Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An immobilised cell system for the delivery of functional *Lactobacillus reuteri* DPC16 cells to their target site in a simulated gastrointestinal tract

Qian Zhao

2012
An immobilised cell system for the delivery of functional *Lactobacillus reuteri* DPC16 cells to their target site in a simulated gastrointestinal tract

A thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Science at Massey University, Albany, New Zealand

Qian Zhao

2012
List of publications

1. Functional properties of free and encapsulated *Lactobacillus reuteri* DPC16 during and after passage through a simulated gastrointestinal tract (published by *World Journal of Microbiology and Biotechnology*, 2012, 28(1), 61-70.);

2. Viability and delivery of immobilised *Lactobacillus reuteri* DPC16 within calcium alginate gel systems during sequential passage through simulated gastrointestinal fluids (published by *Beneficial Microbes*, 2011, 2(2), 129-138.);

3. The effect of cell immobilisation on the antibacterial activity of *Lactobacillus reuteri* DPC16 cells during passage through a simulated gastrointestinal tract system (submitted to *World Journal of Microbiology and Biotechnology* on 18th April, 2012).
Abstract

The objective of this study was to design and produce calcium alginate beads that can deliver immobilised cells of *Lactobacillus reuteri* DPC16 to a target site of the colon in the gastrointestinal (GI) tract, without any diminution of their important physiological characteristics. Several factors that might affect the effectiveness of calcium alginate beads for the cell delivery were investigated, using an *in vitro* GI tract model to simulate the conditions within the tract. Firstly, by varying the concentration of alginate at a constant concentration of CaCl₂, and combining the system with gelatin, chitosan or skim milk, the survival of immobilised DPC16 cells in simulated gastric fluid (SGF) was observed. Secondly, the physical stability of calcium alginate beads containing skim milk was observed during sequential incubation in the GI fluids using optimal concentrations of alginate. Finally, the survival of DPC16 cells immobilised within alginate beads containing skim milk was monitored when the beads were incubated for different times during sequential exposure to the simulated fluids. The results demonstrated that non-encapsulated DPC16 cells were sensitive to an acidic environment, and no viable cells were detected after 90 min exposure in SGF (pH 1.2). After appropriate experimentation, an alginate concentration of 3% (w/v) was deemed to be the optimum value and was used in subsequent investigations. When skim milk (8% (w/v)) was added to the alginate solution, the cell survival in SGF was improved markedly. The optimal concentration of calcium chloride was 0.3 M, based on the beads maintaining their integrity in SGF and simulated intestinal fluid (SIF) while disintegrating in simulated colonic fluid (SCF) to release viable cells. Hence, the beads made from 3% alginate, 8% skim milk and 0.3 M CaCl₂ proved to be an effective delivery and release system for DPC16 cells.

L. reuteri DPC16 has strong antimicrobial activities against pathogens, due mainly to its ability to produce reuterin. Hence this and other functional properties of the bacterial cells were studied before and after passage through the GI tract. The cells that were recovered after release from the alginate beads in the SCF showed no diminution in functional properties, including their growth kinetics, ability to adhere to epithelial cells and ability to inhibit the adhesion of *E. coli* to epithelial cells. However, the bacteriostatic and bactericidal properties of the recovered cells against some pathogens
Abstract

were significantly greater (P<0.05) than those of the original cells. Production of reuterin by the recovered cells was significantly greater (P<0.05) than that of the original cells when cultured in MRS medium in the absence of its metabolic precursor, glycerol. The results demonstrate significant (P<0.05) consequences for the application of the encapsulation technique to protect and/or enhance the functional properties of the probiotic cells.

Subsequently, an investigation was carried out to find the reason for the antimicrobial activity enhancement. By recovering cells from different stages of the immobilisation and delivery process and examining them for their antimicrobial properties, it was found that it was the immobilisation process *per se*, rather than passage through the simulated gastrointestinal fluids, that caused the enhancement of antimicrobial activity, and that this was related to increased activity of the enzyme (diol dehydratase) that is responsible for reuterin production from glycerol.

Finally, it was demonstrated that freeze-drying of the alginate beads was not an appropriate storage technique as it resulted in a significant (P<0.05) diminution of the antimicrobial activities.

