
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

BEAT: A VISUALIZING DEBUGGER FOR

CONCURRENT, SHARED MEMORY JAVA

PROGRAMS.

A thesis presented in fulfillment of the

requirements for the degree of

Master of Science

in

Computer Science

At Massey University, Palmerston North, New

Zealand.

PAUL THOMAS JOHNSON

February 2011

Abstract

This thesis presents our research into the creation of a new concurrency visualization
called Beat. Our research began with the observation that software used to create
and record music has been incredibly successful and that there were broad similarities
between these pieces of software and existing concurrent visualizations. This led us to
question if there were reasons why music software had been successful, why concurrent
visualizations hadn’t been as comparatively successful and finally if this could teach us
anything about building better visualizations.

The existing literature was examined to learn more about concurrency, visualization
and music software and notations. For concurrency we wanted to see what existing
solutions to the problems of concurrency exist and in particular existing solutions to
concurrent debugging. With existing visualizations we wanted to see if there was any-
thing we could identify about them that made them ineffective for solving the problems
of concurrency. Conversely we wanted to see if we could identify what made music
software and notations so effective for solving problems for musicians.

The examination of the existing literature led to the design and implementation of
the Beat software, based on the ideas we had discovered in our search of the literature.
To test how effective the design and software was we conducted an evaluation with
programmers, which validated many of the decisions we had made and gave us a number
of future directions to take with our research.

The main contribution of this thesis is a new approach to designing concurrency
visualizations that emphasizes using the low level details of program execution and
integrates execution data into a single view to help with the error debugging process.
This in contrast to existing concurrency visualizations that focus on the debugging of
performance problems.

Acknowledgements

Without the tireless support, encouragement, supervision and regular prodding of Dr
Stephen Marsland this thesis would never have been completed. Thanks Stephen.

Thanks to Dr Elizabeth Kemp for valuable advice regarding testing the Beat software.

Thanks to Professor Hans Guesgen for help planning testing of the software.

Approval for the evaluation was granted under the low risk guidelines provided by the
Massey University Human Ethics Committee.

i

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Thesis Overview . 2

2 Literature Review 4

2.1 Introduction . 4
2.2 Introduction to Concurrency . 4

2.2.1 Instruction Level Parallelism . 5
2.2.2 Data Parallelism . 7
2.2.3 Task Concurrency . 7
2.2.4 Models of Process Communication 8
2.2.5 Concurrency and the Operating System 12
2.2.6 Debugging Concurrent Programs 15

2.3 Introduction to Visualization . 20
2.3.1 Elements of Visualization . 21
2.3.2 Visualization Data . 24

2.4 Software Visualization . 27
2.4.1 Visual VM . 28
2.4.2 PARADE . 33
2.4.3 Understanding Complex Multithreaded Software Systems by Us-

ing Trace Visualization . 37
2.4.4 Zinsight . 38
2.4.5 TIE: Thread Interleaving Explorer 42
2.4.6 UML Sequence Diagrams . 43
2.4.7 Visual Programming Languages . 48
2.4.8 Common Features Summary . 51

2.5 Temporal Notations from outside Software Visualization 52

ii

CONTENTS iii

2.5.1 Music Notation . 52
2.5.2 Non-Linear Audio Editing . 54
2.5.3 Comparison to Software Visualization 58

3 Design 60

3.1 Design of Beat . 60
3.2 Visualization Data . 60
3.3 Space . 61
3.4 Text . 61
3.5 Lines, Colors and Icons . 63
3.6 Loops, Branches, Errors and Exceptions 66
3.7 Context Switches . 68
3.8 State . 68
3.9 Concurrency Errors . 70
3.10 Interaction . 72

4 Implementation 74

4.1 Implementation Choices . 74
4.1.1 Language . 74
4.1.2 Standalone program versus IDE . 75
4.1.3 Gathering Trace Data . 76
4.1.4 Visualization display choices . 82

4.2 Plugin Infrastructure . 82
4.2.1 Launcher and the JDT . 83

4.3 Data Gathering . 84
4.3.1 Trace data annotations . 84
4.3.2 Source Code instrumentation . 85
4.3.3 Runtime method probes . 87
4.3.4 Data loading and processing . 87
4.3.5 Context Switches and DTrace . 90
4.3.6 Program State and Concurrency errors 91

4.4 Visualization Generation . 91
4.4.1 Ruby and Templating . 91
4.4.2 Text Positioning . 92
4.4.3 Canvas Object and Threads . 96
4.4.4 JQuery and CSS . 97

CONTENTS iv

5 Evaluation 98

5.1 Evaluation Introduction . 98
5.2 Evaluation Method . 98

5.2.1 Tasks and Timing . 99
5.2.2 Previous Experience . 99
5.2.3 Timing and Experience Questions 100
5.2.4 UI Questions and Comments . 100

5.3 Timing and Quantitative Questions Results 101
5.3.1 Was using Beat significantly faster? 101
5.3.2 Was Beat helpful in one not the other? 102
5.3.3 Was using Beat significantly easier? 102
5.3.4 What effect did experience have? 102
5.3.5 Did the order that Beat was used in have any effect? 103
5.3.6 Was one of the tasks harder than the other? 103

5.4 Visualization Design Questionnaire Results 104
5.5 Comments From Questionnaries . 104

5.5.1 Like Comments . 105
5.5.2 Minor UI problems . 105
5.5.3 Major Dislikes/ Needed Features 106

5.6 Observations of Participants . 106
5.7 Evaluation Limitations . 107

6 Conclusion 108

6.1 Conclusion . 108
6.2 Future Work . 110

6.2.1 Testing . 110
6.2.2 Core Improvements . 110
6.2.3 UI improvements . 111
6.2.4 Debugger and Static Analysis . 112
6.2.5 Education . 112
6.2.6 Visual Language . 112

A Questionnaire 113

B Evaluation Source Code 114

B.1 Source Code for Deadlock Task . 114
B.2 Source Code for Race Condition Task . 114

CONTENTS v

C Result Tables 124

C.1 Timing and Experience Results . 124
C.2 UI Questions . 125
C.3 Comments . 125

List of Figures

2.1 Pipelined instruction execution . 6
2.2 Race condition diagram . 8
2.3 Race condition fixed with locks . 9
2.4 Two processes in a deadlock. The processes have each acquired a lock

but are both waiting on the lock held by the other. Since the processes
are unable to acquire the locks they need to continue they are unable to
progress. 10

2.5 Processes messaging shared account process 11
2.6 Screenshot of Intellitrace [14] showing a list of the events in an executing

program the system has traced, including exceptions and user interface
events. 18

2.7 Treemap example [9] that shows the amount of downloads for software
projects on sourceforge. This is an example of using space to convey
amount and the relationship of the amount of one thing to another. . . . 22

2.8 Examples for continuous data from Tory and Mller 26
2.9 Examples for discrete data from Tory and Mller 26
2.10 Process overview for VisualVM [24] showing some basic bits of information

about a process including the execution arguments and the process id. . . 29
2.11 Monitor view of VisualVM [24] that shows various graphs showing dif-

ferent aspects of a programs performance. The top left shows the CPU
and Garbage collection activity. The top right shows the memory usage
and the type of memory being used. The bottom left shows information
about classes and the bottom right shows information about threads. . . . 30

2.12 Thread timeline view of VisualVM [24]. The timeline shows the thread
state over time. 31

2.13 Sampler view of VisualVM [24]. 32

vi

LIST OF FIGURES vii

2.14 Profiler view of VisualVM [24] showing how long methods are taking to
execute. 33

2.15 Threads view of Parade [54, 66] showing a list of threads as boxes. Colour
is used to show state. 34

2.16 Functions view of Parade [54, 66] shows a trace of what functions have
executed for a single thread. 35

2.17 History view of Parade [54, 66] showing the timeline of thread execution,
somewhat like the Visual VM example. 36

2.18 Mutex view of Parade [54, 66]. The small coloured circles are threads
that move inside the larger clear circle that represent the Mutex when
they acquire it. 36

2.19 Barrier view of PARADE [54, 66] showing what threads have entered and
exited a barrier synchronization point. 37

2.20 Trace Visualization showing two threads [62]. Each thread ”lane” has an
overview (top) and zoom in panel on the bottom that show what functions
have been executing. 38

2.21 Event view of Zinsight [33]. Note that time flows vertically rather than
horizontally like the previous examples. 39

2.22 Statistics view of Zinsight [33]. Some what like the profiling view of Visual
VM this provides statistical information about the running program. . . . 40

2.23 Sequence Context view of Zinsight [33]. This is showing a summarization
of the various execution paths the program has gone through. 41

2.24 Thread Interleaving Explorer software [42]. Note the numerous different
panels used to provide enable a user to zoom in from the more general
information at the top to more specific information in the bottom columns. 42

2.25 UML collaboration diagram [23]. The numbers show the order of method
calls between the object instances which are represented by the boxes. . . 43

2.26 Basic UML sequence diagram [12]. Time flows vertically with the lines
representing the execution history of the object instances and the narrow
blocks on the lines showing when a method was called on an object. . . . 44

2.27 UML Sequence diagram with combined fragments [12]. The boxes are
used to represent various aspects that are not covered by the lines and
execution boxes. 45

2.28 Diagram of saUML [65]. Colour is used to represent thread state and the
rounded corner boxes show monitor state information. 46

LIST OF FIGURES viii

2.29 Context switches in Artho’s UML extension [27]. Note the hexagon
threads and the dashed lines that show when a thread starts executing in
the object instances. 47

2.30 Condition variable wait and notification in Artho’s UML extension. Note
the dotted lines which demonstrate notification of a lock to the waiting
thread. 47

2.31 Overview of JIVE [36] showing the various panels. The top left shows
the object instances and there values the bottom left shows a sequence
diagram of the execution. 48

2.32 Multiple threads in JIVE [36]. Colour is used to differentiate the threads. 49
2.33 LabVIEW – an example of a ”boxes and wires” visual language [20][6].

”boxes” are operations on a stream of data that are carried between the
operations by the ”wires”. Some ”boxes” will be used for input and output. 50

2.34 Basic music notation . 53
2.35 Different note lengths . 53
2.36 Text and lines indicating volume. 53
2.37 Speed notation for music notation . 54
2.38 Glyphs used in music notation . 54
2.39 Track view of Logic Audio . 55
2.40 Piano roll view from Logic Studio . 56
2.41 Sound edit view from Logic Studio . 57

3.1 Use of space in Beat . 62
3.2 Method calls to object instances represented as blocks in the object tracks. 62
3.3 Design with source code included in method call boxes. 63
3.4 Adding lines showing path of execution between method blocks. 64
3.5 Thread state being shown by icons and dashed lines. 65
3.6 Thread looping shown by repeated loop body. 66
3.7 Branches shown by only showing the content of the branch taken. 67
3.8 Exceptions in a program thread shown by T, C and E icons. 68
3.9 Context switch in Beat . 69
3.10 State changes shown by additional lines 70
3.11 State only mode for method blocks. Source code is hidden and only

changes to program variables are shown. 71
3.12 Possible method of highlighting a program deadlock. 72

LIST OF FIGURES ix

4.1 Class diagram of Beat model relationships 89
4.2 Space compression in method blocks . 94
4.3 Parallel thread execution . 95

List of Tables

5.1 Participants and tasks performed . 99
5.2 Comparison of time taken on both tasks 101
5.3 Correlations between Eclipse and concurrency experience 103
5.4 Comparison of Beat order performance . 103
5.5 Task difficulty comparison . 104
5.6 Participants rating of what was task was easiest. 104

x

List of listings

1 Example for Instruction Parallelism . 5
2 Simple example of a future in Java [5], the line containing future.get() is

where the other thread is started and the main thread blocks waiting for
the value to be generated. 13

3 Probing an open() system call with DTrace [22]. The lines containing
“syscall” are the events in the kernel to trace and the line beneath is a
predicate which checks whether the action contained in the body of the
trace will execute. The trace body is written in a programming language
allowing complicated tracing actions to be performed. 17

4 This example shows how to launch a program using the JDI library [15]. . 77
5 Registering to receive method entry events from remote program [15]. . . 77
6 Method to receive registered events from the debugger [15]. 78
7 Probing methods using AspectJ pointcuts. 80
8 Example of part of an ANTLR grammar used for processing a block of

Java code to add tracing probes. 81
9 Configuration of a launcher extension for Eclipse in the XML plugin con-

figuration. 83
10 Diagram showing basic tree structure of Java source code. A classes is

made up of methods which contain blocks of statements. 86
11 Code to insert method probes around a method call. The lines containing

ExpressionStatement are the code for the methods to insert. The lines
like x.add(beforeExp) add the method probes. 88

12 Diagram showing the result of inserting probe methods before and after
method call. 89

13 Probing scheduling in the kernel . 91
14 ERB templating code . 93
15 Javascript line drawing code . 96

xi

LIST OF LISTINGS xii

16 Contains main method of deadlock test. 115
17 Printer object for deadlock test. 116
18 First printer thread for deadlock test part 1. 117
19 First printer thread for deadlock test part 2. 118
20 Second printer thread for deadlock test part 1. 119
21 Second printer thread for deadlock test part 2. 120
22 Contains main method of race condition test. 121
23 Printer thread for race condition test. 122
24 Shared object for race condition test. 123

Chapter 1

Introduction

1.1 Motivation

The microprocessor industry has reached the point where the performance of an indi-
vidual CPU core is not seeing significant improvement. This is largely because of the
practical limit of keeping a CPU core cool. Additionally techniques such as pipelining
and out of order execution have reached the limit of how much parallelism can be drawn
from a single thread of execution [57].

