Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE SYSTEMATIC DEVELOPMENT OF
A CONTROLLED FERMENTATION PROCESS
USING MIXED BACTERIAL STARTER CULTURES
FOR NHAM, A THAI SEMI-DRY SAUSAGE

A thesis presented in partial fulfilment of
the requirements for the degree of
Doctor of Philosophy in
Product Development in Food Fermentation
at Massey University

Pairote Wiriyacharee
1990
The aim of this thesis was to improve the quality of Nham, a traditional Thai fermented sausage, using systematic product development techniques. The traditional Nham fermentation depends upon a random bacterial flora. This study identified the starter cultures which could be used and developed an industrial production method using mixed starter cultures.

Systematic experimental designs were used to guide the development of the Nham fermentation; identification of the important processing factors using a Plackett and Burman experimental design, formulation and process development using full factorial designs in sequence of 2^4, 2^3 and 2^2, and then a storage test of the product, testing of formulation and process in Thailand and finally a production trial of the new process in a factory in Thailand. Chemical, physical, microbiological, and sensory evaluation were used during the systematic product development. The study ended with consumer testing of the prototype product in the target market in Chiang Mai city and two villages - Ban Don Chai and Ban Ma-Kran.

The important factors affecting Nham quality were the mixed starter cultures and the carbon sources used in the Nham formulation. When the Nham base was inoculated with *Lactobacillus plantarum* 10^3 cfu.g$^{-1}$, *Pediococcus cerevisiae* 10^6 cfu.g$^{-1}$ and *Micrococcus varians* 10^3 cfu.g$^{-1}$ acid production, firmness and colour development were optimum, the product was microbiologically safe and the sensory properties were acceptable to consumers. The addition of carbon sources increased acid development. 0.5% glucose and 6% cooked rice were optimum levels in the Nham formulation.

Temperature and relative humidity also affected the Nham fermentation. Temperature increased the rate of pH reduction, the firmness and colour development. High relative humidity decreased the weight loss. The Nham fermented at 30°C and 97% relative humidity had optimum acid production and sensory properties.

Nham is sold in Thailand between 20°C and 30°C, and at relative humidity as high as 97%. Experimental samples stored under similar conditions had a shelf life of 11 days and 9 days respectively. When the product was chilled at 10°C and 1°C, the shelf life was extended to 63 days and 103 days respectively. Enterobacteriaceae and *Staphylococcus aureus* counts fell during storage and no yeasts or moulds were observed. Off-flavour development controlled the shelf life.
Product profiles were determined for the Nham by Thai consumers and the ideal ratio method was used during the sensory product testing. A profile test using linear scaling with fixed ideal points was used for the trained sensory panels. The floating ideal point was used with consumer panels when the prototype product was close to ideal profile. Category scaling was used in the consumer testing of the final product. Sensory evaluation by one hundred and twelve families in Chiang Mai province indicated that appearance, texture, and flavour of Nham made with the mixed starter cultures were good.

The Nham successfully developed by using the systematic product development had a high quality in terms of consistency, microbiological safety and long shelf life and was also accepted by the target Thai consumers. The product could be produced in a simple plant with the existing equipment in fermented meat product factories in Thailand but there would need to be an increase in technology of culture preparation and controlled fermentation. The product could be sent from the cottage industry in the North to all provinces in Thailand, particularly to Bangkok, and also had a potential to be exported to overseas countries if chilled conditions were used.
ACKNOWLEDGEMENTS

This research study was financially supported by the New Zealand Bilateral Aid Programme administered by the Ministry of Foreign Affairs; I would like to take this opportunity of thanking this assistance.

I shall always be grateful to my chief supervisor, Dr Mary D. Earle; Director, Product Development Sub-Department, Massey University, for her constant inspiration, valuable guidance, patience and encouragement throughout this research, and also for giving me the opportunity of working on this topic.

To my co-supervisors; Dr J. D. Brooks, Food Technology Department, Massey University; Dr G. Page, Director, NZ Dairy Research Institute; and Mrs L. Rujanakraikarn, Food Science and Technology Department, Chiang Mai University; I wish to express my appreciation for their many useful suggestions and criticisms.

