which leptospires were isolated after two and four weeks of incubation .. 42

Chapter Three

3.1 Serological results for serovar pomona of pigs from six MAF administrative districts of New Zealand .. 55
3.2 Serological results for serovar tarassovi of pigs from six MAF administrative districts of New Zealand 56
3.3 Distribution of pomona and bratislava titres of grower pigs at slaughter 59
3.4 Serological and cultural results of twenty-two bacon weight pigs sampled at slaughter ... 60
3.5 A comparison of some farm practises and the infection status of their pigs, for twelve farms ... 64
3.6 Sizes of twelve farms in comparison with the infectious status of their grower pigs at slaughter and the vaccination status of their breeding pigs 65
3.7 Number of farms within each district with near equal or uneven ratios of pomona:tarassovi titres ... 67
Chapter Four

4.1 Serological and cultural prevalence of infection with *pomona* in grower pigs from Farm B .. 85

4.2 Serological and cultural prevalence of infection with *pomona* in grower pigs from Farm D .. 86

4.3 Schedule of serological and cultural examination of four age cohorts over an eleven week period .. 90

4.4 Serological results to serovar *pomona* of two sows and five of their piglets between five and thirty-four days of age 91

4.5 Serological results to serovar *pomona* of pigs between six and fifteen weeks of age in the "weaner cohort" .. 93

4.6 Serological and cultural results to serovar *pomona* of pigs between eleven and twenty-one weeks of age in the "young grower cohort" 95

4.7 Serological and cultural results to serovar *pomona* of pigs between sixteen and twenty-six weeks of age in the "older grower cohort" 98

4.8 Mixing and movement of pigs between pens, and the infectious status of pigs in adjacent pens .. 101

4.9 Onset and duration of leptospirosis in grower pigs from Farm B .. 102-103

4.10 Culture results and location of gilts on Farm B at the time of examination .. 104

Chapter Five

5.1 Homologous *pomona* titres of pigs exposed to serovar *pomona* by intramuscular inoculation or via the intranasal route .. 127

5.2 Heterologous *bratislava* titres of pigs exposed to serovar *pomona* by intramuscular inoculation or via the intranasal route .. 129
5.3 Geometric mean titres [GMT] of pigs artificially exposed to serovar pomona 129

5.4 Homologous bratislava titres of pigs exposed to serovar bratislava by intramuscular inoculation or via the intranasal route 130

5.5 Heterologous pomona titres of pigs exposed to serovar bratislava by intramuscular inoculation or via the intranasal route 130

5.6 Geometrical mean titres [GMT] of pigs artificially exposed to serovar bratislava 131

5.7 Homogenous and heterologous heat treated and untreated titres of pigs exposed to pomona and bratislava 132

5.8 Onset, duration and intensity of leptospirosis determined by cultural examination 133

5.9 Diameter of droplets formed by spinning disc .. 148

5.10 Diameter of droplets by nebuliser .. 149

5.11 Minimum infective dose of pomona for pigs via the intranasal route 150

5.12 Minimum infective dose of pomona for hamsters via the intranasal route 151

5.13 Results of exposing of hamsters to pomona via the respiratory route using an aerosol .. 152

Chapter Six

6.1 Regimes of inoculation tested in grower pigs ... 171

6.2 Number of pigs examined in each inoculation group from Farm B throughout the period of sampling and at the time of slaughter 173

6.3 Reciprocal titres of pigs inoculated with vaccine in the first week [Group 1] which were raised on the farm free of leptospirosis infection [Farm A] .. 177
Chapter Seven

Reciprocal titres and kidney culture results for pigs inoculated with vaccine in the first week [Group 1] and unvaccinated pigs [control group] which were raised on the farm with endemic *pomona* infection [Farm B] .. 178

Reciprocal titres of pigs inoculated with vaccination in the first and fifth week [Group 2] which were raised on the farm free of leptospiral infection [Farm A] 182

Reciprocal titres and kidney culture results for pigs inoculated in the first and fifth week [Group 2] and unvaccinated pigs [control group] which were from the farm with endemic *pomona* infection [Farm B] 183

Reciprocal titres of pigs inoculated with vaccine in the first, third and fifth week [Group 3] which were from the farm free of leptospiral infection [Farm A] 187

Reciprocal titres and kidney culture results for pigs inoculated with vaccine in the first, third and fifth week [Group 3] and unvaccinated pigs [control group] which were from the farm with endemic *pomona* infection [Farm B] 188

