Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis, or part of it, may not be reproduced elsewhere without the permission of the Author.
List of published and submitted manuscripts and presentations

Peer reviewed publications

Conference presentations

Oral presentations

Poster presentations

Other publications

Abstract

Rihaakuru is a cooked fish paste from the Maldives, consumed as a condiment with rice and other food. The product is unique to the Maldives and there is no information on the composition, characteristics and safety of this product. Histamine contamination has been suspected due to symptoms sometimes seen following consumption. This research established that *Rihaakuru* is a nutritious and shelf-stable product. *Rihaakuru* is generally produced from poor quality fish therefore presence of biogenic amines was suspected. This study confirmed that *Rihaakuru* contained up to ten different biogenic amines, with histamine in excess of 500 ppm. This may cause histamine poisoning with symptoms such as skin rashes, vomiting and fever. The product examined in this study contained a few weak histamine forming bacteria. Most of the histamine is likely to be produced by bacteria in the raw fish. These bacteria are likely to die during the manufacture of *Rihaakuru*. Histamine in *Rihaakuru* decreased by 30-70% during storage at -80°C, 4°C and 30°C for 10 months. This showed that the histamine hazard in *Rihaakuru* is unlikely to increase and may decrease during long term storage. Traditional control of histamine in food is through refrigeration of raw material. In the case of the fish used to manufacture *Rihaakuru*, refrigeration is not available or limited. Histamine oxidizing bacteria and enzymes were identified as emerging approaches to degrade pre-formed histamine. Histamine oxidizing bacteria (*Lactobacillus sakei* [AGR 37, AGR 46, Lb 706] and *Vergibacillus halodinitificans Nai18*) tested in this study degraded histamine by 30-50%. The histamine oxidizing enzyme, diamine oxidase (DAO) completely degraded 500 mg/L of histamine at pH 6 and salt 1% in buffer and in the tuna soup used to manufacture Rihaakuru. A regression model was developed that predicted the rate and amount of histamine removal by DAO under varied pH and salt concentration. This model may be used to determine conditions that will reduce histamine in other foods that have similar characteristics to the tuna soup used to manufacture *Rihaakuru*.
Acknowledgements

There are many people without whom this long journey would not have been made possible. My supervisors Associate Professor Steve Flint, Mr. Graham Fletcher, Professor Phil Bremer and Professor Gerrit Meerdink, to whom I am greatly indebted for their continuous support, encouragement and professional advice, to improve my work with their feedback and suggestions; for providing opportunities to attend national and international conferences; and for their support in our publications. Special thanks to Steve for devoting his time on day to day assistance, providing me sound advice, motivation, support and facilitate whatever I required to continue the research. I greatly acknowledge Associate Professor Hugh Morton for designing experiment and assistance in modelling. Thanks to John Palmer for his advice on sequencing.

The staff at the microbiology laboratory, Ann-Marie Jackson, John Sykes, John Edward, Weiping Liu, and Judy Farrand-Collins for providing a friendly and supportive laboratory environment to work in. Special thanks to John Sykes for his support in the HPLC use. John Warwick from product development laboratory, Michelle Tamehana from food characteristics laboratory, Steve Glasgow from food chemistry laboratory and Garry Radford from pilot plant for facilitating the services I needed for the research.

Ms Shibana Abdulla Didi from Maldives Food and Drug Authority for collecting Rihaakuru samples from various parts of the Maldives along with their recipes. Felicity Jackson from nutrition laboratory for her assistance in importing Rihaakuru samples from the Maldives. Thanks to FonterraTM, for providing bacterial cultures.

New Zealand Development Scholarship (NZDS) for their financial support as part of their program to provide funding for independent research to assist developing nations.

My friends and colleagues for their support and fun time.

I am indebted to my family for their continuous support and encouragement during difficult times, especially my uncle, Mohamed Amir. Eternal gratitude to my precious daughter Zifa Shihan and my loving husband Ahmed Shihan for their patience and understanding during my long hours spent at the university.