I would also like to express my appreciation to many people, both in New Zealand and Thailand, who assisted this research in many ways. In particular I would like to take this opportunity of thanking the following:

* Prof. R. L. Earle and the staff of the Faculty of Technology, Massey University for the use of facilities and for their support throughout.
* Prof. P. A. Munro and the staff of the Department of Food Technology and the Sub-Department of Product Development, Massey University especially Mrs Joan Brookes for providing facilities and willing assistance and encouragement.
* Prof. E. L. Richards and Dr I. Maddox for their advice on techniques of chemical analysis.
* Dr I. F. Boag, Production Technology Department, Massey University, for his valuable suggestion in the experimental design and analysis.
* Dr A. M. Anderson, Product Development Sub-Department, Massey University, for his valuable discussion.
* Dr Hugo Varela-Alvarez, Computer Centre, Massey University, for his useful suggestions in computer analysis and help in programming.
* Mr S. L. Oldfield and Dr B. H. P. Wilkinson for their valuable advice and comments on some parts of this research.
* Mrs J. Cleland for her willing assistance in preparation of microbiological materials and equipment.
* Mrs M. Bewley for her willing assistance in preparation of chemical materials and equipment.
* Asso. Prof. N. Na-Lumpang, Dean of Agriculture Faculty, Chiang Mai University for his permission to do some parts of this research in Thailand.
* The staff of Chiang Mai Livestock Breeding and Research Centre, Ministry of Agriculture and Cooperatives, Chiang Mai, for their help in the production trial.
* The Thai students at Massey University and Chiang Mai University who were members of the taste panels.
* The people in the King's Project, Chiang Mai, who participated in this research.
* The consumers in Chiang Mai city; Ban Don Chai, Yangkram district; Ban Ma-Kran, Shongkual district, who tested the final product.
* The staff of the Library and the Registry, Massey University for willing assistance in locating reference materials, and for advice on Ph.D. study programme, respectively.
* Mr Wichien Chatupote for his help in computer programming in particular chart programme.
* Miss V. J. Davis for her work in typing and correcting the thesis.

Finally, I would like to thank my mother and brother, also his family, for their support mentally during the course of my study.
TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
LIST OF APPENDICES	xviii

CHAPTER

1. IMPROVEMENT OF THAI FERMENTED MEAT PRODUCTS

1.1 INTRODUCTION
1

1.2 FERMENTED MEAT SAUSAGES IN THAILAND
1

1.3 NHAM PRODUCTION
3

1.4 MARKETING ASPECTS OF NHAM
3

1.5 NHAM FERMENTATION
5

1.6 RESEARCH ON NHAM FERMENTATION
5

1.7 USE OF MIXED STARTER CULTURES IN MEAT PRODUCTS
8

1.8 AN APPROACH TO NHAM DEVELOPMENT
12

1.8.1 Experimental Designs in Product Development
13

1.8.2 Sensory Testing in Product Development
14

1.9 AIM OF THE PROJECT AND PROJECT PLAN
15

2. PROJECT METHODS

2.1 SOURCES OF MATERIALS
17

2.1.1 Meat System
17

2.1.2 Curing Agents
17

2.1.3 Seasonings
17

2.1.4 Carbon sources
18

2.1.5 Starter cultures
18

2.1.6 Sausage Casings
18

2.2 PREPARATION OF CULTURES
18

2.3 METHOD OF NHAM PROCESSING
19

2.4 TESTING METHODS
21

2.4.1 Physical Tests
21

2.4.1.1 Sampling for Testing
21

2.4.1.2 Instron Compression, Shear Force and Energy
21
2.4.1.3	Reflective Colour	22
2.4.1.4	Gas Formation	22
2.4.1.5	Water Activity	23
2.4.1.6	Weight Loss	23
2.4.2	Chemical Tests	23
2.4.2.1	pH, Total Acidity, Volatile Acidity	23
2.4.2.2	Residual Nitrite	23
2.4.2.3	Reducing Sugars and Cooked Rice	23
2.4.3	Microbiological Tests	24
2.4.3.1	Method of Sampling and Preparation of Sample	24
2.4.3.2	Mesophilic Aerobic Microorganisms	24
2.4.3.3	Enterobacteriaceae	24
2.4.3.4	*Staphylococcus aureus*	25
2.4.3.5	Yeasts and Moulds	25
2.4.3.6	Starter Cultures	25
2.4.4	Sensory Tests	26
2.4.4.1	Testing Environment and Methods	26
2.4.4.2	Identification of Nham Characteristics and Selection of the Important Characteristics	27
2.4.4.3	Development of Scaling Method	30
2.4.4.4	Setting the Ideal Profile	32
2.4.4.5	Sensory Panel Selection	33
2.4.4.6	Training of the Sensory Panel	33
2.4.4.7	Sensory Panel in Thailand	33

