Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PHENOTYPIC AND GENOTYPIC VARIATION IN KIWIFRUIT

(Actinidia deliciosa (A. CHEV.) C.F. LIANG et
A.R. FERGUSON) SEEDLING POPULATIONS

A thesis presented in partial fulfilment of the
requirements for the degree of Ph.D. in plant
breeding at Massey University

DAOYU ZHU

1990
ABSTRACT

Kiwifruit breeding programmes in New Zealand have produced a large number of seedling populations. Effective methods are required to assess seedlings, and knowledge of phenotypic and genotypic variation would facilitate the design of breeding programmes.

1. Multivariate analyses of phenotypic data

Multivariate analyses were used to quantify the characters most powerful in distinguishing between seedlings and between crosses, and to examine their relationships. Seedlings and crosses were placed in order of their overall merit, and the best ones were determined. Bruno was a superior female parent for producing both floriferous male vines and productive female vines with high fruit vitamin C content, and D1-20 was the better male parent in all crosses. Multivariate analysis of variance and discriminant analysis were more suitable to sort cross combinations, while factor analysis was more efficient for screening single seedlings within a population. Factor patterns varied between crosses, and between years for the same cross.

Canonical correlation analysis proved a useful tool to obtain better understanding of the aggregates of useful vine characters and the relationship between them in fruit breeding.

2. Quantitative genetics studies

Relatively high heritability was shown for the beginning date of bloom (0.48) and flowering duration (0.50) in male vines, and total crop weight (0.46), percentage of shoots flowering (0.54), fruit elongation (0.65), and mean fruit weight (0.52) in female vines. For these traits, the selection of superior seedlings as parent could therefore lead to rapid genetic improvement to their subsequent generations. Hairiness of fruit (-0.07) and percentage soluble solids in fruit (-0.19) gave negative heritability value, thus could not be improved efficiently by individual selection. However, their broad sense heritability was reasonably high (0.22 and 0.37 respectively), showing there were some dominant and/or epistatic effects involved. This indicates a possible chance improvement may occur in a large seedling population. Fruit vitamin C content (0.22), fruit symmetry (0.30) and relative core size (0.13) gave moderate or low heritability values, indicating that individual selection may have only moderate success in improving these traits.
Simple recurrent individual selection was shown to be an effective breeding strategy for characters of high heritability. For characters of low heritability, the family selection methods yielded a greater rate of genetic gain. Selection indices were constructed to provide a technique for improving several traits simultaneously.

3. SDS-polyacrylamide gel electrophoresis of leaf proteins

Three regions of the protein profile were found useful for the characterisation of cultivars and seedlings. The banding patterns found in seedlings provided evidence that in the hexaploid kiwifruit the inheritance of these polypeptides occurred in a manner similar to that of a diploid. Hence the kiwifruit may have arisen as a diploidized polyploid and it is proposed the kiwifruit may be considered as allohexaploid.

Progressive changes of some bands with leaf growth and development may be of interest in the study of leaf development. The possible application of leaf protein analysis to kiwifruit breeding was discussed.
ACKNOWLEDGEMENTS

It is a great pleasure to acknowledge the encouragement and wise counsel of my supervisors Dr G.S. Lawes, Dr I.N. Gordon and Dr R.A. Beatson in all facets of this study. In particular, I am grateful to Dr G.S. Lawes for his sincere and critical guidance throughout the study and thesis preparation.

I sincerely extend my gratitude to Dr S.E. Gardiner of DSIR for her helpful advice, discussion and comments on my electrophoresis work.

I would also like to acknowledge the assistance given to me by the following:

- Dr G. Ionas and Mr H.F. Neilson for their advice in electrophoretic analysis.
- Mr D.R. Anderson for his capable technical assistance in the early laboratory work of this study.
- Ms Christine Andricksen for the careful typing of this thesis.

Finally special thanks to my wife, my son and my daughter, for their patience and understanding in allowing me to pursue this study in tranquillity.

Financial assistance from both Henan Agricultural University, China, and Massey University is gratefully acknowledged.
CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1 LITERATURE SUMMARY

1. Kiwifruit and its production
2. Kiwifruit selection and breeding
3. Multivariate analyses in plant breeding
4. The practical application of genetic studies
5. Protein markers as tools for genetic studies
6. DNA probe technique in plant breeding

CHAPTER 2 MULTIVARIATE ANALYSIS OF PHENOTYPIC VARIATION

Section 1 Manova & Discriminant analysis

1. Introduction
2. Materials and Statistical Procedures
3. Results and Discussion

Section 2 Factor Analysis

1. Introduction
2. Methods
3. Results and Discussion

Section 3 Canonical Analysis

1. Introduction
2. Methods
3. Results and Discussion

CHAPTER 3 GENETIC ANALYSIS

Section 1 Genetic Variance and Heritability

1. Introduction
2. Materials and Statistical Model
3. Results and Discussion

Section 2 Genetic Correlation

1. Procedures
2. Results

Section 3 Selection Response

1. Selection Response for Individual Selection
2. Selection Response for Different Strategies
Section 4 Selection Index
1. Index Theory and Working Procedures 114
2. Economic Weight 115
3. Constructing Selection Indices 117