Reciprocal titres of pigs inoculated with vaccine in the first, second and third week [Group 4] which were from the farm free of leptospiral infection [Farm A] 192

Reciprocal titres and kidney culture results for pigs inoculated with vaccine in the first, second and third week [Group 4] and unvaccinated pigs [control group] which were from the farm with endemic *pomona* infection [Farm B] 193

Age related mating frequency for boars 221

The average prevalence of leptospiral infection for grower pigs in SLIP89, using the default settings 239

SLIP89 results of the average prevalence of
leptospiral infection in grower pigs, when validating for weaning age 240

7.4 SLIP89 results of the average prevalence of leptospiral infection in grower pigs, when validating for the duration of leptospiruria 242

7.5 SLIP89 results of the average prevalence of leptospiral infection in grower pigs, when validating for the intensity of leptospiruria 243

7.6 SLIP89 results of the average prevalence of leptospiral infection in grower pigs, when validating for the contamination division factors 245

7.7 SLIP89 results of the average prevalence of infection for validation of contact between pigs 246
LIST OF FIGURES

Chapter 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Collection of a blood sample by jugular bleeding</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Collection of a midstream urine sample</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Kidney culture procedure</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Urine culture procedure</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Equations to convert reciprocal titre to a coded titre unit [CTU] and CTU to a reciprocal titre</td>
<td>38</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The six MAF administrative districts of New Zealand used in the serological survey of pomona and tarassovi titres of pigs throughout New Zealand</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Serological results for serovar pomona of pigs from six MAF administrative districts of New Zealand</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Serological results for serovar tarassovi of pigs from six MAF administrative districts of New Zealand</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Frequency distribution of pomona and bratislava titres in 140 bacon weight pigs at slaughter</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Distribution of pomona titres in grower pigs at slaughter from farms which either do or do not vaccinate their breeding pigs</td>
<td>63</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Design of piggery on farm B</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Design of piggery on farm D</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Design of piggery on farm E</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>Intensity of leptospirosis in naturally infected pigs over a ten week period of examination</td>
<td>97</td>
</tr>
</tbody>
</table>
4.5 Geometric mean titre of *pomona* in grower pigs from Farm C with endemic *pomona* infection ... 97

4.6 Schematic representation of movement of a group of pigs throughout the grower shed on Farm B over a period of 16 weeks 105

4.7 Schematic representation of the movement of two individual pigs BG-1 and BB-2 throughout the grower shed on Farm B for a period of 16 weeks .. 106-107

4.8 Average prevalence of leptospiruria in 3 groups of naturally infected grower pigs ... 108

4.9 Prevalence of leptospiruria in the pig herd from Farm B with endemic *pomona* infection .. 109

4.10 Decline of maternal antibody titres in pigs ... 111

4.11 Age of onset of leptospiruria in grower pigs of Farms B and C ... 112

4.12 Cycle of maintenance of infection with *pomona* in a grower pig herd ... 116

Chapter 5

5.1 *Pomona* and *bratislava* titres of pigs artificially exposed to serovar *pomona* ... 128

5.2 *Bratislava* and *pomona* titres of pigs artificially exposed to *bratislava* ... 128

5.3 Homogenous and heterologous *pomona* and *bratislava* titres of heat treated and untreated sera ... 131

5.4 Spinning disc used for the formation of drops greater than 50 μm in diameter ... 143

5.5 Nebuliser used for the formation of droplets less than 50 μm in diameter ... 144

5.6 Size of droplets landing in pen adjacent to pen which was spray hosed ... 150
5.7 Theoretical maximum number of leptospires in a drop of known diameter 154
5.8 Theoretical percentage of drops formed from two leptospiral concentrations which contain at least one leptospira 155
5.9 Pigs "rooting" amongst infective effluent 156
5.10 Pigs "urine sniffing", a behaviour allowing infection via the intranasal route 157

Chapter 6

6.1 Serological results of pigs raised on the farm free of leptospiral infection [Farm A] which were inoculated with vaccine in the first week only [Group 1] 176
6.2 Serological results of pigs raised on the farm with endemic pomona infection [Farm B] which were inoculated with vaccine in the first week [Group 1] 176
6.3 Serological results of pigs raised on the farm free of leptospiral infection [Farm A] which were inoculated with vaccine in the first and fifth week [Group 2] 181
6.4 Serological results of pigs raised on the farm with endemic pomona infection [Farm B] which were inoculated in the first and fifth week [Group 2] 181
6.5 Serological results of pigs raised on the farm free of leptospiral infection [Farm A] which were inoculated with vaccine in the first, third and fifth week [Group 3] 186
6.6 Serological results of pigs raised on the farm with endemic pomona infection [Farm B] which were inoculated with vaccine in the first, third and fifth week [Group 2] 186
6.7 Serological results of pigs raised on the farm free of leptospiral infection [Farm A] which were inoculated with vaccine in the first, second and third week [Group 4] 191
6.8 Serological results of pigs raised on the farm with endemic *pomona* infection [Farm B] which were inoculated with vaccine in the first, second and third week [Group 4] 191