While Moore’s Law still holds for now, as transistor feature size has continued to
shrink, the additional transistors have been used to add more CPUs to a single chip
rather than to increase the performance of single CPU. To the programmer this means
that there is a limit to how fast a single thread of execution can be expected to perform,
so to achieve continuing performance gains requires the use of multiple threads. As we
will see, this can be very difficult to get right.

Considerable effort (and money) has been spent to make this task easier for pro-
grammers. One of the core problems is communication between threads. A number of
different methods of conducting communication between threads such as the use of locks
and message passing have been developed with some success. Formal methods have also
been developed to address the communication issue, but there are often difficulties in
getting these tools into wider use. Erlikh [35] notes the importance of the debugging
process with a great deal of time spent “programming” actually spent debugging. A
variety of visual and non-visual tools have been created to assist this process, but they
seem to be primarily focused on the area of performance analysis.

Our motivation is the observation that in areas outside of programming and software
visualization, such as music notation and music recording, visual methods have been a

1

CHAPTER 1. INTRODUCTION 2

tremendous success, in the sense of being widely adopted by the market. Early on
we observed similarities between these fields and several of the visualization tools we
investigated in our initial search of the literature. The first was a similarity between
the kinds of visualization techniques used – both used a timeline-based approach where
events are ordered by when they occur in time along a horizontal or vertical line or
track. This lead to the observation that both concurrent programs and music notation
and music recording are both strongly time-based, and are both, at least in a superficial
sense, time-based “media”.

This led us to our thesis questions:

Is there something about existing visualizations that make them unsuitable
for the task of programming and debugging concurrent programs?

What is it about music notation and music recording software designs which
make them effective?

Can we draw any conclusions from existing visualizations, music notation
and music editing software and apply the lessons learned from them to the
design of a visualization-based concurrent debugger?

Will the resulting design be effective for the task of debugging concurrent
programs?

Our research and experimentation is primarily focused on tools for experienced de-
velopers, this leads to some additional practical considerations in that the software must
have adequate performance, be relatively easy to use and integrate well with existing
tools. It is possible that our research could be broaden to include questions about the
creation of tools aimed at education, however this is not something we are pursuing at
this time.

1.2 Thesis Overview

In this thesis we will address how we have answered our thesis questions and discuss the
software which we have produced, called Beat.

In the next chapter we will review the existing literature. To help situate our research
we will provide an overview of concurrency with some discussion of existing concurrent
debugging techniques. Then we will provide a brief overview of the field of visualization
before examining existing software visualizations for concurrency. Finally, we will discuss

CHAPTER 1. INTRODUCTION 3

music software and notations and compare them to the software visualizations that we
researched.

In the third chapter we will discuss our design and how it draws from and builds
on existing debuggers, visualizations and music software and notations to create a novel
design for debugging concurrent programs.

In the fourth chapter we will give an overview of how we implemented our design
and the choices we made and challenges we faced while implementing it.

How we evaluated the software and the results of our evaluation will be discussed in
the fifth chapter.

Finally, in the sixth chapter we will summarize and provide some concluding remarks
about this thesis and some possible future directions we could take the ideas developed
in it.

Chapter 2

Literature Review

2.1 Introduction

In the first part of this review we will investigate concurrency and some of the unique
challenges it poses, followed by some of the existing approaches to addressing those
challenges. Next we will provide a brief overview of the field of visualization before
focusing on the software visualization area of trace visualization. Finally, we will discuss
the design of music notation and software before concluding with a comparison of music
notation and software and the trace visualization systems we have studied.

2.2 Introduction to Concurrency

In this section we will introduce the three categories of parallelism concurrency, instruc-
tion parallel, data parallel and task parallel. Next we will address some of the challenges
of communication in task parallelism and some of the solutions proposed to address
these challenges. We will also address the role of the operating system in concurrency
and some techniques for how concurrent programs have traditionally been debugged.

We will use the definition of concurrency and parallelism found in Sun/Oracles mul-
tithreaded programming guide [56]. Parallelism is performing two or more tasks at the
same time. Concurrency is performing two or more tasks in a period of time, potentially
(but not necessarily) in parallel. Concurrency includes time-slicing “virtual”-parallelism
that operating systems perform, which we will discuss further in the section 2.2.5.

While performing tasks at the same time isn’t difficult, it can bring up significant
issues related to the data that is operated on. Most of this section will be related to
discussing how this affects programming concurrently.

4

CHAPTER 2. LITERATURE REVIEW 5

2.2.1 Instruction Level Parallelism

Instruction level parallelism is not a single technique, but rather a variety of techniques
that can extract parallelism from a stream of machine code instructions.

For example, the code in Figure 1 shows two simple integer additions followed by
a multiplication. Since there is no dependency between the calculation of a and the
calculation of d if a CPU has two integer addition units it could perform both cal-
culations at the same time. This kind of instruction parallelism is called super-scalar
execution. Modern CPU architectures (such as Intel’s Nehalem architecture) can per-
form 3 computational operations per cycle such as integer addition and floating point
multiplication [19].

void test(int b, int c, int e, int f){
int a = b + c
int d = e + f
int g = a * d

}

Listing 1: Simple example showing code with instructions that can be easily executed
in parallel.

Operations such as addition are broken down into multiple processor steps such as
fetching the instruction, decoding it and executing it (or potentially many more). Rather
than executing all these steps in a single cycle of the CPU, modern CPUs execute each
of these stages once per cycle so that at every clock cycle a fetch, decode and execute is
performed. This technique is called pipelining. Figure 2.1 shows instruction execution
without pipelining and with pipelining.

A common problem with pipelining is the issue of dependencies, if a later calculation
depends on an earlier one then the pipeline either has to stall to wait for previous
operations to complete or special hardware has to be used to send values from earlier
instructions back to later instructions. Branches in a program also cause a problem,
since a branch can cause the entire contents of the pipeline to be emptied and restarted
at another point in the program.

Out-of-order execution is a technique that executes instructions as the data for them
becomes available, rather than in the order they are specified in the program. This
means that more recent instructions can complete before older instructions that are
waiting on data from main memory. For example in the code in Listing 1 if b or c aren’t
available in registers and have to be brought from main memory but e and f are then e
+ f may execute before b + c. Problems can arise for concurrent programmers creating

CHAPTER 2. LITERATURE REVIEW 6

Fetch

Cycle

In
st
ru
ct
io
n

1

2

3

1 2 3

Decode Execute

Fetch Decode Execute

Fetch Decode Execute

(a) Without Pipelining

Fetch

Cycle

In
st
ru
ct
io
n

1

2

3

1 2 3

Decode Execute

Fetch Decode Execute

Fetch Decode Execute

4 5

(b) With Pipelining

Figure 2.1: Instruction execution without and with pipelining. Parallelism can be seen
by different phases of instruction execution occurring in the same cycle unlike the non-
pipelined example where each execution takes a whole cycle that is longer. [46].

CHAPTER 2. LITERATURE REVIEW 7

lock implementations, since out-of-order execution may reorder instructions that are
supposed to be inside a lock to be outside it. To address this, computers that execute
out-of-order have special instructions to ensure that all instructions are executed before
a point called a memory barrier, preventing instructions from being executed after it.

Branch prediction is a technique that tries to predict the destination of a branch
instruction. This is used with speculative execution, which pre-executes code that may
or may not be executed depending on whether a branch is taken or not.

Most of the techniques discussed here aren’t visible to programmers since they are
usually hidden within CPUs, so we won’t say more about them in this thesis. For more
information, see e.g. Tanenbaum [59].

2.2.2 Data Parallelism

Data parallelism is essentially concurrency in its simplest form: each task is the same
and has its own pieces of data to work on and no data is shared between tasks. This
is commonly known as Single-Instruction-Multiple-Data (SIMD) since each task will
execute the same sequence of instructions, but each will have their own data.

One of the most common examples of this are modern graphics cards, which are
essentially data parallel computers processing vector data such as polygons and textures
to produce images.

This does not mean that the only kind of data parallelism is performed by specialized
data parallel hardware, more that data parallel is a pattern of work consisting of the
same code working on multiple pieces of data and communicating in a fairly fixed and
synchronous pattern. Many types of processing performed on large clustered multi-
computers would fit this definition.

2.2.3 Task Concurrency

Task parallelism is multiple different tasks working on multiple different pieces of (poten-
tially shared) data, commonly known as Multiple-Instruction-Multiple-Data (MIMD). In
certain cases the tasks will operate on entirely separate pieces of data, this kind of prob-
lem is commonly called an “embarrassingly parallel” problem. A common example of
this kind of concurrency is serving web pages, where requests are handled simultaneously
with no data shared between requests.

Of course, this will not always be the case and data sharing can lead to many prob-
lems. This is the challenge of concurrency: making multiple threads communicate ef-
fectively to solve problems. In the next section we will outline these problems and how

CHAPTER 2. LITERATURE REVIEW 8

people have addressed them.
Throughout the rest of this thesis we will be referring to this type of concurrency

since it is in many ways the most difficult to solve and most relevant to programmers.

2.2.4 Models of Process Communication

Shared Memory and Locks

This model is a direct extension of the existing sequential programs. Processes each
have their own stack, but share regions of memory, which can be accessed by any of the
processes allowing communication between them.

A major problem with this approach is called a race condition or data race. In
Figure 2.2 we see a common example of a data race. Two bank processes accessing a
shared memory location, the account. Process 1 reads the memory location into local
memory, performs an addition operation, but before the thread can write the value back
to memory another thread runs. Process 2 reads, modifies and writes back to memory.
Process 1 runs again and writes back to memory, leading to an incorrect value.

Account Process 2Process 1
value = 10read: local1 = 10

modify: local1 = 10 + 10
stops

read: local2 = 10
modify: local2 = 10 + 20
write: value = local2value = 30
stops

write: value = local1 value = 20
Wrong! - should be 40

Time

Figure 2.2: Two processes update a shared memory location causing a race condition.
The process columns show the instructions executing in time and the center column
shows the value of the shared value as it is set by the processes. Arrows show where the
execution of the instruction sequence changes from the first to the second process.

To prevent race conditions a number of techniques for creating regions of code where
only a single thread can execute have been devised. These techniques are commonly

CHAPTER 2. LITERATURE REVIEW 9

called locks. In Figure 2.3 we can see the above race condition with locks added, mak-
ing the read, modify, write operation an “atomic” or uninterruptible operation. Many
languages have locks available as libraries or built in as Java has with its synchronized
keyword.

Account Process 2Process 1

value = 10read: local1 = 10
modify: local1 = 10 + 10

stops

read: local2 = 20
modify: local2 = 20 + 20
write: value = local2value = 40

stops

write: value = local1 value = 20

Right!

Lock Account

Unlock Account

Lock Account

Unlock Account

value = 20

Time

Figure 2.3: Fixing the race condition by adding locks. The locks prevent another process
modifying the shared memory value while the code to modify the value is executing.

Adding locks fixes the problem of race conditions, but can create problems of their
own, such as deadlocks which arise when two or more locks are locked in such a way
that a process is waiting for a lock held by another process, but that process is waiting
for a lock held by the first meaning that neither can do anything. Figure 2.4 shows a
graphical representation of this.

