Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
HERBICIDE RESISTANCE OF TRANSGENIC PLANTS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Breeding and Genetics Department of Plant Science Massey University Palmerston North New Zealand

Mohebbat Ali Naderi Shahab 1994
In the name of God the most compassionate and the most merciful

In memory of my brother Hokm Ali
Abstract

A cloned dehalogenase gene, conferring the ability to degrade the herbicide dalapon, was introduced into white clover and tobacco using Agrobacterium-mediated transformation. The objectives of this study can be divided into three parts. The first part consists of the evaluation of genetically transformed white clover and tobacco plants for their level of resistance to dalapon, determination of the heritability of the introduced transgene at different stages of growth, and identification of the segregation pattern of the transgene. The second part consists of the study of the quantitative inheritance of the transgene in transgenic tobacco plants. The third part consists of a determination of the number of copies of the transgene integrated into the genome of a transgenic tobacco line, inheritance of the transgene over successive generations and analysis of steady state levels of mRNA of the transgene in leaf tissue. Relationships between the levels of transgene mRNA and the degree of resistance of these plants to dalapon were also assessed.

The resistance of genetically transformed white clover and tobacco plants to dalapon was studied under both in vitro and greenhouse conditions using different experimental designs. In the in vitro studies, both white clover callus lines and tobacco seedlings showed resistance to high concentrations of dalapon. The level of resistance of the tobacco plants to dalapon was studied under greenhouse conditions using six transgenic lines and one non-transgenic control line. The non-transgenic line was unable to grow at dalapon levels greater than 6.0 kg ha⁻¹, while the majority of the transgenic lines were able to grow at a herbicide level of 48.0 kg ha⁻¹. There were significant differences between the transgenic tobacco lines in their resistance to the dalapon.

The heritability of necrosis, leaf length, leaf width and stem height characters were estimated at various levels of dalapon. The heritability of dalapon resistance for developed transgenic tobacco plants at various levels of dalapon was high. The heritability of dalapon resistance for the characters under study decreased with increasing dalapon levels, with the lowest values of heritability occurring at the highest level of dalapon (48 kg ha⁻¹). The leaf length and leaf width characters had the highest heritabilities, while the necrosis and stem height characters had the lowest heritabilities. The effect of time and the interaction between time and herbicide concentration as environmental factors where lowest for the leaf length
and leaf width characters, while the time effect was highest for the stem height character. The interaction between time and the effects of dalapon were highest for the necrosis character. The heritability of dalapon resistance in transgenic tobacco seedlings grown in vitro was significantly lower than in plants, indicating either a low expression of the transgene or a high effect of environmental factors for plants at an early stage of growth. The segregation ratio (resistant:susceptible phenotype) for the transgenic lines was 3:1, and χ^2 test results demonstrated the involvement of single gene inheritance for the lines.

Quantitative inheritance studies of the transgene in tobacco plants using generation means with six generations and 9x9 full diallel mating designs revealed that the additive component of variation was greater than the dominance (hemizygosity) component of variation. The hemizygosity effect was partial and towards the dalapon resistant phenotype. There was significant inter-allelic interaction (epistasis), either between the host plant allele(s) and the dehalogenase transgene or between copies of the transgene. The non-significance of reciprocal effects in the diallel table analysis revealed a lack of maternal or cytoplasmic effects. The analysis of general combining ability and specific combining ability in the diallel table indicated that the majority of transgenic parents had significant general combining ability effect (g.c.a. effects) towards the resistant phenotype, while the non-transgenic parents showed significant g.c.a. effects towards the susceptible phenotype. The progeny derived from crosses between resistant transgenic parents and susceptible, non-transgenic parents showed significant s.c.a. effects towards the resistant phenotype. In contrast, progeny derived from crosses between the susceptible, transgenic parent and non-transgenic parents, as well as progeny derived from crosses between non-transgenic parents showed significant s.c.a. effects towards the susceptible phenotype.