My mother, Fathimath Agila, without whom none of this would have been possible and to her I dedicate this thesis.
Table of Contents

Control of Histamine in *Rihaakuru*: Emerging Approaches .. i

Chapter 1 Introduction ... 1

1.1 Background ... 2

1.2 Thesis hypothesis and objectives .. 2

1.3 Preface .. 3

Chapter 2 Literature Review ... 5

2.1 Abstract ... 6

2.2 Introduction .. 7

2.3 Existing methods for biogenic amine control in food ... 9

2.4 Emerging methods for biogenic amine control ... 10

2.5 Methods for delaying biogenic amines accumulation .. 12

2.5.1 Application of food additives and preservatives ... 12

2.5.2 High hydrostatic pressure .. 17

2.5.3 Irradiation .. 18

2.5.4 Packaging .. 24

2.5.5 Microbial modelling .. 29

2.5.6 Starter cultures .. 31

2.6 Methods for oxidizing/degrading formed biogenic amines .. 33

2.7 Conclusion .. 35

2.8 Nomenclature .. 36

2.9 References ... 37

2.10 Additions and Updates to Literature Review:... 49

2.10.1 Control of biogenic amines in food - Existing and emerging approaches 49

2.10.2 Histamine in food .. 53

2.10.3 Histamine stability during storage... 55

2.10.4 References ... 56

Chapter 3 *Rihaakuru*: Process, Composition and Microflora .. 61

3.1 Abstract ... 62

3.2 Introduction ... 63

3.3 Materials and Methods .. 65

3.3.1 Sampling ... 65

3.3.2 Physicochemical analysis ... 65
5.3 Materials and Methods

5.3.1 Rihaakuru
5.3.2 Chemical and microbial and analysis
5.3.3 Statistical analysis

5.4 Results and Discussion

5.5 Conclusion

5.6 Acknowledgement

5.7 References

Chapter 6 Histamine Degradation by Diamine Oxidase, Lactobacillus and Vergibacillus halodonitrificans Nai18

6.1 Abstract
6.2 Introduction
6.3 Materials and Methods
6.3.1 Materials
6.3.2 Histamine degradation by bacteria
6.3.3 Histamine degradation by DAO
6.3.4 Histamine analysis
6.4 Results and Discussion
6.4.1 Histamine degradation by bacteria
6.4.2 Histamine degradation by DAO
6.5 Conclusion
6.6 Acknowledgement
6.7 References

Chapter 7 Prediction of the Amount and Rate of Histamine Degradation by Diamine Oxidase (DAO)

7.1 Abstract
7.2 Introduction
7.3 Materials and Methods
7.3.1 Materials
7.3.2 Experimental design
7.3.3 Preparation of phosphate buffer
7.3.4 Preparation of tuna soup
7.3.5 DAO Experimental procedure
7.3.6 Analysis
7.3.7 Statistical analysis
7.4 Results and Discussion
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>CCD</td>
<td>central composite design</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHO</td>
<td>carbohydrates</td>
</tr>
<tr>
<td>DAO</td>
<td>diamine oxidase</td>
</tr>
<tr>
<td>DHA</td>
<td>docosahexaenoic acid</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPA</td>
<td>docosapentaenoic acid</td>
</tr>
<tr>
<td>DSMZ</td>
<td>Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EPA</td>
<td>eicosapentaenoic acid</td>
</tr>
<tr>
<td>ETE</td>
<td>eicosatrienoic acid</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FID</td>
<td>Flame Ionization Detector</td>
</tr>
<tr>
<td>GAM</td>
<td>Gifu Anaerobic Medium broth</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GDL</td>
<td>glucono-delta-lactone</td>
</tr>
<tr>
<td>GE</td>
<td>Gross Energy</td>
</tr>
<tr>
<td>HDC</td>
<td>Histidine Decarboxylase</td>
</tr>
<tr>
<td>HHP</td>
<td>high hydrostatic pressure</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>ICMSF</td>
<td>International Commission on Microbiological Specification for Foods</td>
</tr>
<tr>
<td>MAOI</td>
<td>monoamine oxidase inhibitors</td>
</tr>
<tr>
<td>MAP</td>
<td>modified atmosphere packaging</td>
</tr>
<tr>
<td>MPN</td>
<td>most probable number</td>
</tr>
<tr>
<td>MRS</td>
<td>deMan, Rogosa and Sharpe broth</td>
</tr>
<tr>
<td>MS</td>
<td>mass-spectroscopy</td>
</tr>
<tr>
<td>NOAEL</td>
<td>no observed adverse effect level</td>
</tr>
<tr>
<td>NZAID</td>
<td>New Zealand Agency for International Development</td>
</tr>
<tr>
<td>NZDS</td>
<td>New Zealand Development Scholarship</td>
</tr>
</tbody>
</table>
NZIFST New Zealand Institute of Food Science and Technology
NZMS New Zealand Microbiological Society
PCR polymerase chain reaction
PUFA polyunsaturated fatty acids
RDI recommended daily intake
rDNA Ribosomal DNA
RSM response surface model
SBMB New Zealand Society for Biochemistry and Molecular Biology
sfam Society for Applied Microbiology
TCA trichloroacetic acid
TDF Total Dietary Fibre
TLC thin layer chromatography
TMAH tetramethylammonium hydroxide
TSA trypticase soy agar
TSB trypticase soy broth
TSBH histidine tripticase soy broth
UHT ultra high temperature
USA United States of America
USDA United States Department of Agriculture
UV ultra-violet
WHO World Health Organization
List of Tables