3 IDENTIFYING THE IMPORTANT FACTORS AFFECTING THE CHARACTERISTICS OF NHAM

3.1 INTRODUCTION 34
3.2 PLACKETT-BURMAN DESIGN 34
3.3 STARTER PRODUCTION 37
3.4 SAUSAGE PREPARATION FOR PLACKETT-BURMAN DESIGN 39
3.5 TEST METHODS 41
3.6 RESULTS: CHEMICAL, MICROBIOLOGICAL, AND PHYSICAL CHARACTERISTICS OF NHAM 41
3.7 DISCUSSION 44
3.7.1 Starter Cultures Affecting the Characteristics of Nham 44
3.7.2 Ingredients Affecting the Characteristics of Nham 46
3.8 CONCLUSION

4 EFFECTS OF MIXED STARTER CULTURES ON THE CHARACTERISTICS OF NHAM

4.1 INTRODUCTION

4.2 EXPERIMENTAL DESIGN

4.3 SAUSAGE PREPARATION FOR 2^4 FACTORIAL DESIGN

4.4 TEST METHODS

4.5 ANALYSIS OF RESULTS

4.5.1 Empirical Equations Relating Dependent and Independent Variables

4.5.2 Decoded Models

4.5.3 Analysis of Variance

4.6 RESULTS

4.6.1 Sensory Evaluation of Nham

4.6.1.1 Overall Acceptability of Nham

4.6.1.2 Correlation of Overall Acceptability with All Sensory Attributes

4.6.1.3 Relationship between Overall Acceptability and the Starter Cultures

4.6.2 Bacteriology

4.6.3 pH Change During Fermentation

4.6.4 Gas Production During Fermentation

4.6.5 Firmness Development During Fermentation

4.6.6 Colour Development During Fermentation

4.6.7 Inhibition of Enterobacteriaceae

4.6.8 Weight Loss During Fermentation

4.7 DISCUSSION

4.7.1 Effects of Starter Cultures

4.7.2 Selection of Inoculum Levels for Future Experiments

4.7.3 Fermentation Time

4.8 CONCLUSION

5 EFFECTS OF CARBON SOURCES AND L. PLANTARUM ON THE pH REDUCTION IN NHAM

5.1 INTRODUCTION

5.2 EXPERIMENTAL DESIGN

5.3 SAUSAGE PREPARATION, TESTING AND ANALYSIS FOR 2^3 FACTORIAL DESIGN
5.4 RESULTS

5.4.1 Chemical and Physical Changes During the First 48 Hours and their Relation to the Nham Quality
5.4.2 The Empirical Models of Dependent Variables During the First 48 Hours of Fermentation
5.4.3 Chemical and Physical Changes During 2-7 Days of Fermentation and their Relation to the Nham Quality
5.4.4 Sensory Evaluation of Nham

5.5 DISCUSSION

5.5.1 Chemical and Physical Changes
5.5.2 Acceptability of Nham

5.6 CONCLUSION

6 EFFECTS OF TEMPERATURE AND RELATIVE HUMIDITY ON THE RATE OF NHAM FERMENTATION

6.1 INTRODUCTION
6.2 EXPERIMENTAL DESIGN
6.3 SAUSAGE PREPARATION, TESTING AND ANALYSIS FOR 2^2 FACTORIAL DESIGN
6.4 KINETICS OF NHAM FERMENTATION
6.5 RESULTS

6.5.1 pH Change During Fermentation
6.5.2 Weight Loss During Fermentation
6.5.3 Firmness Development During Fermentation
6.5.4 Colour Development During Fermentation
6.5.5 Bacterial Studies
6.5.6 Sensory Evaluation