Based on these findings it is confirmed that the alginate-skim milk-CaCl₂ immobilisation system is an effective and efficient method, not only for protecting the viability of DPC16 cells, but also for maintaining the physiological characteristics.
Acknowledgements

It is my pleasure to acknowledge the people who made this thesis possible.

First and foremost, I would like to express my utmost gratitude to my supervisors: Prof. Ian Maddox, Dr. Tony Mutukumira, Dr. Sung Je Lee, Prof. Yihuai Gao and Dr. Quan Shu. I could not have asked for a better team than you. The whole project brought us together to appreciate the true value of friendship.

The special thank goes to Prof. Ian Maddox, my chief supervisor. The supervision and support that he gave to me truly help the smoothness of the program.

I would like to thank for the Microbiology lab of IFHNN, Massey University and Plant & Food Institute to give me the opportunity to work there, and supply the experimental instruments. Thanks for the help from Song Chen and Hong Tian who provided several experimental protocols.

I also want to show my appreciation to my parents, my husband and those who may not be mentioned here. Thanks for their love, help, understanding and support through the whole process of my study.

The financial support partly from Drapac® Ltd., New Zealand is greatly acknowledged.

Last but not least I would like to thank my friends especially those who work together with me at Massey University.
Table of Contents

List of publications ... i
Abstract ... ii
Acknowledgements .. iv
Table of contents .. v
List of Figures ... x
List of Tables ... xiv
Abbreviations .. xvii

Chapter 1 General Introduction .. 1

Chapter 2 Literature review .. 4

2.1 Probiotics .. 4
 2.1.1 Definition .. 4
 2.1.2 Microorganisms used as probiotics 4
 2.1.3 Mode of action of *L. reuteri* .. 6
 2.1.4 Survival of probiotics in acid and bile stress 11
 2.1.5 Colonization/Adhesion inside the human body 11
 2.1.6 Commercial Probiotic Products 12

2.2 The Gastrointestinal (GI) tract .. 13
 2.2.1 Gastrointestinal transit time .. 14
 2.2.3 Intestinal flora and bile salts .. 15
 2.2.4 Colonic environment .. 16
 2.2.5 Digestive enzymes in the GI tract 16
 2.2.6 Simulated GI tract ... 17

2.3 Microencapsulation and immobilisation 18
 2.3.1 Introduction ... 18
 2.3.2 Commonly used immobilisation materials 20
 2.3.2.1 Carbohydrates .. 22
 2.3.2.1.1 Alginate ... 22
 2.3.2.1.2 Chitosan ... 23
Table of Contents

2.3.2.1.3 Starch.. 24
2.3.2.2 Proteins .. 25
2.3.2.3 Other food grade polymers ... 26
 2.3.2.3.1 Hydroxypropyl methylcellulose (HPMC)... 26
 2.3.2.3.2 Eudragit S .. 26
 2.3.2.3.3 Skim milk .. 26
2.3.2.4 Summary of the calcium alginate based immobilisation system.............. 27
2.3.3 Microencapsulation/Immobilisation techniques .. 28
 2.3.3.1 Extrusion method... 28
 2.3.3.2 Emulsion method... 29
 2.3.3.3 Comparison.. 30
2.3.4 Drying stage ... 31
 2.3.4.1 Freeze-drying... 31
 2.3.4.2 Spray-drying ... 33
 2.3.4.3 Fluidised bed drying .. 33
 2.3.4.4 Comparison.. 34
2.3.5 Colon Release of immobilised probiotic cells .. 34
2.3.6 Methods of studying adhesion ... 37
2.4 Summary... 39
2.5 Previous studies on the physiological and functional characteristics of free and encapsulated L. reuteri DPC16 related to this project... 39
2.6 Scope of this project.. 40