Detecting deadlocks at runtime is difficult and proving a program is deadlock free is
also difficult.

Starvation and Livelock are related problems, starvation is when a high priority
process is waiting on results from a lower priority process. Little work gets done because
the high priority thread prevents the low priority thread from running. There are a
couple of ways this can be addressed, one is to fix the scheduler so it allows lower
priority processes more opportunity to perform work.

CHAPTER 2. LITERATURE REVIEW 10

Process 1 Process 2

Lock
1

Lock
2

Acquires Acquires

Waits For
Figure 2.4: Two processes in a deadlock. The processes have each acquired a lock but
are both waiting on the lock held by the other. Since the processes are unable to acquire
the locks they need to continue they are unable to progress.

Another is to rewrite the program using condition variables. This is a mechanism
that is often used with locks that allows a process to wait (block) for another process
to signal that it should continue. Because other processes might need the lock that the
process is holding when the process waits the lock will be released after the process
decides to wait.

Livelock is a more serious version of starvation, it can be described as a process that
is active (running), but busy waiting on a condition that will never occur. This means
that a process is alive, but not doing any useful work.

Finally, locks suffer from a human problem: in practice they are difficult for pro-
grammers to understand and it is difficult to implement programs using them correctly.

More information about the problems of locks can be found in an article called ‘The
Problem With Threads’ [41].

Actor Model

Due to the limitations of the shared memory communication model, a number of other
models have been tried to address its problems.

The actor model [37] is roughly analogous to packet-based networking systems such
as IP. Processes (actors) without shared memory send messages to each other through
some communication mechanism, often a queue in memory. This can be synchronous,
where a process waits for a response after sending a message, or asynchronous, where a
process sends a message then carries on running.

The actor model doesn’t suffer from race conditions since no memory is shared, and

CHAPTER 2. LITERATURE REVIEW 11

all access to remote processes are automatically serialized by the messaging mechanism.
Figure 2.5 shows the race condition example rewritten using actor model. The bank is
modeled as an independent process receiving add messages from the teller processes.

Account Process Process 2Process 1

value = 10

value = 40

recieve: add 10

value = 20

Time

message: add 10

message: add 20
value = value + 20

value = value + 10

recieve: add 20

Figure 2.5: Two processes sending messages to an account process to update the value
contained in the account. This avoids the problems of locking by serializing access to
the account value by using a queue.

Deadlocks are still possible in the actor model: if two threads wait for a message
from each other with no timeout then no progress will be made.

Probably the main advantage of this model for programmers is that it is familiar,
easy to understand and reason about, making writing complex concurrent programs
easier because inadvertent deadlocks and race conditions are easier to avoid.

Unlike the shared memory model the actor model has been mathematically formal-
ized, allowing things such as proving the lack of race conditions and deadlocks. Hoare’s
CSP [38] is one of the original formalizations of the actor/messaging model.

Given the serious problems with the shared memory model it is perhaps surprising
that the actor model is not more widely used. This may be changing as the language
Erlang [13], which uses the actor model for concurrency is achieving some commercial
use.

Transactional Memory

Transactional memory [50] is a relatively new approach that is similar to how SQL
database transactions work. Access and operations on shared variables are wrapped in
a transaction so that if a concurrent access occurs the changes can be rolled back and
retried. This is similar to how the BEGIN, COMMIT and ROLLBACK statements work
in SQL databases.

CHAPTER 2. LITERATURE REVIEW 12

Because transactional memory doesn’t block on locks, deadlocks are impossible to
cause and race conditions can’t occur because transactional memory will detect that
another thread has made a change to a variable.

A major, and arguably insoluble, problem with transactional memory is IO, IO ac-
tions are irreversible, i.e you can’t unsend a packet on a network or unprint something to
the screen. Work has been done to address these problems using methods like switching
to locks when IO occurs. Despite being conceptually simple these problems may make
transactional memory useful only in limited circumstances or require careful design to
ensure that IO happens outside a transaction.

Since transactional memory is a relatively new approach it has yet to achieve widespread
use.

Futures and Reactive Programming

Futures (also called promises) are a mechanism for performing long running tasks in
the background while a main process advances. A programmer creates a future that is
placed into a background process that carries out the operation while the main process
advances. When the value is needed the main thread blocks waiting for the future to
complete. Once complete the future returns its value to the main thread, which then
continues. Listing 2 shows an example of a future in use in the Java language.

The Mozart language and programming system integrates this mechanism directly
into the language. A program’s variables can cause the process to block waiting on their
value to be set by another process. This technique is called data flow programming and
is related to the concept of reactive programming [48, Ch. 4].

Although many of the concepts behind futures are relatively old they have only
recently been added to mainstream programming languages like Java, and like actors
and transactional memory they have only recently gotten more attention.

2.2.5 Concurrency and the Operating System

In most cases (such as desktops and servers) the number of processes exceeds the number
of CPUs available, so some system for dividing up the CPU between them is needed.
This job is handled by a piece of software called the scheduler, the scheduler chooses
what process or thread to run next after a thread has used the CPU enough or when a
process waits for something to happen, such as during IO.

CHAPTER 2. LITERATURE REVIEW 13

class CallableImpl implements Callable<Integer> {
private int myName;
CallableImpl(int i){

myName = i;
}

public Integer call() {
for(int i = 0; i < 10; i++) {

System.out.println("Thread : " + getMyName() + " I is : " + i);
}
return new Integer(getMyName());

}

public int getMyName() {
return myName;

}

public void setMyName(int myName) {
this.myName = myName;

}

}

public class CallableTester {
public static void main(String[] args) {

Callable<Integer> callable = new CallableImpl(2);

ExecutorService executor = new ScheduledThreadPoolExecutor(5);
Future<Integer> future = executor.submit(callable);

try {
System.out.println("Future value: " + future.get());

} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 2: Simple example of a future in Java [5], the line containing future.get() is
where the other thread is started and the main thread blocks waiting for the value to
be generated.

CHAPTER 2. LITERATURE REVIEW 14

There are two basic approaches to scheduling: cooperative scheduling and pre-
emptive scheduling. Cooperative scheduling means that processes must voluntarily relin-
quish the CPU, either by calling an explicit yield function or implicitly when they make
an IO call. An obvious problem with this design is that if a process never relinquishes
the CPU then other threads will never run, potentially leading to a process hanging.

Pre-emptive scheduling is when the operating system can “pre-empt” a running pro-
cess, forcing it into a waiting state even if it hasn’t explicitly yielded or performed IO.
This is triggered by a timer periodically interrupting the CPU causing a piece of code
to run in the operating system that checks whether the process currently running on
the CPU has used up its available time called the “quantum”. If the operating system
decides that the process has had enough time on the CPU another process will be chosen
to run on the CPU. This process is called a context switch.

Pre-emptive scheduling is used on most (if not all) desktop servers, cooperative
scheduling is still used in some situations, particularly mobile phone operating systems
that don’t want the overhead in terms of power consumption that constantly interrupting
the CPU causes.

The implementation of the scheduler can have an enormous effect on how a system
performance, for instance it can effect the responsiveness of a system or the throughput;
for a more extensive discussion of scheduling (and operating systems in general) see
Tanenbaum [58, p. 145].

As mentioned above, threads are similar to processes in that they each have their
own stack and registers and program counter. There are two major approaches to
implementing threads, kernel threads and user (or green) threads. Kernel threads are
threads that are part of the kernel. Generally, the thread scheduler is the same as the
process scheduler in this case, and often processes and threads are no different at the
kernel level.

User threads are threads that are implemented as part of a user space library so the
scheduler and threads correspond to a single operating system process. Some languages
(such as Ruby) use user threads to implement threading. One of the main limitations
of user threads is that they can’t easily use multiple CPUs, since an operating system
process is scheduled on a single CPU.

Combinations of these two approaches are possible: a common strategy is to have one
kernel thread with multiple “fibers” which are sort of mini-threads that are cooperatively
scheduled running on top of the kernel thread.

At the user level there is usually some type of API for using threads regardless of
whether they are kernel or user threads, for example the POSIX thread library for UNIX

CHAPTER 2. LITERATURE REVIEW 15

systems or Windows threads for Windows systems.

2.2.6 Debugging Concurrent Programs

Debugging concurrent programs poses some unique challenges that don’t appear with
debugging sequential programs. Being able to successfully debug concurrent programs
is important since it is necessary to ensure software has no errors (to a reasonable
standard). Debugging can also take a significant amount of time (Erlikh [35] notes that
85-90% of time is taken up with debugging) in the software development process, so
rapid debugging can save time and money.

Debugging can take a number of forms, such as finding the causes of specific excep-
tions or errors in a program under development or finding performance problems in a
system.

A great deal of research and a large number of tools have been developed to address
these challenges. In this section we will discuss some of the existing approaches to
addressing this challenge and some of the problems with these approaches. We will focus
on debuggers and tracing frameworks that include a visual component in Section 2.4 after
we have introduced visualization.

For more information about debugging see ‘Debugging Parallel Systems: A State of
the Art Report’ [39].

Stress Testing

Stress testing, also called exhaustive testing, is an extension of existing testing practices
such as unit testing. Instead of testing something once, a concurrent program is run
many times to try to detect hard-to-debug concurrency errors like race conditions and
deadlocks. Tools such as ConTest [55] are designed to assist this process by randomizing
the scheduling of threads by inserting sleeps and pauses at random points within the
code.

Unfortunately, this approach isn’t an absolute guarantee that concurrency bugs will
be found, since it can’t guarantee that every single possible execution of the entire space
of executions will be tried, which is generally quite large in multithreaded programs.

Problems with traditional cyclic debuggers

The traditional debugging process for sequential programs is often called cyclic debug-
ging because of the way that users run a program over and over “zooming” in on the bug
with each run. This is generally not feasible for debugging concurrent programs, since

CHAPTER 2. LITERATURE REVIEW 16

many concurrency bugs are non-deterministic, since their appearance depends on timing
factors such as the operating system scheduler, which may not be consistent between
runs.

Even worse, the presence of breakpoints in code can change the timing of the code,
potentially leading to bugs disappearing when run under a debugger and reappearing
when breakpoints are removed.

Trace/Event Frameworks and Replay Frameworks

For this reason most debuggers for concurrency take an approach based on tracing which
is, in a sense, a more structured version of the kinds of “printf” or logging debugging that
people do – outputting the state of variables and the position in code where a thread has
reached such as method entries or branches. This also addresses the problems associated
with stopping a thread to examine it by simply time stamping events instead. As long
as there is a consistent source of time this will work well, but may be more complex in
distributed computing scenarios.

Tracing (also known as monitoring) can be performed by computers equipped with
special hardware such as hardware to snoop bus activity without altering the timing
(avoiding something called the probe effect discussed below.) There are a number of
limitations to this approach, first of all machines equipped with this hardware are un-
common as it increases the cost. Secondly, the data collected is quite low level so some
processing must be done to relate it to higher level program structures. Finally, the de-
velopment of multicore processors and system-on-a-chip architectures mean there often
aren’t buses or other hardware structures to probe, so monitoring must be integrated
with the chip architecture. Having said that, there are a number of systems with these
capabilities built in such as IBM Z series mainframe computers.

More commonly, tracing can be done by inserting calls to tracing methods into ma-
chine code, source code or in some cases integrated into a runtime such as Java. The
inserted methods are called probes and the process of inserting probes is called instru-
mentation. Two examples of this kind of tracing framework are DTrace [28] developed
by Sun/Oracle and IntelliTrace [11] by Microsoft.

One aspect that makes DTrace especially interesting is that it can be used to trace
parts of the kernel along with user space programs, allowing deep examination of the
actions and performance of a program. DTrace is also in some senses “programmable”
since tracing is enabled by writing code in a scripting-like fashion, as shown in the
example in Listing 3, which shows tracing of an open() system call in a UNIX system.

CHAPTER 2. LITERATURE REVIEW 17

syscall::open:entry
/pid == $1/
{

self->path = copyinstr(arg0);
}

syscall::open:return
/self->path != NULL && arg1 == -1/
{

printf("open for %s failed", self->path);
ustack();

}

Listing 3: Probing an open() system call with DTrace [22]. The lines containing “syscall”
are the events in the kernel to trace and the line beneath is a predicate which checks
whether the action contained in the body of the trace will execute. The trace body is
written in a programming language allowing complicated tracing actions to be performed.