6.6 DISCUSSION

6.6.1 Effects of Temperature and Relative Humidity
6.6.2 Kinetics of Nham Fermentation

6.7 CONCLUSION

7 STORAGE TEST ON NHAM

7.1 INTRODUCTION
7.2 EXPERIMENTAL DESIGN
7.3 SAUSAGE PREPARATION, TESTING AND ANALYSIS FOR STORAGE TEST
7.4 DETERMINATION OF THE RATE OF DETERIORATION OF NHAM DURING STORAGE

7.5 RESULTS

7.5.1 Evaluation of Fermented Nham Before Storage
7.5.2 pH Change During Storage
7.5.3 Weight Loss During Storage
7.5.4 Firmness Change During Storage
7.5.5 Colour Change During Storage
7.5.6 Bacterial Studies During Storage
7.5.7 Sensory Evaluation During Storage

7.6 THE RATE OF DETERIORATION OF NHAM QUALITY DURING STORAGE

7.7 ESTIMATION OF SHELF LIFE OF NHAM

7.8 DISCUSSION

7.8.1 The Quality of Nham During Storage
7.8.2 Prediction of Nham Shelf-life

7.9 CONCLUSION

8 TESTING OF THE DEVELOPED NHAM IN THAILAND

8.1 INTRODUCTION

8.2 EXPERIMENTAL PLANNING

8.3 LABORATORY DEVELOPMENT

8.4 PRODUCTION TRIAL

8.5 CHEMICAL, PHYSICAL AND MICROBIOLOGICAL TESTING

8.6 SENSORY TESTING

8.6.1 Trained Sensory Panel
8.6.2 Consumer Panel
8.6.3 Consumer Test

8.6.3.1 The Sample
8.6.3.2 The Respondents
8.6.3.3 The Questionnaires
8.6.3.4 Organisation of the Test
8.6.3.5 Analyses of the Data

8.7 RESULTS OF NHAM PRODUCTION IN THAILAND

8.7.1 Comparison of Laboratory Fermentation with Fresh Pork in Thailand and Frozen Pork in New Zealand
8.7.2 Production Trial
8.8 RESULTS OF SENSORY TESTING

8.8.1 Comparison of Experimental and Commercial Nham

8.8.2 Consumer Panel Results

8.8.3 Comparison of Trained Sensory Panel and Consumer Panel Results

8.8.4 Consumer Product Test

8.8.4.1 Overall Results for Nham Characteristics and Acceptability

8.8.4.2 Acceptability of the Nham

8.8.4.3 Correlation of Acceptability with Selected Attributes

8.9 COMPARISON OF SENSORY TESTING RESULTS

8.9.1 Comparison of Ideal Profiles from the Trained and Consumer Panels

8.9.2 Comparison of Ideals from the Same Panel Using Different Test Products

8.9.3 Comparison of Ideal Ratio Scores from Consumer Panel and the Consumer Test

8.10 CONSUMER SURVEY ON BUYING NHAM

8.10.1 Eating Pattern for Nham

8.10.2 Criteria for Nham Buying Choice

8.10.3 Packaging Preference for Nham

8.10.4 Predicted Keeping Quality of Nham

8.10.5 Buying Prediction for Experimental Nham

8.11 DISCUSSION

8.11.1 Comparison of Proposed Production Method with the Present Commercial Methods

8.11.2 Possible Marketing of New Nham Against the Present Commercial Products

8.11.3 Use of Trained Panel, Consumer Panel and Consumer Test

8.12 CONCLUSION

9 DISCUSSION AND CONCLUSION

9.1 INTRODUCTION

9.2 USE OF EXPERIMENTAL DESIGNS IN NHAM DEVELOPMENT
9.3 USEFULNESS OF CONSUMER INPUTS AND SENSORY EVALUATION 167
9.4 THE FORMULATION AND PROCESS DEVELOPMENT 170
 9.4.1 The Necessity of Using Starter Cultures in Nham 174
 9.4.2 Effect of Starter Cultures on Characteristics of Nham 174
 9.4.3 Change in Carbon Sources During Fermentation 178
 9.4.4 Effects of Frozen and Fresh Meat 179
9.5 THE SHELF LIFE OF NHAM 179
9.6 SUBJECTIVE TESTS AND OBJECTIVE TESTS 180
9.7 RECOMMENDATION FOR FUTURE WORK 181
9.8 CONCLUSION 182