In molecular studies of the copy number of the transgene at different generations of one transgenic tobacco line, the transgenic plants were shown to contain two closely linked copies of the transgene at a single locus, whereas the non-transgenic plants were shown to lack the transgene. It was also shown that the transgene was stably integrated into the plant genome in successive generations and that rearrangement of the integrated transgene did not occur. A dehalogenase-specific mRNA was detected in total RNA extracted from leaves of the transgenic plants. Although all of the transgenic plants contained the same
gene, they showed significant variation in the accumulation of dehalogenase-specific mRNA. In control, non-transgenic plants no dehalogenase-specific mRNA was detected. Although the level of the dehalogenase-specific mRNA in transformed plants varied considerably between the lines, was no significant differences between the individual plants within the lines.

In a two phase selection experiment, some transgenic callus lines exhibited a dissimilarity in expression of the dehalogenase gene and the neomycin phosphotransferase II gene, conferring kanamycin resistance, used in these experiments as a second selectable marker. Some of the genetically transformed cells selected on medium containing kanamycin, when transferred onto medium containing dalapon, did not show resistance to dalapon. Similarly, when transformed cells selected on medium containing dalapon were transferred onto medium containing kanamycin, some of the callus lines did not show resistance to kanamycin. These results show that in some cases selection for one of the transferred genes does not result in expression of the other, non-selected, transferred gene.
I would like to thank my chief supervisor Dr. I.L. Gordon, of the Seed and Crop Group, Plant Science Department, Massey University, for guidance and assistance during this course of study and for computer software. I would also like to thank my co-supervisor, Dr. D.W.R. White, of the Molecular Genetics Laboratory, New Zealand Pastoral Agricultural Research Institute, Palmerston North for supplying the plasmid pAS501 and transgenic tobacco seed material and his guidance, particularly for the molecular genetics aspects and for providing excellent research facilities as well as other research materials.

I would like to thank my friends in the Molecular Genetic Laboratory, AgResearch, both staff and postgraduate students for their kindness and invaluable assistance in various ways. I would especially like to thank Dr. N. Ellison for his advice, guidance, comments and assistance during this course of study, Dr. R. Appleby, A. Griffiths, D. Kerr, R. Meeking, and A. Lambert for their advice and assistance in some experiments, and Dr. P. Ealing for providing the E3 primer.

I would like to express my gratitude to all staff of the Seed and Crop Group and the Pasture Group, Plant Science Department especially the head of the former Agronomy Department Professor J. Hodgson and the head of the Seed and Crop Group, Professor M. Hill, for their help and assistance during the course of this study. Thanks also to Mr. D. Sollite, Mrs K. McKenzie of the Plant Science Department for providing material and assistance, and Dr. K. Harrington for providing herbicide and for designing the herbicide sprayer which was used in the greenhouse experiments. I also wish to thank Dr. M. Behboudian of the Horticulture Group for his invaluable guidance and advice.

I am grateful to the Ministry of Jehade Sazandegi of the Islamic Republic of Iran for allowing me to take study leave and for providing financial support during the course of this study.

My special thanks are offered to my mother, Nimtaj, my sister, Zahra, and my brothers, Ibrahim, Abbas and Bahram, for their support and encouragement.

Finally I would like to thank my wife Masoumeh, and children Marzieh and Tahereh, for their encouragement, patience and kindness.
Table of Contents

Chapter 1... 1

Introduction .. 1

Chapter 2 ... 4

Literature Review ... 4

2.1 Herbicide resistant transgenic plants ... 4
 2.1.1 2,2-dichloropropionic acid (dalapon) ... 4
 2.1.2 Enzymatic and metabolic effects of dalapon 5
 2.1.3 Dehalogenase enzyme ... 6
 2.1.4 Herbicide resistant transgenic plants ... 8
 2.1.5 Dalapon resistant transgenic plants ... 10
 2.1.6 Plant transformation methods ... 10
 2.1.6.1 Agrobacterium-mediated DNA transfer to the plant genome 10
 2.1.6.1.1 Ti plasmids ... 11
 2.1.6.1.2 Disarmed Ti plasmids .. 12
 2.1.6.1.3 Binary vector systems .. 13
 2.1.6.2 Direct gene transfer methods ... 14
 2.1.7 Transgene copy number ... 15
 2.1.8 Transgene copy number determination .. 16
 2.1.9 Variation in transcription of the transgene 17
 2.1.10 Inheritance of the transgene .. 19