Chapter 3 Development of an optimal immobilisation system for L. reuteri DPC16 for passage through a simulated GI tract......................... 42
3.1 Introduction .. 42
3.2 Materials and methods ... 45
 3.2.1 Materials... 45
 3.2.2 Preparation of simulated gastrointestinal fluids.. 46
 3.2.3 L. reuteri DPC16 culture .. 46
 3.2.4 Survival of free L. reuteri DPC16 cells in immobilisation-related materials and simulated gastrointestinal fluids.. 46
 3.2.5 Immobilisation of L. reuteri DPC16 cells in calcium alginate gel beads 47
 3.2.5.1 Comparison of 5 different types of beads based on an alginate-Ca^{2+}
system .. 47
3.2.5.2 Optimisation of the concentration of calcium chloride 48
3.2.5.3 Determination of the optimal immobilisation system 48
3.2.6 Visual observation of beads.. 49
3.2.7 Viability of immobilised L. reuteri DPC16 cells in simulated GI fluids 49
3.2.8 Viability of freeze-dried encapsulated DPC16 cells during storage 49
3.2.9 Statistical analysis .. 50
3.3 Results .. 50
3.3.1 Images of immobilised beads... 50
3.3.2 Survival of free and immobilised L. reuteri DPC16 cells during passage
through the GI tract .. 52
 3.3.2.1 Viability of free DPC16 cells in immobilisation-related chemicals and
simulated GI fluids .. 52
 3.3.2.2 Survival of L. reuteri DPC16 in different types of immobilisation systems
during incubation in simulated gastric fluid at 37°C ... 55
3.3.3 Physical characteristics of calcium alginate beads...................................... 59
3.3.4 Sequential incubation of immobilised L. reuteri DPC16 in the simulated GI
tract .. 63
3.3.5 Survival of DPC16 in freeze-dried beads ... 66
3.4 Discussion ... 68

Chapter 4 Some functional properties of free and immobilised L. reuteri DPC16 during and after passage through a simulated GI tract
... 74
4.1 Introduction .. 74
4.2 Methods and Materials ... 76
 4.2.1 Bacterial strains and culture growth... 76
 4.2.2 Preparation of cell-free supernatants of L. reuteri DPC16......................... 77
 4.2.3 Antimicrobial assay of strain DPC16 supernatants .. 77
 4.2.4 Bactericidal effects of strain DPC16 supernatants ... 78
 4.2.5 Effect of bile salts on the two DPC16 strains .. 78
 4.2.6 Determination of reuterin and short chain fatty acids 79
 4.2.7 In vitro enterocyte cells model ... 79
 4.2.8 Adhesion of strain DPC16 cells to HT-29 and Caco-2 cells 80
4.2.9 Inhibition of *E. coli* adhesion to Caco-2 cells by probiotic bacteria 81
4.2.10 Statistical analysis ... 81
4.3 Results ... 82
 4.3.1 Growth kinetics of the original and recovered strains of DPC16 82
 4.3.2 Antimicrobial activities of cell-free supernatants from *L. reuteri* DPC16 cultures ... 85
 4.3.2.1 The length of lag phase ... 85
 4.3.2.2 The maximum specific growth rate .. 88
 4.3.2.3 Endpoint optical density reading .. 88
 4.3.3 Bactericidal effects of DPC16 supernatants on selected pathogens 90
 4.3.4 Viability of DPC16 cells in different concentrations of bile salts 94
 4.3.5 Reuterin and short chain fatty acid production by the original and recovered cells of *L. reuteri* DPC16 ... 96
 4.3.6 Adhesion of DPC16 cells to HT-29 and Caco-2 cells 96
 4.3.7 Inhibition of adhesion of *E. coli* to Caco-2 cells 100
4.4 Discussion .. 101

Chapter 5 Investigation into the factors that cause the changes to the bacteriostatic and bactericidal activities of DPC16 cells during passage of immobilised cells through simulated GI tract 105
 5.1 Introduction .. 105
 5.2 Materials and Methods ... 107
 5.2.1 Isolation of different DPC16 “strains” .. 107
 5.2.2 Growth curve, reuterin production and SCFAs production of the different DPC16 “strains” ... 109
 5.2.3 Antimicrobial assay of strain DPC16 supernatants 109
 5.2.4 Diol dehydratase assay .. 109
 5.2.5 Protein analysis of cell-free extract using SDS-PAGE 111
 5.2.6 Statistical analysis ... 111
 5.3 Results ... 111
 5.3.1 Comparison of colony morphology and growth curves of different DPC16 “strains” ... 111
 5.3.2 Reuterin and short chain fatty acids production by different DPC16 “strains” ... 115
5.3.3.3 The antimicrobial effects of the different DPC16 “strain” culture supernatants on the growth of selected pathogens ... 119

5.3.3.1 Immobilisation effect (comparison of the antimicrobial activities of “strains” 1, 2 and 3). .. 120

5.3.3.2 Effect of incubation of immobilised cells in SGF and SCF, and effect of freeze-drying/storage of immobilised cells (comparison of “strains” 1, 2, 4, 6 and 7).. 122