This allows the user to single out parts of their program, library or runtime for
examination. Programs and libraries have to be prepared to allow DTrace probes to be
added.

IntelliTrace from Microsoft provides similar features except that it only operates
on user space programs. The types of data recorded can be chosen from a list and
recorded data can be saved in a file that allows a program trace to be shared with other
developers. IntelliTrace integrates with the Visual Studio IDE and can be used with the
Visual Studio Debugger.

Tracing systems for concurrent programs face a number of unique challenges. The
Probe Effect is somewhat analogous to Heisenbergs’ uncertainty principle, which roughly
states that it is impossible to measure the momentum and direction of a particle simulta-
neously to a high degree of accuracy. In the case of a concurrent system this means that
attempts to monitor and record events occurring in the system will take up a certain
amount of time, potentially altering the timing of the program. This has the possibility
of removing an error that we are looking for such as a race condition by altering the
timing of events, or add an error that wouldn’t otherwise be present. This is a less ex-
treme version of the effect that breakpoints have on a program. One way of addressing
this is to simply never remove the probes and make them a fundamental part of the
system, though this might have serious consequences for performance. Note that this
isn’t a problem with hardware monitors, since they do not alter the timing of events.

In distributed systems there is another problem called the observability problem.

CHAPTER 2. LITERATURE REVIEW 18

Figure 2.6: Screenshot of Intellitrace [14] showing a list of the events in an executing
program the system has traced, including exceptions and user interface events.

CHAPTER 2. LITERATURE REVIEW 19

This problem is where timing delays in a system without a shared timebase may mean a
node sees an incorrect ordering of events or where two different nodes see different event
orders. This problem doesn’t apply to multiprocessor systems.

Tracing generally produces a tremendous amount of data, so some method of sum-
marizing of data is often used. The most common example of this is called profiling,
which aims to gather statistics about the timing of events within a program. This allows
a user to debug performance problems in areas such as CPU use, memory use or IO time.
This kind of data is often visualized as well; we will explore this further in Section 2.4.

Another technique commonly used as part of tracing is replaying, which allows the
execution of a program to be replayed after it is complete. This can be used to allow a
user to debug a parallel program in the same manner as cyclic debugging because the
replay framework can ensure that threads don’t advance past a breakpoint in another
thread. A technique called checkpointing can be used to wind the execution of a program
back to an earlier point and to start again. This is also present in cyclic debuggers such
as the debugger that is part of Java. More info about replay systems can be found in ‘A
Taxonomy of Execution Replay Systems’ [32].

Tracing frameworks are often used as part model checkers that we will discuss at the
end of the next section.

Formal Methods

The goal of formal methods is to verify that a program is provably correct, not simply
tested a great deal, as we have discussed above. Formal techniques can be used at
different stages of software development (such as at the design stage) to help reveal
flaws in the system before it is constructed. In later stages the constructed system can
be compared to the specification, potentially automatically.

The first step is to create an abstract model of the system to be constructed. There
are numerous languages and tools for doing this starting with Hoare’s Communicating
Sequential Processes [38] and its descendants.

Once a model has been created there are two techniques that can be used to verify
that a system is correct. The first, called theorem proving, generates mathematical
proofs from axioms of the system. Often, this process needs some guidance from the
user and may require some expertise to use properly. One advantage of theorem proving
is that it can deal with systems that have an infinite number of states, which model
checking, the next approach, has difficulty with in some situations.

Model checking basically amounts to checking every possible execution of the model.

CHAPTER 2. LITERATURE REVIEW 20

In a system with a small number of states this is relatively easy, but with more states
this can become infeasible. In particular, the interleaved nature of concurrent programs
can lead to an explosion in the number of states to be checked. Several solutions to this
problem have been developed, one of the first approaches was an improved representation
that greatly speeded up the performance of automatic checking. Another approach is
based on the observation that, although there are many sequences of states, only a few of
them may be significantly different. This can greatly speed up the process of checking.

Often, the model that is checked is simply the abstract model that a programming
language forms, meaning that programs written in these languages can be checked for
well known concurrency bugs such as deadlocks and race conditions. To check, the
system data is traced from a running program and often some mechanism of controlling
the scheduling of threads is used. Two examples of this kind of system are Java Path
Finder [64] from NASA and CHESS [45] from Microsoft.

Though they can prove a system correct there are many limitations to formal meth-
ods. We have mentioned a couple already – the expertise required and the state explo-
sion problem. Other problems are that models are an abstraction of the system under
construction and are limited by the level of detail that the model provides: they can
only prove what is modeled. Some practical problems with model checkers are that
they require modified operating systems or runtimes (like Java Path Finder) or separate
languages to implement.

This is only a brief overview of formal methods, see Merz [44] for a more in depth
(and mathematical) overview.

2.3 Introduction to Visualization

Every year more and more data is accumulated, but unfortunately the increase in data
isn’t being matched by an increased ability of humans to process that data. Visualization
aims to address this problem by using the human vision system to communicate a large
amount of data, often multidimensional, through the medium of the 2 dimensional space
of the page or screen. Edward Tufte [63], a visualization pioneer, states that:

“The world is complex, dynamic, multidimensional; the paper is static, flat.
How are we to represent the rich visual world of experience and measurement
on mere flatland?”

In this section we will look we will look at the different elements that visualizations
are composed of and the different kinds of data that can be visualized and how they

CHAPTER 2. LITERATURE REVIEW 21

form the basis of taxonomies of visualization. In the next section we will discuss the
relationship of software visualization to visualization

2.3.1 Elements of Visualization

A number of different elements can be used to visualize data, in this section we will
provide a brief overview of the various elements that are commonly used. Throughout the
rest of this thesis we will refer to these elements and how different areas of visualization
use them and how we have used these elements in our design.

Space

As noted above, the use of space depends on the type of data that is to be visualized.
For multi-dimensional data, temporal data or data from a continuous function this may
be obvious and require a simple calculation to place a data point within the available
space, or potentially the use of a logarithmic function to transform the data. Space
includes the use of things such as points, lines, areas and volumes.

In information visualization (discussed in Section2.3.2) the use of space is determined
by the designer either by their explicit choice or by using an algorithm to position the
elements in space. Algorithms such as force-directed layout are used to separate nodes
in a diagram of network data by viewing the connections between nodes as springs and
computing the layout by minimizing the “energy” of the system.

For tree data a common diagram type is the tree map that lays out children by
containing them inside their parents, as shown in Figure 2.7.

Colour

Much of what applies to space applies to colour since continuous data is relatively simple
to map to a colour scale, while in information visualization it is up to the designer to
determine how to map values to colours. Also consideration of things such as colour
blindness, which is quite common, must be given to ensure that differences in data can
be easily determined.

There are a number of different scales from where to draw colours from such as using
a “cold-hot” scale that has blue at one end and red at the other or a “traffic light” scale
that goes from green through yellow to red. Certain scales called linear optimal colour
scales are used to ensure that the perceived distance between values is the same as the
actual distance between values.

CHAPTER 2. LITERATURE REVIEW 22

Figure 2.7: Treemap example [9] that shows the amount of downloads for software
projects on sourceforge. This is an example of using space to convey amount and the
relationship of the amount of one thing to another.

CHAPTER 2. LITERATURE REVIEW 23

Text

Text doesn’t play a prominent part in scientific visualizations beyond providing labels,
however in many parts of information visualization text provides a valuable role. For
example, tag or word cloud visualizations use text size to indicate word frequency and
often use colour for additional purposes.

Another common area is in software visualization since software is primarily com-
posed of text in the form of source code. We will explore this further in Section 2.4.

Glyphs / Icons

In information visualization a familiar use of glyphs is as markers of locations on maps
such as crosses to represent church or other important locations. In a sense, glyphs are
used as a simple ideographic language to conserve space by using familiar images in the
place of text.

A common example from scientific visualization is the use of different icons to show
data from different sets of data when using a scatterplot. This allows easy differentiation
of the two (or more data sets) and helps makes things like clusters in the data clear.

Lines

Lines are probably most familiar in line graphs where they are used to show trends in data
where it might be difficult to perceive an overall pattern in the raw data. This use occurs
throughout scientific and information visualization, where lines are used to highlight
trends, flows, and order in time. Another use, common to information visualization, is
to demonstrate connection between two items such as a parent-child relationship in a
tree graph or to represent the flow between events, such as in UML sequence diagrams
discussed in Section 2.4.6.

Interaction

Most useful visualizations aren’t simply static pictures, but change and respond to in-
teraction from the user. Schneiderman [51] offers a useful mantra called the Information
seeking mantra:

• Overview Gain an overview of the entire collection.

• Zoom Zoom in on items of interest

• Filter Filter out uninteresting items.

CHAPTER 2. LITERATURE REVIEW 24

• Details-on-demand Select an item or group and get details when needed.

• Relate View relationships among items.

• History Keep a history of actions to support undo, replay, and progressive refine-
ment.

• Extract Allow extraction of sub-collections and of the query parameters.

A similar principle is called focus+context [29] Diehl [34] explains:

“A detailed visualization of some part of the information the focus - is embed-
ded within a visualization of the context, i.e. more coarse-grained information
about parts related to the focus. Thus focus+context techniques provide both
an overview and detail at the same time.”

Tufte [63] also brings up a similar principle in his book ‘Envisioning Information’
with his discussion of a visualization having micro/macro views where broad patterns
can be observed while still maintaing the visibility of individual data items. In a sense,
this is focus+context in a single view, since Tufte was focussing on static views.

In practice, this means that a visualization system may not simply be a single view,
but may have multiple subviews of a main view, or even several different visualizations
to represent different levels of the data. In addition, there may be controls to carry out
the task of filtering or querying data.

2.3.2 Visualization Data

Although it might seem that categorizing visualizations on the basis of what they look
like is the obvious choice, most taxonomies of visualization have been based on the types
of data visualized, since the type of data generally determines the range of options for
visualizing the data.

One of the first attempts to produce a taxonomy of visualization was by Shneiderman
in the paper ‘The Eyes Have It: A Task by Data Type Taxonomy for Information Visu-
alizations’ [51]. Schneiderman divides visualization up based on the following categories
of data:

• 1-D Linear - Data such as text documents, source code and lists of text that have
a sequential order, but are non-numeric.

CHAPTER 2. LITERATURE REVIEW 25

• 2-D Map - Data is things like map data, including geographic maps for GIS
systems, or 2-D diagrams and layouts that correspond to space in the real world.

• 3-D World - Data from real-world objects such as molecules, the human body,
and buildings have items with volume and some potentially complex relationship
with other items. Some examples are CAD, Medical, Architecture, Molecule visu-
alization.

• Multi-Dimensional - Data that is tabular in a sense, including statistical data
and data from relational databases, and diagrams such as time-series and scatter
plots.

• Temporal - Data from things such as timelines or Gantt charts. Shneiderman
separates this from the above categories by saying “The distinction in temporal
data is that items have a start and finish time and that items may overlap”.

• Tree - Data from things like file systems where items have a hierarchical relation-
ship to each other, with each item having a single parent and potentially many
child elements.

• Network - Data that corresponds to the mathematical concept of graphs, and can
be seen in things such as social network data or the links in web pages.

Tory and Mller [61] provide a slightly different taxonomy based on whether the
underlying data is continuous , (drawn from a continuous mathematical function), or
discrete (such as series of names or lines of source code). The following diagrams (Fig-
ures 2.8 and 2.9) show the major divisions and some subtypes of data in Tory and Mller’s
taxonomy.

In both of these examples of taxonomies we can see the broad lines of the two branches
of visualization: scientific visualization and information visualization. Chen [31] offers
the following definition to differentiate them:

“A key point to differentiate information visualization from data visualiza-
tion and scientific visualization is down to the presence or absence of data
in quantitative forms and how easy one can transform them to quantitative
forms. This is why researchers emphasize the ability to represent non-visual
data in information visualization.”