2.2 Quantitative genetics ... 21
 2.2.1 Quantitative characters which are controlled with a few genes 21
 2.2.2 Partitioning the genetic variance .. 23
 2.2.3 Genetical mating designs ... 25
 2.2.4 Generation means .. 26
 2.2.5 Diallel crossing .. 28
 2.2.5.1 Analysis of Jinks-Hayman diallel table 29
 2.2.5.2 Graphical analysis of Jinks-Hayman diallel 32
 2.2.5.3 Griffing diallel ... 32
 2.2.6 Heritability ... 34
 2.2.7 Genetic advance (ΔG) and number of effective factors 38

Chapter 3 .. 40

Phenotypic expression and heritability of resistance to dalapon 40
 3.1 Introduction ... 40
 3.1.1 Phenotypic expression of transgene ... 40
 3.1.2 Heritability of transgene .. 40
 3.1.3 Inheritance of transgene .. 41
 3.2 Materials and Methods .. 42
 3.2.1 Herbicide resistance of transgenic white clover 42
 3.2.1.1 Developing the transgenic white clover 42
3.2.1.2 Herbicide resistance of in vitro-grown transgenic white clover calli 43
3.2.1.2.1 White clover callus lines 43
3.2.1.2.2 Experimental layout 43
3.2.1.3 Herbicide resistance of transgenic white clover plants 46
3.2.2 Herbicide resistance of transgenic tobacco 46
3.2.2.1 Tobacco seed material 46
3.2.2.2 Herbicide resistance of in vitro-grown tobacco seedlings 47
3.2.2.3 Herbicide resistance of transgenic tobacco plants 48
3.2.2.4 Methods for estimating the heritability (h^2) of characters 51
3.2.3 Inheritance of dalapon resistance 52
3.3 Results .. 55
3.3.1 Herbicide resistance of transgenic white clover 55
3.3.1.1 The herbicide resistance of in vitro-grown transgenic white clover calli 55
3.3.1.2 Herbicide resistance of white clover plants 57
3.3.2 Herbicide resistance of transgenic tobacco lines 61
3.3.2.1 The resistance of in vitro-grown tobacco seedlings to dalapon 61
3.3.2.2 Heritability of fresh weight of in vitro-grown tobacco seedlings 62
3.3.2.3 Herbicide resistance of tobacco plants 64
3.3.2.4 Heritability of different characters in transgenic tobacco plants 83
3.3.2.5 Inheritance of the dalapon resistance phenotype 87
3.3.2.5.1 Inheritance of dalapon resistance phenotype based on pooled analysis 88
3.3.2.5.2 Inheritance of dalapon resistance phenotype based on each level of herbicide 89
3.4 Discussion .. 92
3.4.1 Transgenic white clover 92
3.4.1.1 Herbicide resistance of In vitro-grown transgenic white clover callus 92
3.4.1.2 Herbicide resistance of transgenic white clover plants 93
3.4.2 Transgenic tobacco 94
3.4.2.1 In vitro-grown tobacco seedlings fresh weight 94
3.4.2.2 Heritability of herbicide resistance in in vitro-grown transgenic tobacco seedlings 96
3.4.2.3 Transgenic tobacco plants 96
3.4.2.4 Heritability of herbicide resistance in transgenic tobacco plants 100
3.4.2.5 Inheritance of the dalapon resistance phenotype 104
Chapter 4 .. 106
Quantitative genetics of herbicide resistance 106

4.2 Introduction ... 106
4.2.1 Quantitative inheritance of transgene 106
4.2.2 Heritability of transgene 107
4.2.3 Combining ability 107

4.2 Materials and Methods 108
4.2.1 Plant development for transgenic crossing 108
4.2.1.1 Homozygous plant development 108
4.2.1.2 TF₁, TF₂, TBC₁, and TBC₂ seeds production 109

4.2.2 Quantitative inheritance studies 110
4.2.2.1 Generation means 110
4.2.2.1.1 Attributes 110
4.2.2.1.2 Generation means analysis 110
4.2.2.1.3 Generation variance analysis 112
4.2.2.1.4 Heritability 113
4.2.2.1.5 Method of estimating the number of effective factors 114
4.2.2.2.1 Diallel crossing programme and TF₁ and F₁ seed production . 115
4.2.2.4 Jinks-Hayman diallel crossing design 115
4.2.2.4.1 Attributes 115
4.2.2.4.2 Analysis of diallel table 116
4.2.2.4.3 Genetical components 117
4.2.2.4.4 Estimating heritability through Jinks-Hayman diallel 119
4.2.2.5 Method for analysis of Griffing diallel 119