5.3.3.3 Effect of incubation of immobilised cells in SIF (comparison of “strains” 1, 2 and 5) .. 124

5.3.3.4 Effect of incubation of free cells in SCF (comparison of “strains” 1 and 9) ... 126

5.3.3.5 The length of lag phase .. 128

5.3.3.6 The specific growth rate .. 128

5.3.3.7 Endpoint optical density reading ... 128

5.3.4 Diol dehydratase activity assay .. 132

5.4 Discussion .. 134

Chapter 6 Final discussions and conclusions .. 139

Bibliography ... 141

Appendix ... 175

Appendix I Pepsin Enzymatic activity assay .. 175

Appendix II Diffusion & leakage test of alginate-skim milk-Ca^{2+} system 178

Appendix III Publications .. 181

Publication 1 published by World Journal of Microbiology and Biotechnology: Functional properties of free and encapsulated Lactobacillus reuteri DPC16 during and after passage through a simulated gastrointestinal tract............................... 181

Publication 2 published by Beneficial Microbes: Viability and delivery of immobilised Lactobacillus reuteri DPC16 within calcium alginate gel systems during sequential passage through simulated gastrointestinal fluids 181
List of Figures

Figure 2.1 General bacterial conversion of glycerol to 3-HPA. 7
Figure 2.2 GI tract. .. 14
Figure 2.3 Structure of micro beads. ... 19
Figure 2.4 Cell immobilisation methods.. 20
Figure 2.5 The criteria for the choice of coating material for probiotic cells. 21
Figure 2.6 The structure of the chemical units of alginate............................... 22
Figure 2.7 Chemical formula of chitosan.. 23
Figure 2.8 Structure of ACA beads (A = alginate and C = chitosan). 24
Figure 2.9 Sketch of an extrusion method .. 29
Figure 2.10 Processing scheme of single emulsion technique for encapsulation. 30
Figure 2.11 Freeze-drying cycle. ... 32
Figure 2.12 Spray drying cycle. ... 33
Figure 2.13 Scheme of heat pump fluidised bed drying. 34
Figure 2.14 Some factors that can contribute to release of immobilised cells.... 35
Figure 2.15 The controlled-release encapsulation system by \(\text{H}_2\text{O} \) or pH.......... 36
Figure 2.16 Assay of probiotic bacterial cells adhesion. 38
Figure 2.17 Pathogens compete with probiotics for receptor sites. 38
Figure 3.1 Alginate-CaCl\(_2\) beads before and after incubation in SGF.............. 51
Figure 3.2 Alginate-skim milk-CaCl\(_2\) beads before and after incubation in SGF... 51
Figure 3.3 Alginate-gelatin beads. ... 52
List of Figures

Figure 3.4 Alginate-Ca$^{2+}$-chitosan (chitosan dissolved in calcium chloride first) beads before and after coating with 1% alginate..52

Figure 3.5 Viable free L. reuteri DPC16 cells in (a) 10% sodium citrate and (b) chitosan (1%) -acetic acid (0.4%) solution during incubation at 37°C for 90 and 120 min, respectively. ..53

Figure 3.6 Viable free L. reuteri DPC16 cells in SGF (pH 1.2) during incubation at 37°C for 90 min...54

Figure 3.7 Viable free L. reuteri DPC16 cells in Tris-HCl, Tris-HCl + bile salts, and SIF (pH 7.2) during incubation at 37°C for 6 h..54

Figure 3.8 Viable free L. reuteri DPC16 cells in SCF at 37°C for 30 h..55

Figure 3.9 Number of viable DPC16 cells immobilised in alginate-CaCl$_2$ beads at different alginate concentrations during incubation in SGF at 37°C (the concentration of CaCl$_2$ was maintained at 1 M). ...57

Figure 3.10 Number of viable DPC16 cells during incubation in SGF at 37°C..57

Figure 3.11 Number of viable cells immobilised in alginate-CaCl$_2$ incorporating skim milk during incubation in SGF at 37°C, in the presence and absence of pepsin.....58

Figure 3.12 Number of viable DPC16 cells inalginate-chitosan-CaCl$_2$ beads during incubation in SGF at 37°C...58

Figure 3.13 The initial sizes of alginate (3%) beads (containing skim milk at a final concentration of 8% (w/v) made at different CaCl$_2$ concentrations (0.05-1 M).60

