Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A 0.8 Fructose:Maltodextrin Ratio Enhances Endurance Performance and Exogenous Carbohydrate Oxidation

A thesis presented in partial fulfilment for the requirements for the degree of

Master of Science in Exercise and Sport Science

at Massey University, Wellington, New Zealand

Wendy Jean O’Brien

2011
Acknowledgements

Firstly, I would like to sincerely thank my subjects for their time (4:30 am became a well-known time of day and getting to work late, a common occurrence), energy (10 repeated-sprints are not easy in anyone’s language, let alone before breakfast) and commitment (you never let me down and stuck strictly to the often frustrating restrictive diet) to this study. It was a pleasure to work with every one of you, and without you I would have no data and nothing to write up. My thanks also go to the families of my participants for their support of the early starts and dietary restrictions.

To Jim Clarke, David Gleadon, Andy Hollings, Alex Thillier, and others who helped in the lab - I could not have carried out this study without such a willing, capable, reliable and fun team of people supporting me. And thanks also to your partners, for their tolerance of the ~4 am alarm for months on end.

I would also like to thank my supervisor, Dr David Rowlands. With your guidance and expertise I have learnt more than I ever expected, and through your patience and attention to detail you have kept me honest and shown me what it means to do good science. Thanks also to my second supervisor Assoc. Prof. Steve Stannard.

I would also like to acknowledge my friends and family for your undying support and encouragement; for your innate ability not to glaze over during my endlessly rants about the intricacies of my study; and for knowing when NOT to ask when I’d be finished or what my plans were at the end of it all. Also, to my flatmates, for letting me believe I never woke you when leaving the house at 4:30 am or when sneaking to bed in the wee small hours.
Abstract

Introduction: A ratio of fructose to glucose/maltodextrin of approximately 0.8 in a carbohydrate-electrolyte solution ingested during endurance exercise was recently seen to substantially increase exogenous-carbohydrate oxidation, gut comfort and performance. However, it remains to be determined if the apparent fructose:glucose ratio optima is robust when the possible confounders of differences in solution osmolality and carbohydrate concentration are removed from consideration via clamping, and if the 0.8 ratio also promotes faster fluid absorption.

Methods: In a randomised double-blind crossover, 12 male cyclists rode 2 h at 57.5% peak power, then performed 10 repeated-maximal-sprints, while ingesting artificially sweetened water or one of three isomotic 11.25% carbohydrate-salt solutions at 800 mL·h⁻¹, comprising fructose and, maltodextrin/glucose, at the respective mean rates (g·min⁻¹): 1.0, 0.5 (0.5-Ratio); 0.67, 0.83 (0.8-Ratio); 0.83, 0.67 (1.25-Ratio). Each solution was also spiked with 5 g D₂O at 30 min into the 2-h preload. ^14^C-enriched fructose and naturally ^13^C-enriched maltodextrin/glucose permitted fructose and glucose oxidation rate evaluation by liquid scintillation and mass spectrometry, respectively, and indirect calorimetry.