4.3 Results .. 123
4.3.1 Generation means analysis 123
4.3.1.1 Components of means 123
4.3.1.2 Components of variation 128
4.3.2 Jinks-Hayman diallel crossing 131
4.3.2.1 Basic array statistics 138
4.3.3 Griffing diallel ... 145

4.4 Discussion .. 153
4.4.1 Generation means 153
4.4.1.1 Components of means 153
4.4.1.2 Components of variation 155
4.4.2 Jinks-Hayman diallel crossing 157
4.4.3 Griffing diallel crossing 160
4.4.4 Interallelic interaction (epistasis) 163

Chapter 5 ... 167
Molecular genetics of herbicide resistance 167

5.1 Introduction ... 167
5.1.1 T-DNA inheritance and organisation 167
5.1.2 Level of the dehalogenase gene mRNA 167
5.1.3 Variability in the level of expression of T-DNA genes 168

5.2 Materials and Methods 169
5.2.1 Isolation of plasmid pAS501 from *Agrobacterium* 169
 5.2.1.1 A modified STET method of plasmid DNA isolation 169
 5.2.1.2 Analysis of isolated plasmid DNA 170
 5.2.1.3 Horizontal mini gel electrophoresis 170
 5.2.1.4 Determination of molecular weight of DNA samples 171
 5.2.1.5 Competent cell preparation and transformation of *E.coli* with plasmid pAS501 171
 5.2.1.5.1 Preparing *E.coli* strain DH5α competent cells 171
 5.2.1.5.2 Transformation of *E.coli* with plasmid pAS501 172
 5.2.2 Restriction enzyme site mapping of plasmid pAS501 172
 5.2.2.1 Conditions for restriction enzymes digestion 172
 5.2.2.1.1 Single digests 172
 5.2.2.1.2 Double digests 172
 5.2.2.2 Restriction mapping of plasmid pAS501 173
 5.2.3 Making a dehalogenase gene probe 174
 5.2.3.1 Isolation of DNA fragments using a modified DEAE method 174
 5.2.3.2 *E.coli* transformation and selection for transformed cells 175
 5.2.3.3 Polymerise chain reaction (PCR) amplification of the dehalogenase gene 176
 5.2.3.4 Preparation of a dehalogenase gene probe 177
 5.2.3.5 A method of making [α-32P]-dCTP-labelled probe 177
 5.2.3.5.1 Determining quality of labelled probe DNA 177
 5.2.3.5.2 Purification of labelled probe DNA 178
 5.2.4 Plant DNA isolation 178
 5.2.5 Typical method of plant DNA restriction enzyme digestion 179
 5.2.6 Plant RNA isolation using guanidine isothiocyanate 179
 5.2.7 Southern blotting 181
 5.2.7.1 Running the DNA samples on gel 181
 5.2.7.2 Capillary blotting 182
 5.2.7.3 Alkali fixation of DNA to the membrane 182
 5.2.7.4 Hybridisation of probed DNA to membrane 183
 5.2.8 RNA dot blotting technique 183
 5.2.8.1 Dot blot hybridisation 184
 5.2.9 Tobacco leaf transformation method 185
 5.3 Results 187
 5.3.1 T-DNA organisation in tobacco line 51-1 and subsequent generations 187
 5.3.2 Dehalogenase specific mRNA levels 203
 5.3.3 Two phase (dual) selection of genetically transformed cells 213
5.4 Discussion ... 216
 5.4.1 Transgene copy number 216
 5.4.2 Transcription of the transgene 218
 5.4.3 Two phase selection 221

Chapter 6 ... 223

General discussion 223
 6.1 Level of resistance of transgenic lines to the herbicide 223
 6.2 Inheritance of the transgene based on phenotypic and molecular
 studies ... 225
 6.3 Heritability of herbicide resistance 226
 6.4 Expression of the transgene 227
 6.5 Quantitative genetics studies 229
 6.6 In vitro dual selection 233
 6.7 Possible further studies 233