The most well-known example of scientific visualization is probably the time series,
a simple plot of some independent variable against time. Many other types of diagram

CHAPTER 2. LITERATURE REVIEW 26

!"#$%&%'()*"+,+%$#'+-%,#%&%*#.,(./#/)%#.+0%"+1/("+)%2&"&$+3
,+"(4(.5%,6+%$#'+-%#"%+$7+''(.5%(,%(.,#%&%*#.,(./#/)%)2&*+8%9#"
(.),&.*+0%,6+%-(),%#!%7/(-'(.5)%&.'%,6+("%2#2/-&,(#.)%:$+.,(#.+'%(.
;+*,(#. <8<=%*&.%7+%+$7+''+'%(.%26>)(*&-%)2&*+%7>%/)(.5%,6+
7/(-'(.5)?%-#*&,(#.)8%@6+%2#2/-&,(#.%*&.%,6+.%7+%,6#/56,%#!%&)%&
'(),"(7/,(#.%#A+"%,6&,%*#.,(./#/)%)2&*+8

B8C8D%%E()2-&>%F#.),"&(.,)

G%,"&'(,(#.&-%H&>%#!%*&,+5#"(4(.5%A()/&-(4&,(#.)%()%H6+,6+"%,6+
)2&,(&-(4&,(#.%()%5(A+.%#"%*6#)+.%I@&$&"&%J/.4.+"?)%),&,+$+.,%(.
ICDKK8%L+%7+-(+A+%,6()%'(A()(#.%()%$+&.(.5!/-%7/,%(.*#$2-+,+
7+*&/)+%(,%.+5-+*,)%,6+%('+&%,6&,%)2&,(&-(4&,(#.%()%)#$+,($+)%2&"3
,(&-->%5(A+.%&.'%2&",(&-->%*6#)+.M%,6&,%()0%(,%()%*#.),"&(.+'8%@6+
-+A+-%#!%)/*6%*#.),"&(.,)%!&--)%&-#.5%&%*#.,(.//$%!"#$%*#$2-+,+->
5(A+.%,#%*#$2-+,+->%*6#)+.8%9#"%+N&$2-+0%)2&,(&-(4&,(#.%()%$#),->
5(A+.%!#"%5+#5"&26(*%'&,&%)6#H.%#.%&%5-#7+M%6#H+A+"0%)+A+"&-
6#(+)%6&A+%,#%7+%$&'+%H6+.%,6+%'&,&%()%'()2-&>+'%#.%&%!-&,%$&2
:+8580%H6+"+%,#%*/,%,6+%H#"-'%#2+.%&.'%H6+,6+"%,#%'()2-&>%-(.+)%#!
-#.5(,/'+%(.%2&"&--+-=8%
9/",6+"$#"+0%#,6+"%'()2-&>%&,,"(7/,+)%:7+)('+)%)2&,(&-(4&,(#.=

&.%&-)#%6&A+%A&"(+'%-+A+-)%#!%#.),"&(.,)8%9#"%&%A()/&-%'()2-&>0
,6+)+%#,6+"%&,,"(7/,+)%&"+%*#-#/"0%,"&.)2&"+.*>0%&.'%,($+8%J/-3
,($+'(&%'()2-&>)%*#/-'%(.*-/'+%&''(,(#.&-%&,,"(7/,+)%)/*6%&)%)$+--
&.'%6&2,(*%+!!+*,)8%
L+%&''"+))%,6+)+%,H#%())/+)%&.'%(.*#"2#"&,+%,6+%*#.*+2,%#!

#.),"&(.,)%#.%'()2-&>%&,,"(7/,+)%(.,#%#/"%,&N#.#$>%:)++%#-/$.)
(.%@&7-+ CM%.#,(*+%,6&,%,6+%*#-/$.)%&"+%.#,%'(A('+'%7>%-(.+)0%(.'(3
&,(.5%&%#.,(.//$=8%@6+)+%('+&)%&"+%,6+%,6("'%$&O#"%*#.,"(7/,(#.
#!%#/"%2&2+"8%P#,+%,6&,%H+%&5"++%)2&,(&-(4&,(#.%$&>%7+%,6+%$#),
($2#",&.,%'()2-&>%&,,"(7/,+%(.%,+"$)%#!%'(!!+"+.*+)%7+,H++.%A()/3
&-(4&,(#.%*&,+5#"(+)8%L+%,6+"+!#"+%!#*/)%#.%)2&*+M%.+A+",6+-+))0
#/"%,&N#.#$>%+&)(->%+N,+.')%,#%&--%'()2-&>%&,,"(7/,+)%$+.,(#.+'%(.
,6+%2"+A(#/)%2&"&5"&268

!"#$$%&'()*+,-.*/$)+$0,1+23()*+,$(,4$56*&,)*1*6$7*-8('*9()*+,

Q7)+"A(.5%@&7-+ C0%H+%.#,(*+'%,6&,%)*(+.,(!(*%A()/&-(4&,(#.%,+.')
,#%#**/2>%,6+%,#2%-+!,%&"+&%&.'%(.!#"$&,(#.%A()/&-(4&,(#.%,+.')%,#
#**/2>%,6+%7#,,#$%"(56,8%J(''-+%&"+&)%&"+%&$7(5/#/)%&.'%7+-#.5
,#%7#,6%*&,+5#"(+)%#"%.+(,6+"8%L+%7+-(+A+%,6+%!&*,%,6&,%#/"
,&N#.#$>%2-&*+)%)*(+.,(!(*%&.'%(.!#"$&,(#.%A()/&-(4&,(#.%&,
#22#)(,+%+N,"+$+)%#!%,6+%,&7-+%H(,6%&$7(5/#/)%&"+&)%(.%7+,H++.
*#.!("$)%,6+%,&N#.#$>?)%$+&.(.5!/-.+))8%J#"+%($2#",&.,->0%,6+
*&,+5#"(4&,(#.%6+-2)%/)%)++%H6+"+%,6+%,H#%!(+-')%#A+"-&2%&.'%6#H
,6+>%"+-&,+8%@6()%('+&%+N,+.')%,#%#,6+"%,"&'(,(#.&-%A()/&-(4&,(#.
*&,+5#"(+)%:+8580%$&,6%A()/&-(4&,(#.%,+.')%,#%#**/2>%,6+%,#2%"(56,=8%
P#,(*+%,6&,%H+%&A#('%*-&))(!>(.5%'&,&%7&)+'%#.%H6+,6+"%(,%()

)*(+.,(!(*%#"%26>)(*&-->%7&)+'8%L+%,6+"+!#"+%&A#('%,6+%2"#7-+$)
,6&,%,6+)+%*"(,+"(&%*"+&,+'0%.&$+->%,6&,%)#$+%)*(+.,(!(*%'&,&%H+"+
A()/&-(4+'%/)(.5%R(.!#"$&,(#.%A()/&-(4&,(#.S%,+*6.(1/+)%:+8580%7(#3
(.!#"$&,(*)%'&,&=0%&.'%)#$+%'&,&%A()/&-(4+'%H(,6%R)*(+.,(!(*
A()/&-(4&,(#.S%,+*6.(1/+)%H+"+%.#,%26>)(*&-->%7&)+'%:+8580%$&,6+3
$&,(*&-%!/.*,(#.)=8%T+.*+0%H+%7+-(+A+%#/"%.+H%,&N#.#$>%()%-+))
&$7(5/#/)%&.'%7+,,+"%'+)*"(7+)%,6+%A()/&-(4&,(#.%,+*6.(1/+)%(.
+&*6%.+H%$&O#"%*&,+5#">8%L+%+.*#/"&5+%"+)+&"*6+")%,#%)+,%&)('+
,6+%(.,"(.)(*%$+&.(.5%#!%,6+%,+"$)%R)*(+.,(!(*S%&.'%R(.!#"$&,(#.S
A()/&-(4&,(#.%&.'%/)+%,6+$%2"($&"(->%!#"%,6+("%6(),#"(*&-%A&-/+8%U.
,6()%*#.,+N,0%#/"%6(563-+A+-%,&N#.#$>%*&.%6+-2%'+!(.+%,6+)+%&"+&)
&.'%(--/$(.&,+%,6+("%'(!!+"+.*+)%&.'%)($(-&"(,(+)8
9/",6+"$#"+0%#/"%,&N#.#$>%(--/),"&,+)%)($(-&"(,(+)%7+,H++.

!(+-')%,6&,%&22+&"%1/(,+%'(!!+"+.,%#.%,6+%)/"!&*+%:+8580%&("%,"&!!(*
#.,"#-%&.'%$#-+/-&"%),"/*,/"+%A()/&-(4&,(#.=8%@6()%$&>
+.*#/"&5+%'()*/))(#.%7+,H++.%"+)+&"*6+")%(.%'(!!+"+.,%&22-(*&,(#.
&"+&)0%-+&'(.5%,#%"+)+&"*6%&'A&.*+)8

!":$$;+<$;&=&'$>(?+,+3@$5)286)82&

G,%-#H+"%-+A+-)%#!%,6+%6(+"&"*6>0%H+%*-&))(!>%*#.,(./#/)%&.'
'()*"+,+%'+)(5.%$#'+-)%(.%)($(-&"%H&>)%,#%2"+A(#/)%,&N#.#$(+)0
/)(.5%,6+%./$7+"%&.'%,>2+%#!%A&"(&7-+)%(.%,6+%'+)(5.%$#'+-%&.'
H6+,6+"%,6+%'+)(5.%$#'+-%*#.)(),)%#!%),"/*,/"+%#"%A&-/+)8%L+
7+-(+A+%,6+)+%)*6+$+)%'#%&%"+&)#.&7-+%O#7%#!%*6&"&*,+"(4(.5%+&*6
)/7&"+&8%@&7-+)%D%&.'%<%*-&))(!>%*#.,(./#/)%&.'%'()*"+,+%'+)(5.
$#'+-)%"+)2+*,(A+->0%H(,6%+N&$2-+)%#!%,6+%,>2+)%#!%A()/&-(4&,(#.
,+*6.(1/+)%,6&,%*#/-'%7+%/)+'%!#"%+&*6%'+)(5.%$#'+-8
J&.>%#!%,6+%)&$2-+%A()/&-(4&,(#.%,+*6.(1/+)%(.%@&7-+)%D%&.'%<

*&.%7+%/)+'%H(,6%+(,6+"%5(A+.%#"%*6#)+.%'()2-&>%&,,"(7/,+)8%9#"
+N&$2-+0%<E%)*&,,+"2-#,)%*&.%7+%/)+'%,#%'()2-&>%&("2-&.+%2#)(,(#.)
!#"%&("%,"&!!(*%*#.,"#-%:&%5(A+.%)2&,(&-(4&,(#.=%&.'%(.*#$+%7"#V+.
'#H.%7>%5+.'+"%&.'%+'/*&,(#.&-%-+A+-%:&%*6#)+.%)2&,(&-(4&,(#.=8
T#H+A+"0%,+*6.(1/+)%,6&,%!""#$%%'()2-&>%&,,"(7/,+)%)/*6%&)%)2&3
,(&-(4&,(#.%:+8580%2&"&--+-%*##"'(.&,+)=%H(--%#.->%7+%/)+'%H6+.
,6#)+%&,,"(7/,+)%&"+%.#,%5(A+.8

B8<8C%%F#.,(./#/)%$#'+-%A()/&-(4&,(#.