REFERENCES 183

APPENDICES 202
LIST OF TABLES

1.1 General growth characteristics of food poisoning bacteria and moulds relevant to the processing of fermented meat
1.2 Staphylococcal enterotoxin development, dry sausage, 22-24°C
1.3 Botulinal toxin development, summer style sausage at 27°C
2.1 Basic formulation for Nham production
2.2 Definitions to describe the important characteristics of Nham
3.1 Plackett-Burman matrix for determining the effects of 10 variables at two level using 16 runs
3.2 The numbers of starter cultures in different media after incubation at 30°C
3.3 Nham formulation in Plackett-Burman experiment
3.4 The chemical and microbiological characteristics after 60 hours of Nham fermentation at 30°C and 43% relative humidity
3.5 The physical characteristics after 60 hours of Nham fermentation at 30°C and 43% relative humidity
3.6 The main effects and significance levels of starter cultures on the characteristics of Nham
3.7 The main effects and significance levels of curing agents on the characteristics of Nham
3.8 The main effects and significance levels of carbohydrate and seasonings on the characteristics of Nham
4.1 The full 2^4 factorial experiment with blocks, including four centrepoints for investigating the effects of mixed starter cultures on the characteristics of Nham
4.2 The mean ideal ratio scores of overall acceptability during 3-14 days of fermentation affected by starter cultures
4.3 Correlations of overall acceptability with the sensory attributes of Nham during 3-14 days fermentation
4.4 Fitted models for overall acceptability during 3-14 days of fermentation affected by starter cultures
4.5 Analysis of variance of overall acceptability during fermentation affected by starter cultures
4.6 Fitted models for pH during 3-14 days of fermentation affected by starter cultures
4.7 Fitted models for the gas production (G) during 2-6 days of fermentation affected by starter cultures
4.8 Fitted models for the compression force (CF) and compression energy (CE) during 3-10 days of fermentation affected by starter cultures

4.9 Fitted models for tristimulus values (X Y Z) and residual nitrite (RN) during 1-10 days of fermentation affected by starter cultures

4.10 Fitted models for weight loss (WL) during 7-14 days of fermentation affected by starter cultures

5.1 2^3 factorial design for investigating the effects of carbon sources and \textit{L. plantarum} on the pH reduction in Nham

5.2 Cooked rice, reducing sugars and pH at 18 hours of fermentation

5.3 The weight loss and compression force at 24 and 48 hours of fermentation

5.4 The tristimulus values (X Y Z) at 24 and 48 hours of fermentation

5.5 Fitted models for the reducing sugars (RS) during 6-24 hours of fermentation affected by carbon sources and \textit{L. plantarum}

5.6 Fitted models for the residual level of cooked rice (CR) during 12-48 hours of fermentation affected by carbon sources and \textit{L. plantarum}

5.7 Fitted models for the compression force (CF) during 24-48 hours of fermentation affected by carbon sources and \textit{L. plantarum}

5.8 Fitted models for the tristimulus values (X Y Z) during 24-48 hours of fermentation affected by carbon sources and \textit{L. plantarum}

5.9 The overall acceptability mean ideal ratio scores of Nham fermented for 3 and 7 days

6.1 The \textit{2^2} factorial design with centrepoints for investigating the effects of temperature and relative humidity on the rate of Nham fermentation

6.2 Fitted models for pH during 18-72 hours of fermentation affected by temperature

6.3 Calculation of the rate of pH reduction in Nham at different temperatures

6.4 Fitted models for weight loss (WL) during 72 hours of fermentation affected by temperature and relative humidity

6.5 Fitted models for the effect of temperature on the compression force (CF) during 72 hours of fermentation

6.6 Fitted models for the tristimulus values (X Y Z) at 48-72 hours of fermentation affected by temperature

6.7 The bacterial numbers in Nham fermented 1 and 3 days at different temperatures and relative humidities

6.8 The mean ideal ratio scores of most important attributes and overall acceptability of Nham fermented at different temperatures and relative humidities
6.9 Fitted models for the Nham characteristics (sensory evaluation) fermented at different temperatures for 3 days

6.10 Correlations between subjective and objective tests on Nham fermented at 3 days

6.11 The significant correlations between pH and compression force and tristimulus values of Nham fermented for up to 3 days