References .. 236

Appendices .. 250
 Appendix 1. B5 medium 250
 Appendix 2. WR8 medium 251
 Appendix 3. Antibiotic stock solutions 251
 Appendix 4. B5+2ip medium 251
 Appendix 5. MS medium 252
 Appendix 6. TY medium 253
 Appendix 7. Plasmid DNA isolation; modified STET method 253
 Appendix 8. Horizontal gel electrophoresis 253
 Appendix 9. LB Medium 254
 Appendix 10. Materials for DNA fragment isolation from gel 254
 Appendix 11. Materials for plant DNA extraction 254
 Appendix 12. Materials for plant RNA isolation 255
 Appendix 13. RNA sample preparation 257
 Appendix 14. Materials for Southern blotting 258
 Appendix 15. Materials for tobacco leaf transformation 258
 Appendix 16. DNA electrophoresis figures relating to the plasmid
 mapping 260
 Appendix 17. Maps of plasmids pAS501 and pRK290 268
List of Figures

Figure 2.1. The deviation of homozygote and heterozygote genotypes from the mid parent (mid point) ... 24
Figure 3.1. Development of dalapon resistant transgenic white clover plants ... 45
Figure 3.2. Stem height of the transgenic line 54.18 (left) and non-transgenic line KKD (right) at 48 kg ha\(^{-1}\) (top) and no herbicide application (bottom) .. 73
Figure 4.1. The Wr\(\text{Vr}\) graph of necrosis and stem height of tobacco lines. ... 144
Figure 5.1. A restriction enzyme map of plasmid pAS501 188
Figure 5.2. Effect of dalapon on different generations of tobacco 192
Figure 5.3. Southern blot result of parents and TF\(_1\) plants 196
Figure 5.4. Southern blot result of TBC\(_1\) plants 197
Figure 5.5. Southern blot result of TBC\(_2\) plants 198
Figure 5.6. Southern blot result of TF\(_2\) plants 199
Figure 5.7. Southern blot result of BglII and EcoRI/BglII digests of DNA extracted from transgenic plants 200
Figure 5.8. Proposed model for T-DNA organisation in 51-1 transgenic plants ... 201
Figure 5.9. Restriction enzyme map of plasmid pBG35 206
Figure 5.10. Dot blot of RNAs from susceptible and resistant tobacco lines probed with a rRNA gene probe 209
Figure 5.11. Dot blot of RNAs from susceptible and resistant tobacco lines probed with the dehalogenase gene 211
Figure 5.12. Resistance of tobacco calli against both kanamycin and dalapon ... 215
Figure A.1. Restriction enzyme digest of plasmid pAS501 (EcoRI, HindIII, SmaI, BglII, SacII, EcoRV) 260
Figure A.2. Restriction enzyme digest of plasmid pAS501 (PstI, EcoRI/BglII) ... 262
Figure A.3. Restriction enzyme digest of plasmid pAS501(SacII/EcoRV, SmaI/SacII) and PCR product 264
Figure A.4. Restriction enzyme digest of plasmid pSDH 266
Figure A.5. Binary vector plasmid pAS501 268
Figure A.6. The pRK290 broad host range plasmid vector 269
List of Tables