Table 1: Biogenic amines reduction through food preservatives ... 14
Table 2: Biogenic amines reduction through high hydrostatic pressure 20
Table 3: Biogenic amines reduction through irradiation .. 21
Table 4: Biogenic amines reduction through packaging .. 26
Table 5: Composition analysis of Rihaakuru (n=2) ... 70
Table 6: Amino acid profile of Rihaakuru (n=2) ... 72
Table 7: Essential amino acids of Rihaakuru (n=2) in comparison to recommended level 73
Table 8: Mineral content of Rihaakuru (n=2) ... 74
Table 9: Fatty acid profile of Rihaakuru (n=2) .. 76
Table 10: Identified bacteria isolated from Rihaakuru by 16S rDNA, using internet blast server (http://bioinfo.unice.fr/blast/) ... 93
Table 11: Contents of biogenic amines in tested Rihaakuru samples (n=28) 96
Table 12: Histamine production by selective bacterial strains isolated from Rihaakuru 99
Table 13: Identified potential histamine forming bacterial species from Rihaakuru basing on other researches ... 100
Table 14: Amino acid and protein content in Rihaakuru AN-1 before and after storage at 30°C .. 111
Table 15: Histamine stability in Rihaakuru stored for 10 months ... 114
Table 16: Comparison of primary and secondary model values for r and L in the 2-factor 15-run central composite design and validated experiments 148
Table 17: Significance of the models coefficients .. 152
Table 18: ANOVA results of buffer and soup models ... 152
Table 19: Model summary of buffer and tuna soup ... 153
List of Figures

Figure 1: Overview of the thesis chapters and their relationship to knowledge gaps4
Figure 2: Lactobacillus species degradation of histamine in TSB containing 500 ppm of
histamine. Error bars representing mean standard deviation of n = 3.........................128
Figure 3: Vergibacillus halodonitrificans Nai18 degradation of histamine in TSB containing 500
ppm histamine. Error bars represent mean standard deviation of n = 3......................129
Figure 4: Arthrobacter crystallopoietes DSM 20117 degradation histamine in TSB containing
500ppm histamine. Error bars represent mean standard deviation of n = 3.................130
Figure 5: Histamine degradation (500 ppm) by DAO (2534 units/L) in 0.5 M phosphate buffer
and tuna soup under pH 6 and salt 1% incubated at 37°C and agitated at 100 rpm
for 10 h. Error bars represent mean standard deviation of n = 3..........................132
Figure 6: Rihaakuru manufacturing steps, including the tuna soup step where DAO can be
added after which the soup is further boiled until it becomes Rihaakuru. The
boiling will kill all the pathogenic microorganisms that may have grown during
DAO treatment...142
Figure 7: Summary of experimental procedure for DAO activity in buffer and tuna soup......146
Figure 8: Experiment 11 run at pH 7.0 and salt 3% in 0.5 M phosphate buffer containing 500
mg/L histamine dihydrochloride, and 2534 units/L DAO, shows that the observed
and predicted values are in strong agreement (R² = 0.998).149
Figure 9: Experiment run at pH 7.0 and salt 3% (exp 11) in tuna soup containing 500 mg/L
histamine dihydrochloride, and 2534 units/L DAO, shows that the observed and
predicted values are in strong agreement (R² = 0.985). ..150
Figure 10: pH (x) and salt (y) as a function of the L-fit- amount of histamine remained in buffer
(mg/L) [see key] after degradation by DAO. Salt was not significant at the 5%
level...155
Figure 11: pH (x) and salt concentration (%) (y) as a function of the predicted exponential rate constant (r-fit) of
histamine degradation in buffer, by DAO. Salt was not significant at the 5% level.
..156
Figure 12: pH (x) and salt concentration (%) (y) as a function of L-fit- predicted amount of
histamine remained (mg/L) [see key] in tuna soup after degradation by DAO....159
Figure 13: pH (x) and salt concentration (%) (y) as a function of the r-fit- predicted exponential
rate constant of histamine degradation in tuna soup, by DAO..............................160