F#.,(./#/)%$#'+-%A()/&-(4&,(#.%*&.%7+%7"#V+.%'#H.%&**#"'(.5%,#
,6+%./$7+"%#!%(.'+2+.'+.,%&.'%'+2+.'+.,%A&"(&7-+)0%&.'%,6+%,>2+
#!%,6+%'+2+.'+.,%A&"(&7-+)0%&)%)6#H.%(.%@&7-+%D8%@6()%2"#'/*+)
,6"++%$&O#"%*&,+5#"(+)W%)*&-&"0%A+*,#"0%&.'%,+.)#"%:$&,"(N=%A()/&-3
(4&,(#.0%H(,6%CE0%DE0%<E0%&.'%.E%A+")(#.)%#!%+&*68%J/-,(A&"(&,+
A()/&-(4&,(#.%&''"+))+)%'+)(5.%$#'+-)%*#.,&(.(.5%$#"+%,6&.%#.+
'+2+.'+.,%A&"(&7-+8%XN&$2-+)%#!%)*&-&"%A()/&-(4&,(#.%,+*6.(1/+)
(.*-/'+%-(.+%5"&26)%!#"%CE%'+)(5.%$#'+-)0%*#-#/"%5"&'(+.,)%&.'
()#-(.+)%:*#.,#/")=%!#"%DE%$#'+-)0%&.'%'("+*,%A#-/$+%"+.'+"(.5
&.'%()#)/"!&*+)%!#"%<E%$#'+-)8%Y+*,#")%*&.%7+%A()/&-(4+'%/)(.5
5->26)%:&""#H)%,6&,%2#(.,%(.%,6+%'("+*,(#.%#!%!-#H=0%2&",(*-+%,"&*+)
:H6+"+%($&5(.&">%2&",(*-+)%&"+%2-&*+'%(.%,6+%!-#H%!(+-'%&.'
,"&*V+'%#A+"%,($+%,#%,"&*+%&%-(.+%#!%$#,(#.=0%&.'%-(.+%(.,+5"&-%*#.3
A#-/,(#.%:H6+"+%&%H6(,+%.#()+%,+N,/"+%()%H&"2+'%&-#.5%,6+
'("+*,(#.%#!%!-#H=8%@+.)#")%*&.%7+%A()/&-(4+'%/)(.5%+--(2)#('3
)6&2+'%5->26)0%H6+"+%,6+%2"(.*(2-+%&N+)%#!%+&*6%+--(2)#('%"+23
"+)+.,%,6+%+(5+.A+*,#")%#!%,6+%$&,"(N%&.'%,6+%2"(.*(2-+%"&'((
"+2"+)+.,%,6+%+(5+.A&-/+)8%;++%ICZK%!#"%&%$#"+%'+,&(-+'%"+A(+H%#!
*#.,(./#/)%$#'+-%A()/&-(4&,(#.%,+*6.(1/+)8

!"#$%&'(&)*+,$%-%$&."/*0*12&*3&4*0.506*67&1*8%$79

B8<8D%%E()*"+,+%J#'+-%Y()/&-(4&,(#.

E()*"+,+%$#'+-%A()/&-(4&,(#.%()%!("),%7"#V+.%'#H.%&**#"'(.5%,#
H6+,6+"%'&,&%),"/*,/"+%:+8580%6>2+"-(.V)%*#..+*,(.5%'#*/$+.,)=%#"
'&,&%A&-/+)%:+8580%'#*/$+.,%)(4+%&.'%!(-+%,>2+=%&"+%A()/&-(4+'8%@6()
),"/*,/"+[A&-/+%'(A()(#.%()%7&)+'%#.%&%,&N#.#$>%7>%@H++'(+%IC\K8

!"

#"

$"

%"

&'()(* +,)-./
0(*.(-121'-3* 41%53*

,&)50%&:;"<=

,&>*$*6;&1"<
,&?7*$50%7

,&@*$61%
&&;%08%;50:
,&?7*76;3"4%7

A6$.5<$%&BCD&'CD&*;&EC&-5%+7

,&)?>
,&F";.54$%
&&.;"4%7
,&G$2<=7 ,&!%07*;

%$$5<7*587

>*1#50%
74"$";D
-%4.*;D&H
.%07*;
1%.=*87

I&
?0
8%
<%
08
%0
.&@
";
5"
#$
%7

C"."&J.;64.6;%

Figure 2.8: Examples of data and visualization types for continuous data from Tory and
Mller’s taxonomy [61].

!"#$%"&#'($")*+,-"#./(01"2#3,41(0,-($,*&#$"'%&,51"4#(''*+6,&)#$*
$%"#&178"+#*9#6,7"&4,*&4#$%"#3,41(0,-($,*)::*+$4#;<=>#?=>#*+
&=@A#B%,4#8+"(C6*D&#,4#4%*D&#,&#B(80"#?A
E$+1'$1+(0#3,41(0,-($,*&#$"'%&,51"4#,&'016"#&*6"F0,&C#6,()+(74>

%,"+(+'%,'(0#(::+*('%"4>#(&6#4:('"G9,00,&)#7*4(,'4#;"A)A>#$+""#0"3"04
'("#+":+"4"&$"6#(4#'*&4"'1$,3"#+*D4#,&#(&#,7()"#D,$%#$+""#,$"74
+":+"4"&$"6#8H#'*0*1+"6#+"'$(&)0"4@A#E$+1'$1+(0#6($(#,4#'*&4,6"+"6
6,4'+"$"#8"'(14"#(#4$+1'$1+"#,4#'*7:*4"6#*9#&*6"4#(&6#+"0(G
$,*&4%,:4#;6,4'+"$"#"&$,$,"4@>#"3"&#,9#$%*4"#&*6"4#(&6#+"0($,*&4%,:4
(+"#:+"4"&$#,&#(#'*&$,&1*14#4:('"A#I*+#"J(7:0">#(#7"4%#,&
'*7:1$"+#)+(:%,'4#'("#6,4:0(H"6#(4#(#'*&$,&1*14#41+9('"A
K*D"3"+>#$%"#$*:*0*)H#*9#(#7"4%#'*&4,4$4#*9#6,4'+"$"#:*,&$4#(&6
'*&&"'$,*&4#(&6#'("#3,41(0,-"6#(4#(#&*6"G0,&C#6,()+(7A#L"4%
4$+1'$1+"#;$*:*0*)H@#,4#$H:,'(00H#4$16,"6#,&#$%"#9,"06#*9#)+(:%
$%"*+H>#D%"+"(4#6,4:0(H,&)#(#7"4%#(4#(#41+9('"#,:('"#*+#:(+(7"G
$"+,-,&)#,$#;"A)A>#8H#"78"66,&)#,$#*&#$%"#41+9('"#*9#(#4:%"+"@#,4
4$16,"6#,&#'*7:1$"+#)+(:%,'4A#E,7,0(+0H>#'0(44,9,'($,*&#*9#'*&G
$,&1*14#6($(#'*106#8"#3,"D"6#(4#(#6"',4,*&#$+""M#%*D"3"+>#8H#6*,&)
$%,4>#$%"#6($(#,4#4")+")($"6#,&$*#6,4'+"$"#'($")*+,"4A
<=#(&6#?=#6($(#3(01"4#'("#3,41(0,-"6#14,&)#4'($$"+#:0*$4>

8(+#'%(+$4>#"$'A#B"'%&,51"4#$*#3,41(0,-"#%,)%"+#6,7"&4,*&(0#6($(
,&'016"#710$,:0"#3,"D4>#)0H:%4>#:(+(00"0#'**+6,&($"4>#(&6#0*D"+
6,7"&4,*&#$"'%&,51"4#D,$%#$%"#(66,$,*&#*9#3,41(0#($$+,81$"4#41'%#(4
'*0*1+#;"A)A>#8(+#'%(+$4#D,$%#"('%#8(+#'*0*1+"6#(''*+6,&)#$*#4*7"
($$+,81$"@A#I*+#(#+"3,"D#*9#6,4'+"$"#3,41(0,-($,*&#$"'%&,51"4>#4""#NO>
P>#QRSA

!"#$%&'(&)*+,$%-%$&."/*0*12&*3&45678%.%&1*4%$69

T,C"#,&#'*&$,&1*14#7*6"0#3,41(0,-($,*&>#3(+,(80"4#'("
6":"&6"&$#*+#,&6":"&6"&$>#(&6#$%,4#,4#+"90"'$"6#,&#*1+#$(J*&*7HA
U*$,'">#%*D"3"+>#$%($#14"+4#6*#&*$#&"'"44(+,0H#&""6#$*#C&*D#,&
(63(&'"#D%,'%#3(+,(80"4#(+"#6":"&6"&$#*+#,&6":"&6"&$A#Vˆ$,G
6,7"&4,*&(0#6($(8(4"4>#,$#'("#1&'"+$(,&#D%,'%#3(+,(80"4#(+"
6":"&6"&$>#4,&'"#6":"&6"&'H#+"0($,*&4%,:4#7,)%$#8"#:+"',4"0H
D%($#$%"#14"+#,4#$+H,&)#$*#6,4'*3"+#$%+*1)%#3,41(0#6($(#(&(0H4,4A#B*
4"0"'$#(#3,41(0,-($,*&#$"'%&,51">#14"+4#4,7:0H#&""6#(#%H:*$%"4,4
(8*1$#$%"#6":"&6"&',"4A#B%,4#,4#(04*#$+1"#D,$%#'*&$,&1*14#7*6"04>
(0$%*1)%#$%"#4,$1($,*(H#8"#0"44#'*77*&#,&#$%($#'(4"A
=,4'+"$"#7*6"04#6*#&*$#+"51,+"#$%($#(00#3(+,(80"4#8"#6,4'+"$"A

=,4'+"$"#7*6"04#'(&#,&'016"#'*&$,&1*14#3(+,(80"4>#(4#0*&)#(4#($
0"(4$#*&"#3(+,(80"#,4#6,4'+"$"A#I*+#"J(7:0">#(J"4#,'($$"+#:0*$4
(&6#:(+(00"0#'**+6,&($"#6,4:0(H4#'("#4'(0"6#'*&$,&1*140H>#81$

:0*$$"6#:*,&$4#,'($$"+#:0*$4#(&6#0,&"4#,&#:(+(00"0#'**+6,&($"
6,4:0(H4#(+"#6,4'+"$"#"&$,$,"4A#W0*$$,&)#6($(#.'*&$,&1*140H2#+"51,+"4
(#:"+'":$,80H#,&9,&,$"#&178"+#*9#6($(#:*,&$4A#W0*$$,&)#$%,4#7(&H
0,&"4#,&#(#:(+(00"0#'**+6,&($"4#6,4:0(H#D*106#:+*61'"#(#'*7G
:0,'($"6#"&$(&)0"7"&$#$%($#D*106#8"#6,99,'10$#*+#,7:*44,80"#$*
,&$"+:+"$A#I,&6,&)#(#'*&$,&1*14#"78"66,&)#(&6#$%"&#,&$"+:*0($,&)
8"$D""&#:*,&$4#*+#0,&"4#)"&"+($"4#'*&$,&1*14#7*6"0#$"'%&,51"4
;"A)A>#0,&"#)+(:%4#*+#'*0*1+#7(:4@A#

!"!##$%&'()%*(+%,-#.(&/&

E*7"#$(4C4#14"+4#:"+9*+7#(+"#'*77*&#$*#7(&H#3,41(0,-($,*&
(+"(4>#D%,0"#*$%"+4#6,99"+A#E%&",6"+7(&#NQXS#,&'*+:*+($"6#$(4C4
,&$*#(#3,41(0,-($,*&#$(J*&*7H>#81$#6,6#&*$#'*&4,6"+#%*D#$(4C4#3(+H
,,99"+"&$#3,41(0,-($,*&#(+"(4A#Y1+#$(J*&*7H#'("#14"6#$*
,0014$+($"#+"0($,*&4%,:4#8"$D""&#$H:"4#*9#$(4C4#(&6#$*#"J(7,&"#D%($
$H:"4#*9#$(4C4#'("#:"+9*+7"6#D,$%#"('%#6"4,)*6"0A#
I,)A <#,0014$+($"4#%*D#6,99"+"&$#6"4,)*6"04#"&(80"#14"+4#$*

:"+9*+7#6,99"+"&$#$(4C4#D,$%#(#3,41(0#+":+"4"&$($,*&Z
[!%"&#$%"#4:($,(0,-($,*&#,4#0(+)"0H#),3"&>#4:($,(0#+"0($,*&4%,:4
41'%#(4#(8*3"F8"0*D>#+,)%$F0"9$>#(&6#,&4,6"F*1$4,6"#'("
4$16,"6A#I1+$%"+7*+">#4:($,(0#+"),*&4#*9#,&$"+"4$#'("#4:"',G
9,"6>#"J$+('$"6>#(&6F*+#"J(7,&"6#,"$(,0A#;\01"#+"),*&#,&
I,)A <A@

[=,4'+"$"# 4$+1'$1+(0# 7*6"04# (00*D# (&(0H4,4# *9# '*&&"'$,3,$H
+"0($,*&4%,:4#41'%#(4#:(+"&$F'%,06>#0,&C()"4>#(&6#6,4'+"$"#:($%
:0(&&,&)A#I*+#"J(7:0"Z#!%($#,4#'*&&"'$"6#$*#]^#!%($#,4#$%"
'%,06#*9#_^#!%($#0,&C4#6*#H*1#9*00*D#$*#)"$#9+*7#`#$*#\#7*4$
"99,',"&$0H^#;Y+(&)"@

[=,4'+"$"# 3(01"# 7*6"04# (00*D# :($$"+&# (&(0H4,4A# aJ(7:0"4
,&'016"#,6"&$,9H,&)#*1$0,"+4#(&6#'014$"+4#*9#6($(#:*,&$4A#=,4G
'+"$"#6($(#:*,&$4#(+"#&"'"44(+H#9*+#$%"4"#$H:"4#*9#+"0($,*&4%,:4
$*#"J,4$A#;L()"&$(@

[=,4'+"$"#7*6"04#(00*D#14"+4#$*#4$16H#6"$(,04#*9#6,4'+"$"#,$"74
(&6#$*#9,0$"+#6($(#4"$4#;,A"A#"J'016"#,$"74@A#;_"00*D@A

[b*&$,&1*14#7*6"04#;(&6#6,4'+"$"#3(01"#7*6"04#D%"&#$%"#6($(
,4#*+6,&(0@#"&(80"#14"+4#$*#4$16H#&17"+,'#$+"&64>#41'%#(4
,&'+"(4,&)#F#6"'+"(4,&)A#;c+""&@

:5;<8%&=(&>$"665357".5*0&*3&-56<"$5?".5*0&."6@69&!A%&
7$"665357".5*0&56*@%0&4*+0&"77*8450;&.*&A*+&1<7A&.A%&

6B".5"$5?".5*0&56&7*06.8"50%4&"04&+A%.A%8&.A%&4%65;0&1*4%$&56&
7*0.50<*<6&*8&45678%.%&C+5.A&*8&+5.A*<.&6.8<7.<8%D9&>*$*<86&

1".7A&35;<8%&.%/.&.*&*<.$50%4&E&6A"4%4&"8%"69

!"#$%"$#&
'#()*+,+-#&&+./0$(1/2("/3405
,&F*4%&,&$50@&45";8"16 ,&G5%8"87A57"$&;8"BA6
&&C=H&"04&'HD ,&IB"7%,35$$50;&1*6"576

.(1$&0

67

87

47

,&I7"..%8&B$*.
,&J"8&7A"8.