Figure 3.14 Calcium alginate beads containing skim milk prepared at different concentrations of CaCl$_2$ (0.05-1 M). ..61

Figure 3.15 Photographs of calcium alginate beads containing skim milk (8%) prepared at different concentrations of CaCl$_2$ (0.05-1 M). ...62

Figure 3.16 Colony appearance on MRS agar of the original and recovered DPC 16 cells after sequential incubation in simulated GI fluids...65

Figure 3.17 Gram stained cells from different simulated solutions.................................65
Figure 3.18 Alginate-skim milk-Ca$^{2+}$ beads before and after freeze-drying...........66

Figure 3.19 Photomicrographs of DPC16 cells in freeze-dried beads at the beginning and after six months..67

Figure 4.1 Typical growth curve...78

Figure 4.2 Growth curves of original and recovered *L. reuteri* DPC16 cells........83

Figure 4.3 Antimicrobial activities of DPC16 supernatants (pH 4.4) against growth of selected pathogens...86

Figure 4.4 OD$_{620}$nm of pathogens grown in BHI and in the presence of DPC16 supernatants, at the end of incubation (24 h)...89

Figure 4.5 Bactericidal activity of DPC16 cell-free supernatants (pH adjusted to 7.0 and unadjusted (approximately pH 4.4)) on growth of *E. coli*, *S. derby*, *L. monocytogenes* and *S. aureus*...91

Figure 4.6 Viable cell counts of the two DPC16 strains in different concentrations of bile salts...95

Figure 4.7 HT-29 cells at 90% confluence before the adhesion experiment..........98

Figure 4.8 Fluorescent stains of *L. reuteri* DPC16 cells adhering to HT-29 cells....98

Figure 4.9 Caco-2 cells at >90% confluence before the adhesion experiment........99

Figure 4.10 Fluorescent stains of *L. reuteri* DPC16 adhering to Caco-2 cells..........99

Figure 4.11 Fluorescence microscopy of the displacement assay of DPC16 cells with *E. coli*...101

Figure 5.1 Overview of approach to “strain” selection for identification of factors that contribute to enhanced antimicrobial activity of cells recovered from simulated colonic fluid after passage of immobilised cells through a simulated gastrointestinal tract...106

Figure 5.2 Reuterin production in *L. reuteri*..107

Figure 5.3 Different DPC16 “strains” on MRS agar.......................................113
List of Figures

Figure 5.4 Growth curves of *L. reuteri* DPC16 “strains” .. 114

Figure 5.5 Growth curves of pathogens in the presence of cell-free culture supernatants from “strains” 1, 2 and 3. ... 120

Figure 5.6 Growth curves of pathogens in the presence of cell-free culture supernatants from “strains” 1, 2, 4, 6 and 7. .. 122

Figure 5.7 Growth curves of pathogens in the presence of cell-free culture supernatants from “strains” 1, 2 and 5. ... 124

Figure 5.8 Growth curves of pathogens in the presence of cell-free culture supernatants of “strains” 1 and 9. ... 126

Figure 5.9 SDS-PAGE of the cell-free extract from different *L. reuteri* DPC16 “strains” (strain numbers were listed in Table 5.1) ... 132

Figure 5.10 A plot of diol dehydratase activity against reuterin production. 134
List of Tables

Table 2.1 Potential therapies using probiotic bacteria ... 9

Table 2.2 Some commercial probiotic products .. 13

Table 2.3 Some examples of coatings of calcium alginate-based beads 27

Table 3.1 Survival (c.f.u./g) of non-encapsulated freeze-dried *L. reuteri* DPC16 cells during storage for 90 days at -20°C ... 43

Table 3.2 A summary of the arbitrary “rates of viability decrease” during incubation in SGF of free and immobilised DPC16 cells ... 59

Table 3.3 Viable cell numbers (\(\log_{10}\) c.f.u./g) of *L. reuteri* DPC16 cells in calcium alginate beads (3%) incorporated with skim milk (8%) during sequential incubation (37°C) in SGF, SIF and SCF ... 64

Table 3.4 Viable cell counts of *L. reuteri* DPC16 cells immobilised in calcium alginate beads (3%) containing skim milk (8%) during sequential incubation in simulated GI fluids (SGF 2 h, SIF 5 h and SCF 24 h) at 37°C .. 64