7.1 Prediction the shelf life of Nham (days) based on overall acceptability and off-flavour

8.1 Comparison of Nham produced in the laboratory (using fresh or frozen meat) in terms of pH, weight loss and bacterial counts

8.2 Comparison between experimental and commercial Nham (brand A and brand B). Ratios analysed using logarithms of ideal ratio scores

8.3 The mean ideal ratio scores of Nham fermented 2 days at 30°C, 97% RH for each attribute

8.4 Comparison of trained sensory panel and consumer panel using raw ideal ratio scores and logarithms of ideal ratio scores

8.5 Nham characteristics and acceptability in consumer product test

8.6 Acceptability of experimental Nham in consumer product test by location, sex, age group and career

8.7 Correlation of selected attributes of Nham with overall acceptability using the data from consumer product test

8.8 Mean ideal scores of Nham for the trained panel at Massey University, trained panel at Chiang Mai University and consumer panel in Thailand

8.9 Mean ideal scores of two commercial Nham (brand A and brand B) and experimental Nham (X) by trained panel in Chiang Mai

8.10 Comparison of the ideal ratios for the consumer panel and consumer test of selected attributes

8.11 Eating pattern for Nham

8.12 Major influences on buying decisions and retail outlets

8.13 Packaging preferences for Nham

8.14 Storage and keeping quality of Nham

8.15 Buying prediction for experimental Nham

9.1 Experimental designs, stages, and objectives during the formulation and process development

9.2 Types of sensory panels and evaluation techniques used in the project

9.3 Final formulation of Nham
LIST OF FIGURES

2.1 A Nham characteristics identification questionnaire 28
2.2 Nham characteristics and ideal point questionnaire 31
2.3 Standard questionnaire for Nham sensory testing 32
4.1 Ideal ratio profile of Nham added \textit{P. cerevisiae} at the high level with the low levels of the other cultures tested by trained panel 61
4.2 The numbers of \textit{L. plantarum; L. brevis; P. cerevisiae} and \textit{M. varians} during 14 days of fermentation using combinations of the four cultures 62
4.3 pH values during 14 days of fermentation using combinations of four cultures - \textit{M. varians, P. cerevisiae, L. plantarum} and \textit{L. brevis} 63
4.4 The relationship between overall acceptability ideal ratio score and pH of Nham product 64
4.5 Gas formation during 14 days of fermentation using combinations of four cultures - \textit{M. varians, P. cerevisiae, L. plantarum} and \textit{L. brevis} 65
4.6 Compression force and compression energy during 14 days of fermentation using combinations of four cultures - \textit{M. varians, P. cerevisiae, L. plantarum} and \textit{L. brevis} 67
4.7 Tristimulus values (X Y Z) and residual nitrite during 14 days of fermentation using combinations of four cultures - \textit{M. varians, P. cerevisiae, L. plantarum} and \textit{L. brevis} 69
4.8 The numbers of Enterobacteriaceae during 14 days of fermentation using combinations of four cultures - \textit{M. varians, P. cerevisiae, L. plantarum} and \textit{L. brevis} 71
4.9 Weight loss during 14 days of fermentation using combinations of four cultures - \textit{M. varians, P. cerevisiae, L. plantarum} and \textit{L. brevis} 72
5.1 Cooked rice, reducing sugars, and pH during the first 48 hours of fermentation affected by the concentrations of cooked rice, glucose and \textit{L. plantarum} 80
5.2 Cooked rice, reducing sugars, and pH during the 1-2 days (I) and 2-7 days (II) of fermentation affected by the concentrations of cooked rice, glucose and \textit{L. plantarum} 88
5.3 Weight loss during 1-2 days (I) and 2-7 days (II) of fermentation affected by the concentrations of cooked rice, glucose and \textit{L. plantarum} 89
5.4 Compression force during 1-2 days (I) and 2-7 days (II) of fermentation affected by the concentrations of cooked rice, glucose and \textit{L. plantarum} 89
5.5 Tristimulus values (X Y Z) during 1-2 days (I) and 2-7 days (II) of fermentation affected by the concentrations of cooked rice, glucose and \textit{L. plantarum}