,&'H&67"..%8&B$*.
,&'H&#"8&7A"8.

,&>A"8.6&K&7*$*<8
,&L<$.5B$%&-5%+6
,&M$2BA6
,&N"8"$$%$
&&7**8450".%6

F
<1
#%
8&*
3&O
"8
5"
#$
%6

P&H%B9&K&P&Q04%B9
-"85"#$%

P&H%B9&K&=&Q04%B9
*8&-57%&-%86"

R02&0<1#%8&*3
H%B9&"04&Q04%B9
-"85"#$%6

O"85"#$%&!2B%6 S/"1B$%&!%7A05T<%6

Figure 2.9: Examples of data and visualization types for discrete data from Tory and
Mller’s taxonomy [61].

CHAPTER 2. LITERATURE REVIEW 27

exist, however almost any quantitative data can be translated directly into a spatial
representation. This kind of data would roughly correspond to the multidimensional data
in Schneiderman’s taxonomy and to the continuous data in Tory and Mller’s taxonomy.

In contrast to scientific visualization the data in information visualization is non-
quantitative and doesn’t have a natural mapping to space or things such as colour. To
design a mapping to an arbitrary point in space is the task of information visualization.
Some examples of data of this type could be data in the form of a tree, a graph or even
a corpus of text. This kind of data corresponds to 1D, 2D, 3D, Temporal, Tree and
Network data in Schneiderman’s taxonomy and discrete

Visual Analytics [60] is a new member of the visualization world and is as concerned
with cognition as it is with the visual aspects:

“The panel defined visual analytics as the science of analytical reasoning fa-
cilitated by interactive visual inter-faces. People use visual analytics tools
and techniques to synthesize information and derive insight from massive,
dynamic, ambiguous, and often conflicting data; detect the expected and dis-
cover the unexpected; provide time-ly, defensible, and understandable assess-
ments; and communicate assessment effectively for action.”

We won’t say anymore about this since it doesn’t seem to have an impact on the
field of software visualization (yet).

Providing a comprehensive overview of such a vast field is difficult, for a more detailed
account see the books ‘Visualization Handbook’ [40] for scientific visualization, and ‘The
Craft of Information Visualization: Readings and Reflections’ [52] for information visu-
alization and Chen’s paper ‘Information Visualization’ [31], and for visual analytics see
‘An Agenda for Visual Analytics’ [60]. For more about the difference between scientific
visualization and information visualization see the Tory and Mller taxonomy paper [61].

2.4 Software Visualization

Diehl [34] defines software visualization as “the visualization of artifacts related to soft-
ware and its development process” - this can include things such as source code commits,
bug reports, executions of the software and any data the process of software development
generates. This is a diverse range of data including quantitative data such as the timing
of events within a trace of a running program, non-quantitive data such as the names
of people committing software patches to a project or even a network or tree of the
relationships of objects in an object-oriented program. As such, software visualization

CHAPTER 2. LITERATURE REVIEW 28

is neither a branch of scientific visualization or information visualization, but draws on
both of them, often in the same visualization or software system.

In his book ‘Software Visualization’ [34] Diehl identifies three broad areas of research
into software visualization: Structure is the static parts of a system, which can be
analyzed without running the program, such as the class inheritance and composition,
while behaviour is data generated from the execution of a system (often generated by
tracing), and evolution is how a system changes over time through things such as commits
to a source control system.

As mentioned in our introduction, our goal was to investigate how software tools
could be used to help software developers write concurrent software. The structure of
a program can be an important part of this, however we felt this had already been
addressed reasonably successfully by techniques such as UML class diagrams. The evo-
lution of software may be important for understanding how certain bugs have occurred,
but it is not as useful for the day-to-day debugging of software. Program behaviour visu-
alization has a close relationship to the existing debugging technique of tracing, because
to analyze a program it is often necessary to gather trace data from it’s execution.

Also, these were the types of software that seemed similar to music notation and
software when we began searching the literature. There are many visualizations in this
area, so in the rest of this section we will investigate a representative sample of the work
and provide details about how they work and their goals. Finally, we will make some
summary remarks about the systems we have investigated.

2.4.1 Visual VM

VisualVM [24] is a tool by Sun/Oracle to analyze the performance of Java programs
running on a JVM. Trace data is gathered using the Java Virtual Machine Tool In-
terface [17] (JVMTI) which is built into the JVM. VisualVM has multiple views, only
some of which are visualizations. The first view is the overall view, which provides basic
information about a process as shown in Figure 2.10.

The monitor view provides various graphs for different parts of the program memory
and classes, shown in Figure 2.11.

The thread timeline view provides an overview of the a thread state in time, colour
is used to indicate the state of a thread, shown in Figure 2.12.

The sampler view allows quick profiling of a running application as is shown in
Figure 2.13.

Finally, the Monitor tool allows more complete profiling of the CPU or memory of

CHAPTER 2. LITERATURE REVIEW 29

Figure 2.10: Process overview for VisualVM [24] showing some basic bits of information
about a process including the execution arguments and the process id.

CHAPTER 2. LITERATURE REVIEW 30

Figure 2.11: Monitor view of VisualVM [24] that shows various graphs showing different
aspects of a programs performance. The top left shows the CPU and Garbage collection
activity. The top right shows the memory usage and the type of memory being used.
The bottom left shows information about classes and the bottom right shows information
about threads.

CHAPTER 2. LITERATURE REVIEW 31

Figure 2.12: Thread timeline view of VisualVM [24]. The timeline shows the thread
state over time.

CHAPTER 2. LITERATURE REVIEW 32

Figure 2.13: Sampler view of VisualVM [24].

CHAPTER 2. LITERATURE REVIEW 33

the target application as is shown in Figure 2.14.

Figure 2.14: Profiler view of VisualVM [24] showing how long methods are taking to
execute.

VisualVM is interesting to us because it is not an academic product, but a tool
aimed at everyday programmers, like many of the systems we looked at it is designed
for profiling and performance debugging.

2.4.2 PARADE

PARADE [54, 66] is both a visualization system for concurrency and an environment for
creating visualizations of concurrent programs. The software is aimed at both program-
ming comprehension and debugging performance and program errors. Data is gathered
by macros that implement POSIX threads (pthreads) library calls by tracing the method

CHAPTER 2. LITERATURE REVIEW 34

calls before calling the underlying pthread method.
The visualization system is composed of a number of separate views. First is the

threads overview (Figure 2.15), which provides a list of all the threads in the system at
the current time within an execution. A unique colour is given to each thread to help
differentiate them, also the amount of colouring in the thread box so that when the box
is completely filled with colour the thread is running and when half-filled the thread is
waiting or blocked.

Figure 2.15: Threads view of Parade [54, 66] showing a list of threads as boxes. Colour
is used to show state.

The function view (Figure 2.16) displays the static call structure of a program at
a point in time using a graph that displays each function as a rectangle and the call
structure as lines running between the boxes. Function boxes are given a unique colour
to identify them. The position of a thread within the call structure is shown as a
small circle (coloured the same as the thread overview) that moves between the different
functions of the call graph.

The history view (Figure 2.17) is a timeline of each thread and the functions it has
called. Each bar represents a single thread, with the drop shadow of the bar being
the same as the colour in the thread overview. The bar itself is divided into sections

CHAPTER 2. LITERATURE REVIEW 35

Figure 2.16: Functions view of Parade [54, 66] shows a trace of what functions have
executed for a single thread.

CHAPTER 2. LITERATURE REVIEW 36

indicating the functions called by the colour, which is the same as the colour in the
function view. Small triangles within the bars represent calls and returns.

Figure 2.17: History view of Parade [54, 66] showing the timeline of thread execution,
somewhat like the Visual VM example.

The mutex view (Figure 2.18) shows which threads are trying to lock a mutex as
a circle surrounded by smaller filled circles that represent the threads that are trying
to lock. When a thread succeeds in locking a mutex the smaller circle representing the
thread moves inside the larger circle indicating that it has been locked.

Figure 2.18: Mutex view of Parade [54, 66]. The small coloured circles are threads that
move inside the larger clear circle that represent the Mutex when they acquire it.

The barrier view (Figure 2.19) is used to show which threads have entered and
exited a barrier synchronization point. A new row of boxes are added as each barrier

CHAPTER 2. LITERATURE REVIEW 37

synchronization is complete.

Figure 2.19: Barrier view of PARADE [54, 66] showing what threads have entered and
exited a barrier synchronization point.

PARADE is of particular interest because it seems to not be as orientated towards
performance debugging as software such as VisualVM is.

2.4.3 Understanding Complex Multithreaded Software Systems by Us-

ing Trace Visualization

In their paper ‘Understanding Complex Multithreaded Software Systems by Using Trace
Visualization’ Trumper et al. [62] describe a system for visualizing the threads of a
program. Like PARADE their software is made up of a series of separate views, however
it is slightly more integrated and cohesive.

The system uses a two part tracing mechanism, where an overview trace is used to
trace the entire system before the user selects what details they want traced.

Like PARADE, the system has a thread list that provides an overview of threads
in the system and some statistics about the threads. The main view is a series of

CHAPTER 2. LITERATURE REVIEW 38

timeline views for each thread in the system, similar to the timeline view in VisualVM
or the history view in PARADE. Unlike these two systems, a zoomed-out overview of
the threads entire execution is provided above a view of a section of a threads execution,
as shown in Figure 2.20. The zoomed-in view shows the call stack as a series of bars
representing method or function calls placed below the main thread function call.

Figure 2.20: Trace Visualization showing two threads [62]. Each thread ”lane” has an
overview (top) and zoom in panel on the bottom that show what functions have been
executing.

Because threads can have a massive variation in method call time, because of things
like thread sleeping or waiting, visualizations might contain large amounts of space where
nothing is happening. To address this the developers use logarithmic time scaling, which
means in practice large times are shrunk and small periods of time remain the same.
Panning, zooming or changing the time compaction of a thread is applied to all other
threads to keep the separate thread views synchronized to avoid the problems of having
multiple thread views where events are no longer in their execution order.

This software provides a number of useful additions, including the use of time com-
paction to make visualizing threads much easier, the thread overview panel (which pro-
vides the focus+context that makes it easy to zoom in on a section of a thread) and an
interesting method of showing the current call stack. The system seems to be orientated
to analyzing the performance of programs, as the evaluation examples given show.