CHAPTER FOUR ELECTROPHORETIC ANALYSIS
1. Introduction 120
2. Experimental 121
3. Materials 122
4. Electrophoresis Procedures 122
5. Results and Discussion 129

CHAPTER FIVE GENERAL DISCUSSION
1. Kiwifruit Breeding 144
2. Multivariate Analysis of Phenotypic Data 145
3. Genetic Analysis 149
4. SDS-PAGE to Characterise Kiwifruit Cultivars and Seedling Populations 156

LITERATURE CITED 158

TABLES
2.1.1 Crosses and the vine number investigated for each cross 21
2.1.2 F test of 12 dependent variables for male vines 32
2.1.3 Means of variables, by cross in the male population 33
2.1.4 Means of variables, by CR *Y in male population 33
2.1.5 Manova test criteria for the hypothesis of no overall effect in male population 34
2.1.6 Function structure and related statistics for CR *Y effects in male population 35
2.1.7 Net scores for CR *Y effects in male population 36
2.1.8 Function structure and related statistics for cross effects in male population 38
2.1.9 Net scores for crosses in male population 38
2.1.10 Function structure and related statistics for year effects in male population 39
2.1.11 Function structure and related statistics for vine effects in male population 40
2.1.12 F test of 23 dependent variables for female vines 42
2.1.13(1) Cross means by year in female population 42
2.1.13(2) Cross means by year in female population 43
2.1.14(1) Cross means in female population

2.1.14(2) Cross means in female population

2.1.15 Manova test criteria for the hypothesis of no overall effect for female vines

2.1.16 Function structure and related statistics for CR * Y effects in female population

2.1.17 Net scores for CR * Y effects in female population

2.1.18 Function structure and related statistics for cross effects in female population

2.1.19 Net scores for crosses in female population

2.1.20 Function structure and related statistics for year effects in female population

2.1.21 Function structure and related statistics for vine effects in female population

2.2.1 Factor pattern of first 4 PCs for male seedlings in cross 2 (Bruno x D120)

2.2.2 Factor pattern in first 4 PCs for male seedlings in cross 4 (Gracie x D120)

2.2.3 Factor pattern of first 4 PCs for male seedlings in cross 6 (Hayward x D120)

2.2.4 The coefficients of congruence for factor comparison in male seedling populations

2.2.5 Factor pattern of first 5 PCs for female seedlings in cross 2 (Bruno x D120)

2.2.6 Factor pattern of first 5 PCs for female seedlings in cross 4 (Gracie x D120)

2.2.7 Factor pattern of first 5 PCs for female seedlings in cross 6 (Hayward x D120)

2.2.8 The coefficient of congruence for factor comparison in female seedling populations

2.2.9 Factor pattern of first 4 PCs for male vines (mean of 2 years)

2.2.10 Factor pattern of first 8 PCs for female vines (mean of 2 years)

2.2.11 Factor pattern of first 4 factors for male vines (mean of 2 years)

2.2.12 Factor pattern of first 6 factors for female vines (mean of 2 years)
2.3.1 Eigenvalue and the proportion of total covariance explained by each canonical correlation in male seedlings 77

2.3.2 Statistics for significance tests of each canonical correlation in male seedlings 77

2.3.3 Canonical structure: correlations between the vegetative variables and their canonical variables (males) 78

2.3.4 Canonical structure: correlations between the flowering variables and the canonical variables (males) 78

2.3.5 Eigenvalue and the proportion of total covariance explained by each canonical correlation between vegetative and flowering characters (female seedlings) 79

2.3.6 Statistics for testing the significance of each canonical correlation between vegetative and flowering characters 79

2.3.7 Canonical structure: correlations between the vegetative variables and their canonical variables 80

2.3.8 Canonical structure: correlations between the flowering variables and their canonical variables 80

2.3.9 Eigenvalue and the proportion of total covariance explained by each canonical correlation between vegetative and fruiting characters 81

2.3.10 Statistics for testing the significance of each canonical correlation between vegetative and fruiting characters 81

2.3.11 Canonical structure: correlations between the vegetative variables and their canonical variables 82

2.3.12 Canonical structure: correlations between the fruiting variables and their canonical variables 82

2.3.13 Eigenvalue and the proportion of total covariance explained by each canonical correlation between flowering and fruiting characters 83

2.3.14 Statistics for testing the significance of each canonical correlation between flowering and fruiting characters 83