5.6 The chemical and physical changes during the first 48 hours and 2-7 days of fermentation affected by carbon sources and \textit{L. plantarum}

6.1 pH change during 72 hours fermentation at different temperatures and relative humidities

6.2 The rate of pH reduction during fermentation at 20\degree C, 25\degree C and 30\degree C

6.3 Weight loss during 72 hours fermentation at different temperatures and relative humidities

6.4 Compression force during 72 hours fermentation at different temperatures and relative humidities

6.5 The rate of firmness development during fermentation at 20\degree C, 25\degree C and 30\degree C

6.6 Tristimulus values (X Y Z) during 72 hours fermentation at different temperatures and relative humidities

6.7 The rate of colour development (x-value) during fermentation at 20\degree C, 25\degree C and 30\degree C

7.1 pH change during storage at different temperatures (1-30\degree C)

7.2 Weight loss during storage at different temperatures (1-30\degree C)

7.3 Compression force during the storage at different temperatures (1-30\degree C)

7.4 Tristimulus values (X Y Z) during storage at different temperatures (1-30\degree C)

7.5 Starter cultures (\textit{L. plantarum}, \textit{P. cerevisiae} and \textit{M. varians}) and mesophilic aerobic counts during storage at different temperatures (1-30\degree C)

7.6 Pathogenic bacteria (Enterobacteriaceae and \textit{S. aureus}) during storage at different temperatures (1-30\degree C)

7.7 (a) Sensory attributes (firmness, colour, sourness and off-flavour) during storage at different temperatures (1-30\degree C)

(b) Overall acceptability during storage at different temperatures (1-30\degree C)

7.8 The rate of pH change; weight loss; firmness; and colour deterioration during storage at different temperatures (1-30\degree C)

7.9 The rate of off-flavour; and overall acceptability changes during storage at 1-30\degree C

9.1 Systematic product development system and experimental designs used for improvement of Nham quality

9.2 Process chart of Nham production using mixed starter cultures

9.3 Effect of mixed starter cultures on Nham system
LIST OF APPENDICES

2.1 The calculation of compression and shear energy 202
2.2 The gas formation calculation 203
2.3 Standard curve of residual nitrite 204
2.4 Reducing sugars and cooked rice determination 205
2.5 Standard curve for reducing sugars as glucose 206
2.6 The important attributes of Nham identified by panelists 207
2.7 Formulation of Nham for first trained panel to identify and discuss Nham characteristics 208
2.8 The questionnaire and definitions used to train the panelists in Thailand 209
4.1 Trained panel for Nham testing, Nham characteristics 211
4.2 Results for 2^4 factorial design used for multiple regression 212
4.3 Regression equation and regression statistics from the 2^4 factorial design and an example of the method used to test for goodness of fit 225
4.4 The multiple regression equations for dependent variables affected by starter cultures 226
4.5 Analysis of variance of overall acceptability during Nham fermentation 236
5.1 Results for 2^3 factorial design used for multiple regression 238
5.2 The multiple regression equations for dependent variables affected by carbon sources and \textit{L. plantarum} 243
6.1 Results of 2^2 factorial design for multiple regression 246
6.2 The multiple regression equations for dependent variables affected by temperature and relative humidity 248
6.3 Calculations of the rate of firmness and colour development in Nham incubated at different temperatures 250
7.1 The storage test questionnaire 251
7.2 The results of dependent variables during the storage of Nham at different temperatures (1-30°C) 252
7.3 The rate of pH, weight loss, firmness, colour, off-flavour, and overall acceptability changes during storage of Nham at different temperatures (1-30°C) 257
7.4 Calculation of the shelf life of Nham at different temperatures (1-30°C) 259
8.1 Product testing questionnaire (translated into Thai) 260
8.2 Questionnaire for housewives (translated into Thai) 262
8.3 (a) Product testing questionnaire (translated into English) 265
 (b) Questionnaire for housewives (translated into English) 267
8.4 The overall acceptability of developed Nham 269
8.5 (a) Eating pattern for Nham 271
(b) Criteria for Nham buying choice 272
(c) Packaging preference for Nham 273
(d) Predicted keeping quality of Nham 275
(e) Buying prediction for experimental Nham 276
EXPERIMENTAL NHAM, THAI SEMI-DRY SAUSAGE