Results: Mean exogenous-fructose and mean exogenous-glucose oxidation rates were 0.27 (SD%, 46), 0.39 (56) and 0.46 g·min⁻¹ (53), and 0.65 (30), 0.71 (14) and 0.58 (28) g·min⁻¹ in 0.5-, 0.8- and 1.25-Ratio, respectively; representing oxidation efficiencies (%) for fructose of 56 (12), 60 (7) and 56 (10), for glucose of 67 (16), 86 (11) and 89 (21), and for total exogenous-carbohydrate of 70 (9), 74 (6) and 64 (9), respectively. Relative to 0.5- and 1.25-Ratios, total exogenous-carbohydrate oxidation rate with 0.8-Ratio was very likely 6.4% (90% confidence limits; ±3.1%) and almost certainly 12.7% (±2.6%) higher, respectively, while respective differences in total-exogenous-carbohydrate oxidation efficiency was 4.1±1.8% and 8.8 ±1.9%. Endogenous-carbohydrate oxidation with 1.25-Ratio was very likely higher relative to 0.5- and 0.8-Ratio conditions (31.3%; ±26.6% and 37.3%; ±27.8%, respectively) but comparisons of fat and total-carbohydrate oxidation rates were unclear among carbohydrate solutions. Mean sprint power with 0.8-Ratio was moderately higher than 0.5-Ratio (2.9%; 99% confidence limits ±2.8%) and 1.25-Ratio (3.1%; ±2.7%), and almost certainly higher than Water (11.9%; ±3.0%); repeated-sprint fatigue (slope) was possibly attenuated with 0.8-Ratio compared to 0.5- and 1.25-Ratio (2.1%; ±5.7% and 1.7%; ±5.5%, respectively). Blood D₂O enrichment differences were possibly small or inconclusive among all solutions. Differences in gastrointestinal comfort during the 2-h ride were trivial/unclear among the carbohydrate conditions, however, increases in abdominal cramping were likely greater with 0.8-Ratio during the performance test.
Conclusions: Substantial enhancement of endurance performance results from ingestion of 0.8 ratio fructose:maltodextrin/glucose solutions, which is associated with increased exogenous-carbohydrate oxidation efficiency driven largely by a greater contribution from exogenous-fructose oxidation. Further research is required to determine the effect on fluid absorption and the physiological site responsible for the 0.8 ratio effect.
Table of Contents

Acknowledgements .. ii

Abstract .. iii

Table of Contents ... v

List of Figures .. ix

List of Tables .. x

1 Introduction .. 1

2 Review of the Literature ... 3

 2.1 Introduction .. 3

 2.2 Carbohydrate Ingestion .. 4

 2.2.1 The Significance of Carbohydrate Ingestion during Exercise 4

 2.2.2 Intestinal Absorption and Transport of Exogenous Carbohydrate 5

 2.2.3 Differences in Multiple- vs. Single-Transportable Carbohydrates............................. 6

 2.2.4 Multiple-Transportable Carbohydrate Ratio ... 7

 2.2.5 Measurement of Exogenous Carbohydrate Oxidation ... 8

 2.3 Fluid Absorption .. 9

 2.3.1 Physiological Influences on Fluid Absorption .. 10

 2.3.2 Fluid/Carbohydrate Interaction ... 10

 2.3.3 Effect of Solution Osmolality and Concentration on Gastric Emptying and Fluid Absorption ... 11

 2.4 Gastrointestinal Comfort .. 12

 2.4.1 What is Gastrointestinal Distress? .. 12

 2.4.2 The Importance of Gastrointestinal Comfort in the Context of Exercise Performance and Sports Drinks .. 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.3 Factors Contributing to Gastrointestinal Comfort</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Performance Benefits of Multiple-Carbohydrate Ingestion</td>
<td>14</td>
</tr>
<tr>
<td>2.6 Summary</td>
<td>15</td>
</tr>
<tr>
<td>3 Methods</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Subjects</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Experimental Design</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Protocols</td>
<td>18</td>
</tr>
<tr>
<td>3.3.1 Preliminary testing and familiarisation</td>
<td>18</td>
</tr>
<tr>
<td>3.3.2 Training and diet</td>
<td>18</td>
</tr>
<tr>
<td>3.3.3 Experimental trial</td>
<td>19</td>
</tr>
<tr>
<td>3.3.4 Performance test</td>
<td>19</td>
</tr>
<tr>
<td>3.3.5 Breath sampling</td>
<td>20</td>
</tr>
<tr>
<td>3.4 Carbohydrate Solutions</td>
<td>20</td>
</tr>
<tr>
<td>3.5 Fluid Absorption</td>
<td>21</td>
</tr>
<tr>
<td>3.6 Psychometric Scales</td>
<td>21</td>
</tr>
<tr>
<td>3.7 Plasma Biochemistry</td>
<td>22</td>
</tr>
<tr>
<td>3.8 Expired Breath</td>
<td>22</td>
</tr>
<tr>
<td>3.8.1 13C analysis</td>
<td>22</td>
</tr>
<tr>
<td>3.8.2 14C analysis</td>
<td>23</td>
</tr>
<tr>
<td>3.8.3 Substrate Oxidation</td>
<td>23</td>
</tr>
<tr>
<td>3.9 Sample Size</td>
<td>24</td>
</tr>
<tr>
<td>3.10 Statistical Analysis</td>
<td>25</td>
</tr>
<tr>
<td>3.10.1 General method</td>
<td>25</td>
</tr>
</tbody>
</table>
Appendix B – Information Sheet ...58
Appendix C – General Health Questionnaire ..66
Appendix D – Consent Form ...69
Appendix E – Ethics Committee Approval ...70
Appendix F – Food and Training Diary ...72
Appendix G – Performance Test Data Sheet ...75
Appendix H – 14C-Fructose Dose ..76
Appendix I – Psychometric Scales ..79
Appendix J – Blood D2O Analysis Method ..81
List of Figures