Table 2.1. Components of mean (based on mead-parent mean) .. 27
Table 2.2. Components of mean (based on F_2 mean) ... 28
Table 3.1. Analysis of variance of white clover callus growth-gain (*in vitro*) and leaf necrosis surface area of white clover plants ... 58
Table 3.2. Callus growth-gain of white clover for lines, herbicide levels and interaction between lines and herbicide levels ... 59
Table 3.3. Leaf necrosis surface for white clover lines, herbicide levels and interaction between lines and herbicide levels .. 60
Table 3.4. Analysis of variance of tobacco fresh weight .. 61
Table 3.5. Fresh weight of tobacco for lines, herbicide levels and interaction between lines and herbicide levels .. 63
Table 3.6. Analysis of variance of the necrosis character .. 65
Table 3.7. Analysis of variance of stem height character .. 68
Table 3.8. Leaf necrosis surface area for lines, herbicide levels and interaction between lines and herbicide levels .. 69
Table 3.9. Leaf necrosis surface for lines, times and interaction between lines and times 70
Table 3.10. Stem height (mm) for lines, herbicide levels and interaction between lines and herbicide levels .. 71
Table 3.11. Stem height (mm) for lines, different times and interaction between times and lines 72
Table 3.12. Analysis of variance of leaf length and leaf width characters 74
Table 3.13. Leaf length (mm) for lines, different levels of herbicide and interaction between lines and levels of herbicide .. 76
Table 3.14. Leaf width for lines, different levels of herbicide and interaction between lines and levels of herbicide .. 77
Table 3.15. Leaf length (mm) for lines, different times and interaction between lines and times 78
Table 3.16. Leaf width (mm) for lines, different times and interaction between lines and times 79
Table 3.17. Analysis of variance of drymass character ... 80
Table 3.18. Drymass (g) for lines, different levels of herbicide and interaction between lines and levels of herbicide .. 81
Table 3.19. Phenotypic correlations between characters .. 83
Table 3.20. Population, plant and broadsense heritabilities (h^2) of the necrosis character at various levels of herbicide .. 84
Table 3.21. Population, plant and broadsense heritabilities (h^2) of stem height at various levels of herbicide .. 85
Table 3.22. Population, plant and broadsense heritabilities (h^2) of leaf length at various levels of herbicide .. 86
Table 3.23. Population, plant and broadsense heritabilities (h^2) of leaf width at various levels of herbicide .. 86
Table 3.24. Progeny analysis of the dalapon resistance phenotype of transgenic tobacco lines based on phenotypic and quantitative studies .. 89
Table 3.25. Progeny analysis of the dalapon resistance phenotype of transgenic tobacco lines based on phenotypic and quantitative studies for each level of herbicide 91
Table 4.1. Analysis of variance for Method 2 giving expectation of mean square based on the assumptions of model I (fixed) and model II (random) ... 120
Table 4.2. Mean necrosis and stem height (mm) of different generations .. 123
Table 4.3. The estimates of the genetic components of means, based on 2,3,4,5 and 6 parameter models for interaction types, as well as a test of significance for the necrosis character .. 126
Table 4.4. The estimates of the genetic components of means, based on 2,3,4,5 and 6 parameter models for interaction types, as well as a test of significance for the stem height character .. 127
Table 4.5. The variance of necrosis and stem height for different generations ... 128
Table 4.6. Estimates of D, H, F, Ew and ratios for necrosis and stem height .. 128
Table 4.7. Analysis of variance of parents and reciprocals for necrosis and stem height characters 132
Table 4.8. Analysis of variance of parent, TF1 and pooled (parents and TF1s) for necrosis 132
Table 4.9. Analysis of variance of parents, TF1s and pooled (parents and TF1s) for stem height 133
Table 4.10. Mean necrosis and stem height of tobacco parental lines of diallel table 135
Table 4.11. Mean necrosis of different crosses of diallel table .. 136
Table 4.12. Mean stem height of different crosses of diallel table ... 137
Table 4.13. Array statistics and components of variation for necrosis character ... 141
Table 4.14. Analysis of variance of GCA and SCA effects for the necrosis character 146
Table 4.15. Analysis of variance of GCA and SCA effects for the stem height character 146
Table 4.16. Additive/dominance ratio, broadsense heritability and narrow sense heritability for necrosis and stem height ... 147
Table 4.17. Estimates of g.c.a. effects (leading diagonal) and s.c.a. effects (below diagonal) for necrosis character ... 149
Table 4.18. Estimates of g.c.a. effects (leading diagonal) and s.c.a. effects (below diagonal) for stem height character ... 152
Table 5.1. Presence of dehalogenase gene and stem height of parents and TF1 plants 193
Table 5.2. Presence of dehalogenase gene and stem height of TBC1 plants ... 193
Table 5.3. Presence of dehalogenase gene and stem height of TBC2 plants ... 194
Table 5.4. Presence of dehalogenase gene and stem height of TF2 plants .. 195
Table 5.5. Internal comparison of signal intensity between samples in the dot blot experiment 207
Table 5.6. Analysis of variance of the RNA dot blot signal of lines probed with the dehalogenase gene 208
Table 5.7. Mean intensity of signal of RNA dot blot probed with the dehalogenase gene for different lines .. 208
Table 5.8. Selection of transgenic tobacco cells against two selective agents ... 214