6.9a-d Proportion of kidneys from vaccinated and unvaccinated pigs from which leptospires were isolated ... 194

6.10 Percentage of pigs in a population with residual maternal antibody ... 200

6.11 Nomograph indicating optimum times for the commencement of vaccination of pigs with a *pomona* vaccine, based on the antibody titre of the dam and a half life of sixteen days ... 201

6.12 "Windows of susceptibility" for a population of pigs, indicating the optimum age range for the commencement of vaccination ... 202

6.13 Distribution of *pomona* titres of pigs inoculated once and of unvaccinated pigs at slaughter ... 204

6.14 Distribution of *pomona* titres of pigs inoculated twice, and of unvaccinated pigs at slaughter ... 204

6.15 Distribution of *pomona* titres of pigs inoculated three times at two weekly intervals, and of unvaccinated pigs at slaughter ... 205

6.16 Distribution of *pomona* titres of pigs inoculated three times at weekly intervals, and of unvaccinated pigs at slaughter ... 205

Chapter 7

7.1 Pathways for the transmission of infection between pigs in SLIP89 ... 216

7.2 Flow Diagram of SLIP89 ... 218

7.3a SLIP89 data records for sows and boars ... 220

7.3b SLIP89 data records for grower pigs ... 222
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Floor plan of weaner and grower houses in SLIP89</td>
<td>223</td>
</tr>
<tr>
<td>7.5a</td>
<td>Normal distribution of post-infection titres</td>
<td>224</td>
</tr>
<tr>
<td>7.5b</td>
<td>The distribution of post-infection titres after applying minimum and maximum titre restrictions</td>
<td>225</td>
</tr>
<tr>
<td>7.6</td>
<td>The simulated increase of pigs titres following infection in SLIP89</td>
<td>226</td>
</tr>
<tr>
<td>7.7</td>
<td>Pathways for direct and indirect transmission of infection between pigs in SLIP89</td>
<td>229</td>
</tr>
<tr>
<td>7.8</td>
<td>The prevalence of infection in grower pigs for SLIP89 data and field data</td>
<td>236</td>
</tr>
<tr>
<td>7.9</td>
<td>The pomona titres of grower pigs for SLIP89 data and field data</td>
<td>237</td>
</tr>
<tr>
<td>7.10</td>
<td>The prevalence of leptospiruria for populations of pigs in SLIP89 data and field data</td>
<td>238</td>
</tr>
<tr>
<td>7.11</td>
<td>Prevalence of infection in grower pigs following simulated vaccination</td>
<td>250</td>
</tr>
</tbody>
</table>

Appendix IV

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4.1</td>
<td>Main menu and sub-menus of SLIP89</td>
<td>261</td>
</tr>
<tr>
<td>A4.2</td>
<td>Reproductive variables submenu option of SLIP89</td>
<td>262</td>
</tr>
<tr>
<td>A4.3</td>
<td>Epidemiological variables sub-menu option of SLIP89</td>
<td>263</td>
</tr>
<tr>
<td>A4.4</td>
<td>SLIP89 sub-menu option for executing SLIP89</td>
<td>266</td>
</tr>
<tr>
<td>A4.5</td>
<td>Output Files submenu of SLIP89</td>
<td>270</td>
</tr>
<tr>
<td>A4.6</td>
<td>Cohort Data submenu of SLIP89</td>
<td>272</td>
</tr>
<tr>
<td>A4.7</td>
<td>Time Series Display submenu option of SLIP89</td>
<td>274</td>
</tr>
<tr>
<td>A4.8</td>
<td>Age Data submenu option of SLIP89</td>
<td>275</td>
</tr>
<tr>
<td>A4.9</td>
<td>Pen Data submenu option of SLIP89</td>
<td>276</td>
</tr>
</tbody>
</table>
Appendix VI

A6.1 Flow Chart of interaction between SLIP89 program units ..280

A6.1 Summary of the interaction of program procedures within the WKUPDATE and RUNSLIP units ..307