Figure 1. Pattern of sprint mean power during the repeated-sprint performance test. Data are back log-transformed least-squares means. Bar represents the back-transformed composite between-subject coefficient of variation. ...27

Figure 2. The effect of solution composition on performance test mean power. Point data are the back log-transformed least-squares means. Bars are the 99% confidence interval. Thresholds for small (0.3%), moderate (2.79%), large (4.96%), very large (7.5%), and extremely large (12.4%) effects are shown as dashed lines within the shaded zones. R, Ratio. ...28

Figure 3. Breath \(^{14}\text{CO}_2\) activity and \(^{13}\text{C}\) enrichment during the 2-h ride. Data are raw means with the between-subject standard deviation, offset from the sampling point for visual clarity. The Water trial provided the \(^{14}\text{C}\) and \(^{13}\text{C}\) background, and standard deviations for \(^{14}\text{C}\) are obscured.29

Figure 4. The pattern of substrate oxidation during the 60\(^{th}\)-120\(^{th}\) min of the 2-h ride. Data are back log-transformed least-squares means. Bars represent the back-transformed composite between-subject coefficient of variation. ...31

Figure 5. The pattern of efficiency of oxidation for exogenous fructose, exogenous glucose, and total exogenous carbohydrate during the 60\(^{th}\)-120\(^{th}\) min of the 2-h ride. Data are back log-transformed least-squares means. Bars represent the back-transformed composite between-subject coefficient of variation. ..32

Figure 6. Ratings of gastrointestinal comfort during the 2-h ride and the repeated-sprint performance test. Data are least-squares means and bars the composite between-subject standard deviation.36

Figure 7. Ratings of drink sweetness during the 2-h ride and the repeated-sprint performance test. Data are least-squares means and bars the composite between-subject standard deviation.38

Figure 8. Blood D\(_2\text{O}\) enrichment (\(\delta^{2}\text{H vs. VSMOW, }\%e\)) following ingestion of 5.00 g D\(_2\text{O}\) at 30-min of exercise (VSMOW – Vienna Standard Mean Ocean Water). Data are raw means and bars are standard deviations, offset from the sampling point for visual clarity. ...39

Figure 9. Integrated model of oxidation rate and oxidation efficiency of exogenous fructose, exogenous glucose and total carbohydrate ingested in the three experimental fructose:glucose/maltodextrin ratios during endurance exercise. Point data are back log-transformed means and standard deviations. Curves are quadratics derived from a within-subject mixed model of the back log-transformed data. ..42
List of Tables

Table 1. Composition and carbohydrate concentration of test solutions. ..21
Table 2. Oxidation rate of endogenous and exogenous substrates during the 60th to 120th min of the 2-h ride. ...33
Table 3. Summary of the effect of solution composition on substrate oxidation rate from the 60th to 120th min period of the 2-h ride. ..34