2.3.15 Canonical structure: correlations between the flowering variables and their canonical variables 84

2.3.16 Canonical structure: correlations between the fruiting variables and their canonical variables 84
3.1 The expected mean squares for male vines (following Gaylor et al., for this internally unbalanced design) 88
3.2 The expected mean squares for female vines (following Gaylor et al., for this internally unbalanced design) 88
3.3 The genetic interpretation of variance components 89
3.4 Variance component estimation for male vines 91
3.5 Heritability estimates for male vines 91
3.6 Variance component estimation for female vines 93
3.7 Heritability estimates for female vines 94
3.8 Additive genetic correlations (above diagonal) and phenotypic correlation (below diagonal) for male seedlings 98
3.9 Additive genetic correlations (above diagonal) and phenotypic correlation (below diagonal) for female seedlings 98
3.10 Genetic advance for 6 selection cycles 104
3.11 Genetic advance in random mating, half sib mating, full sib mating 107
3.12 Relative economic value for 4 traits of breeding importance 116
3.13 Phenotypic (upper part) and genetic (lower part) dispersion for 3 traits of breeding importance 117
3.14 Type 1 indices for improving different characters 117
3.15 Type 2 indices for multiple character improvement 118
3.16 The 6 female vines selected from the different indices and from the factor analysis in cross 6 119
4.1 Recipes for making different strength polyacrylamide gels 123
5.1 The heritabilities (h^2) of some characters of horticultural value in various fruit crop species 153

FIGURES

2.1.1 Plot of net scores of discriminant functions 1 and 2 in male population (6 crosses, 2 years) 37
2.1.2 Plot of net scores of discriminant functions 1 and 2 for each cross in male population 39
2.1.3 Plot of net scores of 214 male vines on discriminant functions 1 and 2 41
2.1.4 Plot of net scores of discriminant function 1 and 2 in female population (6 crosses, 2 years)

2.1.5 Plot of net scores of functions 1 and 3 for each cross in female population

2.1.6 Plot of net scores of 187 female vines on discriminant functions 1 and 2

2.1.7 Plot of net scores of 187 female vines on discriminant functions 1 and 3

2.2.1 Plot of the factor scores of 63 male vines on first 2 factors

2.2.2 Plot of the factor scores of 63 female vines on first 2 factors

2.2.3 Plot of the factor scores of 63 female vines on 3 factors

3.1 Cumulative genetic gains of fruit vitamin C content by using different selection strategies in different mating systems. A. Random mating. B. Half sib mating. C. Full sib mating

3.2 Cumulative genetic gains of total fruit weight weight by vine by using different selection strategies in different mating systems. A. Random mating. B. Half sib mating. C. Full sib mating

3.3 Cumulative genetic gains of percentage floral shoots per vine by using different selection strategies in different mating systems. A. Random mating. B. Half sib mating. C. Full sib mating

3.4 Cumulative genetic gains of mean fruit weight by using different selection strategies in different mating systems. A. Random mating. B. Half sib mating. C. Full sib mating

4.1 Banding pattern of kiwifruit leaf proteins extracted by 2 extraction media and analysed on a 15% polyacrylamide gel

4.2 Banding pattern of kiwifruit leaf proteins extracted by 2 different extraction media analysed on 7.5% polyacrylamide gel.

4.3 Calibration Curve of Protein MW Standards on 15% Polyacrylamide Gel

4.4 Leaf age effect on electrophoretic protein banding pattern from female cultivar Hayward and male cultivar Matua

4.5 15% Polyacrylamide gel showing leaf protein banding pattern of 9 cultivars (winter cuttings)
4.6 10% Polyacrylamide gel comparison of protein bandings pattern of the 4 parent cultivars (winter cuttings) 133

4.7 Diagrammatic drawing of protein banding pattern of 12 cultivars 135

4.8 Protein banding patterns of F1 seedlings of Cross 1 (Bruno x D-16) 136

4.9 Protein banding patterns of F1 seedlings of Cross 2 (Bruno x D-120) 136

4.10 Protein banding pattern of F1 seedling of Cross 4 (Gracie x D-120) 139

4.11 Protein banding pattern of F1 seedling of Cross 5 (Hayward x D-16) 141

4.12 Protein banding pattern of F1 seedling of Cross 6 (Hayward x D-120) 141

PLATES

Plate 1 Petiole pigmentation of 6 F1 seedlings, showing a gradient of colour from red to dark red 22

Plate 2 Quantitative inheritance of flower size, showing 4 parents and range of variation in 8 samples of F1 seedlings. Upper seedling row are male flowers, lower row are female flowers. 22

Plate 3 Early flowering vine versus late flowering vine, showing two adjacent male vines with distinct dates of blossom 22

Plate 4 Comparison of fruit storage life of 5 F1 seedlings (Hayward X D-120) after 6 months cool storage. Also showing variation in fruit weight and Brix level among these seedlings. Labels show cross identification, fruit weight and Brix level. (With acknowledgements to Dr R.A. Beatson). 23

Plate 5 Quantitative inheritance of fruit size, showing 3 parents and range of variation in 23 samples of F1 seedlings. (With acknowledgements to Dr R.A. Beatson) 23