Table 3.5 Viable cells (c.f.u./bead) of freeze-dried alginate-skim milk-CaCl\(_2\) immobilised DPC16 cells during storage at 4°C ... 67

Table 3.6 Advantages and disadvantages of different immobilisation materials 71

Table 4.1 Growth rates of two *L. reuteri* DPC16 cultures in different phases 84

Table 4.2 Optical density reading at the endpoint (36 h) for two *L. reuteri* DPC16 cultures .. 84

Table 4.3 pH changes during the growth of two *L. reuteri* DPC16 cultures 84

Table 4.4 Growth rates of tested pathogens in BHI and in the additional presence of DPC16 supernatants ... 88

Table 4.5 A summary of the inhibitory effects of the DPC16 supernatants when grown in the presence and absence of glycerol, on the growth of pathogens 90
List of Tables

Table 4.6 Bactericidal effects of *L. reuteri* DPC16 supernatants on selected pathogens ... 93

Table 4.7 A summary of the bactericidal effects of the original DPC16 culture and the recovered DPC16 culture ... 94

Table 4.8 Viable cell counts (log₁₀ c.f.u./ml) of the original and recovered DPC16 cultures in different concentrations of bile salts ... 95

Table 4.9 Production of reuterin and short chain fatty acids by the original and recovered cells of *L. reuteri* DPC16 ... 96

Table 4.10 Adhesion of *L. reuteri* DPC16 to HT-29 cells (c.f.u./cell) and Caco-2 cells ... 97

Table 4.11 Effect of probiotic bacterial cells on the adhesion of *E. coli* to Caco-2 cells ... 100

Table 4.12 Published data for adhesion of some probiotic bacteria to Caco-2 cells ... 103

Table 5.1 A summary of the isolated DPC16 “strains” ... 109

Table 5.2 Growth rate of *L. reuteri* DPC16 cells grown in MRS with and without the presence of glycerol ... 115

Table 5.3 Endpoint OD₆₂₀nm readings of *L. reuteri* DPC16 cells grown in MRS with and without glycerol at 36 h ... 115

Table 5.4 Reuterin production (µg/ml) by different DPC16 “strains” ... 117

Table 5.5 Short chain fatty acids production by different DPC16 “strains” ... 118

Table 5.6 A summary of reuterin and SCFAs production by the various “strains” when grown in the presence/absence of glycerol and during secondary fermentation ... 118

Table 5.7 A summary of the antimicrobial activities of the different “strains” of DPC16 against pathogens ... 130

Table 5.8 A summary of the immobilisation effect compared with the effect of incubating the immobilised “strain” in different simulated gastrointestinal fluids, and freeze-drying storage of the immobilised cells ... 131
Table 5.9 Diol dehydratase activities in cell-free extracts of different *L. reuteri* DPC16 “strains”. Values are initial rates, taken after 2 min incubation..........................133

Table 5.10 A summary of the immobilisation effect compared with the effect of incubating the immobilised “strain” in different simulated gastrointestinal fluids ..133
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-HPA</td>
<td>3-hydroxypropionaldehyde</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BHI</td>
<td>Brian heart infusion broth</td>
</tr>
<tr>
<td>cFDA</td>
<td>Carboxy fluorescein di-acetate</td>
</tr>
<tr>
<td>c.f.u.</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified Eagle's medium</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organisation of the United Nations</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GI tract</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>IDF</td>
<td>International Dairy Federation</td>
</tr>
<tr>
<td>LAB</td>
<td>Lactic acid bacteria</td>
</tr>
<tr>
<td>MEM</td>
<td>Modified Eagle’s medium</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MRS</td>
<td>De Man, Rogosa, Sharpe</td>
</tr>
<tr>
<td>MRSg</td>
<td>MRS broth supplemented with 250 mM glycerol</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>P</td>
<td>Provability value</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SCFAs</td>
<td>Short chain fatty acids</td>
</tr>
<tr>
<td>SCF</td>
<td>Simulated colonic fluid</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SGF</td>
<td>Simulated gastric fluid</td>
</tr>
<tr>
<td>SIF</td>
<td>Simulated intestinal fluid</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl) amiomethane</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet light</td>
</tr>
<tr>
<td>WHO</td>
<td>The World Health Organisation of the United Nations</td>
</tr>
</tbody>
</table>