2.4.4 Zinsight

Zinsight [33] is a trace visualization tool for the IBM system Z mainframe series of
computers. Data gathering is performed using special hardware specific to the Z series

CHAPTER 2. LITERATURE REVIEW 39

mainframe.
Like the systems mentioned above, Zinsight uses multiple views to visualize the

generated data. The first view is called the event trace (Figure 2.21) and is a timeline
view similar to the ones mentioned above, except that it flows vertically rather than
horizontally. Processes are spaced horizontally across the view and within the process
events are represented as blocks and are also spaced horizontally. There are various
colouring schemes available for events, a common one is to colour event blocks based on
the module they are from, such as from a database module. Interaction is provided by
zooming and panning.

!

!
!"#$%&'()'*+&',-&./'!012'-"&2'30&4/56'/+&',-&./'7/8/"9/":9'-"&2'3$;;&%'%"#+/56'8.<'/+&'7&=$&.:&'>1./&?/'-"&2'3012&%'%"#+/5

@)! *A,'*AB,,'CD,E7''
"#$%#&'(!)*+,#-.%! ('*..! ,#./%! 0+*! .1)2+*#$&! .,.$(! (*34.%5! 6'.!
7,.$(! 82+/! ,#./! %'+/%! .,.$(%! +,.*! (#9.! 3$-! 2+43(#+$5! 6'.!
7,.$(! :(3(#%(#4%! ,#./! %'+/%! -#%(*#;<(#+$! 3$-! 0*.=<.$4>!
#$0+*93(#+$5! 8#$322>?! ('.! :.=<.$4.! @+$(.1(! ,#./! 4'3*34(.*#A.%!
.,.$(!)3((.*$%! (+! %'+/! *.4<**#$&! %.=<.$4.%5! 8#&<*.! B! %'+/%! 3!
%4*..$! 43)(<*.! +0! ('.! ('*..! ,#./%?! .34'! #$! #(%! +/$!)3$.25!734'!
)3$.2! 43$! ;.! *.%#A.-! +*! 931#9#A.-! 3%! $..-.-5! C$! .34'! ,#./?!
.,.$(%! 3*.! *.)*.%.$(.-! 3%! %9322! *.4(3$&2.%5! D.13-.4#932!
#$0+*93(#+$! #$! ('.! *3/! (*34.! #%! *.%+2,.-! #$(+! '<93$E*.3-3;2.!
$39.%! 0+*!)*+4.%%.%?! 2+3-9+-<2.%?! 9+-<2.%! 3$-! +00%.(!
#$0+*93(#+$! #$! ('.!.,.$(%5!F!-+93#$!%).4#0#4!-3(3;3%.!)*+,#-.%!
#$0+*93(#+$! %<4'! 3%! %'+*(! 9+-<2.! -.%4*#)(#+$%5! 6'.! <%.*! 43$!
9+<%.! +,.*! .,.$(! *.4(3$&2.%! #$! 3$>! ,#./! (+! %..! ('#%! -.(3#2.-!
#$0+*93(#+$! #$! ('.! (++2(#)5! 7,.$(%! 43$! ;.! %.2.4(.-! 0+*!
'#&'2#&'(#$&!/#('! 3! >.22+/!+*! ;2<.! '32+! 3%! %'+/$! #$!8#&<*.%! B!
3$-! G5! ! 7,.$(%! '#&'2#&'(.-! #$! +$.! ,#./! 3*.! 3<(+93(#4322>!
'#&'2#&'(.-! #$! ('.!+('.*! (/+! #0! ('.!.,.$(! #%!,#%#;2.5!6'#%!322+/%!
.,.$(%!('3(!3*.!%.2.4(.-!#$!('.!7,.$(!:(3(#%(#4%!,#./!+$!('.!;3%#%!
+0! *.%)+$%.! (#9.! (+! ;.! %..$! #$! ('.#*! (#9.! 3$-!)*+4.%%! 2+43(#+$!
4+$(.1(!#$!('.!7,.$(!82+/!,#./!0+*!.139)2.5!!

@)()!*+&',-&./'!012'C"&2'
:>%(.9!(*34.!.,.$(%!4+$(3#$!-3(3!%<4'!3%!(#9.?!.,.$(!(>).?!.,.$(!
%<;(>).?!.,.$(!%).4#0#4! #$0+*93(#+$?!)*+4.%%! #-!3$-!%>%(.9!3*.3!

('.!.,.$(!+44<**.-!#$5!C$!('.!43%.!+0!3!%>%(.9!(*34.!0*+9!:>%(.9!
A?!9+%(!.,.$(%!43**>!3! (#9.%(39)?!3%!/.22!3%! #$0+*93(#+$!3;+<(!
('.!)*+4.%%! #-! HF:CIJ?! ('.! 2+3-9+-<2.?! 9+-<2.?! 3$-! +00%.(!
/'.*.! ('#%! .,.$(! /3%! .1.4<(.-?! (+&.('.*! /#('! %+9.! .,.$(E
%).4#0#4!#$0+*93(#+$5!7,.$(%!43$!;.!+*&3$#A.-!32+$&!3$>!+0!('.%.!
-#9.$%#+$%5! C$!+*-.*! (+!)*+K.4(! ('#%!9<2(#,3*#3(.!%)34.! #$(+! (/+!
-#9.$%#+$%! /.! 0#*%(! 93)! (#9.?! 3*&<3;2>! ('.! 9+%(! %32#.$(!
-#9.$%#+$?! (+! ('.!,.*(#432!-#9.$%#+$5!6'#%!322+/%!3!<%.*! (+! %..!
-#00.*.$(!)'3%.%!+0!;.'3,#+*!+,.*! (#9.!H)*+4..-#$&!-+/$/3*-J5!
L.! ('.$! <%.! ('.! '+*#A+$(32! -#9.$%#+$! (+!)+%#(#+$! .34'! .,.$(!
;3%.-!+$!3! 4+9;#$3(#+$!+0! ('.!4+9)+$.$(%! 3%%+4#3(.-!/#('! ('.!
.,.$(5!F(! ('.!'#&'.%(! 2.,.2?!3$!.,.$(! (3M.%!)234.!+$!;.'320!+0!3!
%).4#0#4!)*+4.%%5!L#('#$! 3!)*+4.%%! ('.*.! 3*.! (>)#4322>! 9<2(#)2.!
2+3-9+-<2.%?!.34'!4+$(3#$#$&!9<2(#)2.!9+-<2.%5!N+%(!4+9)<(.*!
%>%(.9%!'3,.!%<4'!'#.*3*4'#.%5!6'.!(*34.!%'+/$!#$!8#&<*.!B!'3%!
OP!)*+4.%%! *.&#+$%?! 3)).3*#$&! 3%! 4+2<9$%! #$! ('.! 7,.$(! 82+/!
,#./5! 6'.! <%.*! 43$! A++9! 3$-!)3$! #$! ('.! 7,.$(! 82+/! ,#./?! 3%!
%'+/$!#$!8#&<*.%!Q!3$-!G5!6'.!('#$!&*3>!,.*(#432!2#$.%!#$!8#&<*.%!
Q!3$-!G!0+*9!('.!-.93*43(#+$!;.(/..$!)*+4.%%!*.&#+$%5!L#('#$!3!
)*+4.%%! *.&#+$?! .34'! .,.$(! #%!)+%#(#+$.-! '+*#A+$(322>! ;3%.-! +$!
('.! 2+3-9+-<2.! /'.*.! ('.! .,.$(! /3%! &.$.*3(.-5! R%#$&! ('#%!
&*3)'#432! %>$(31?! <%.*%! 43$! *.4+&$#A.! ,#%<32!)3((.*$%! ('3(!
.).%.$(! %#9#23*!)'3%.%! +0! ;.'3,#+*5! 6'.! *.).(#(#,.! ,#%<32!
)3((.*$!%'+/$!#$!8#&<*.!Q!%'+/%!3!'#&'E2.,.2!2++)?!*.3-#$&!0*+9!
3! -3(3;3%.! 3$-! 4*.3(#$&! +;K.4(%?! %)3$$#$&! %.,.*32! 4+9)+$.$(%!
3$-! 9+-<2.%5! S.4+&$#A#$&! *.).(#(#,.! ;.'3,#+*! +*! %#9#23*!

144

Figure 2.21: Event view of Zinsight [33]. Note that time flows vertically rather than
horizontally like the previous examples.

CHAPTER 2. LITERATURE REVIEW 40

The next view is called the event statistics view (Figure 2.22) which provides some
statistical information subviews similar to those that VisualVM provides. The first
subview is the event type view, which shows events by their module and the amount
of time they take up. The pathology view is a semi-automatic view designed to draw
attention to potentially interesting events that might indicate performance problems.
Finally, the location view divides up events by process and thread to provide more
specific information about the events that processes perform.

!

"#$%!&'!(%)!*+!$&,-./0!10!/&2!#/!)/(13)!"4)/(!5,&2!41)2!6,#17!
&-(!%&318&/(#,,9!:9!;3&$)00!17<!'&3!)4)/(0!(%#(!(&&=!;,#$)!&/!(%#(!
;3&$)00&3>! ?/! 51@-3)! +! #/! #771(1&/#,! 0();! 2#0! (#=)/! (&! 0),)$(!
)4)/(0! '3&.!&/)! (%3)#7! #/7!@3#9!&-(! #,,! &(%)3!)4)/(0>! !A)!$#/!
/&2!0))!%&2!(%)!710;#($%)3!%#0!#(().;()7!(&!=));!(%10!(%3)#7!&/!
#!01/@,)!+!;3&$)00&3!/&7)>!B%)!1/()/(1&/!10!(&!=));!2&3=!3-//1/@!
-/7)3!(%)!0#.)!/&7)!,)4),!$#$%)!1'!;&001:,)C!2%1$%!%#;;)/)7!'&3!
.&0(!)4)/(0C!#0!0%&2/!1/!51@-3)!+>!D/)!'-3(%)3!1/01@%(!#4#1,#:,)!
'3&.! (%10! 41)2! 10! (%)! /-.:)3! &'! (1.)0! 2)! 0))!)4)/(0! '&3! (%10!
(%3)#7! &''! (%)! /&7)>! B%10! 10! #! 3)0-,(! &'! (%)! E/))70! %),;F!
.)$%#/10.! 2%)3):9! &(%)3! ;3&$)00&30! /&(1$)! (%#(! 2&3=! &/! #!
3).&()!/&7)!10!/&(!@)((1/@!710;#($%)7!2%1,)!(%)9!#3)!17,)>!B%)9!
().;&3#31,9!;1$=!-;!(%)!7),#9)7!2&3=!21(%&-(!:3)#=1/@!(%)!,&/@!
()3.! (%3)#7! #''1/1(9! (&! (%)! /&7)>! B%)0)! =1/70! &'!)'')$(0! #3)!
-0-#,,9!1/4101:,)!(&!#;;,1$#(1&/!7)4),&;)30!2%&!.#9!:)!1@/&3#/(!
&'!%&2!(%)13!$&7)!10!@)((1/@!710;#($%)7!#/7!-0-#,,9!'&$-0!&/,9!&/!
(%)!',&2!(%3&-@%!(%)13!$&7)>!!

!"!"!#$%&'(%)*&+*,*-.*-/.&0-%1&
B%)!"4)/(!5,&2!41)2!%),;0! (%)!-0)3! -/7)30(#/7! ',&20C! ;%#0)0C!
#/7! ;#(()3/0! 1/! #! (3#$)C! &4)3! (1.)>! B&! $&.;,).)/(! (%10!
G-#,1(#(14)! 1/'&3.#(1&/C! (%)! "4)/(! H(#(10(1$0! 41)2! ;3&417)0!
G-#/(1(#(14)! #/7! $#()@&31$#,! 1/'&3.#(1&/! #:&-(!)4)/(0>! ?(!
;3&417)0! 1/'&3.#(1&/!#:&-(! (%)!/-.:)30!&'!)4)/(0!#/7!#33#/@)0!
(%).!1/(&!$#()@&31)0!#$$&371/@!(&!71'')3)/(!$31()31#!0-$%!#0!)4)/(!
(9;)! &3! ;3&$)00>! ?(! $#/! ;3&417)! #/02)30! (&! G-)0(1&/0! 0-$%! #0!
!"#$%& $'(& %#(&)*+%& ,'(-.(/%& (0(/%+& $/1& +.2%34(+56! &/! #/!
&4)3#,,C! ;3&$)00C! &3! (%3)#7! :#010>! B%)! H(#(10(1$0! 41)2! %#0! (%3))!
(#:0C!#0!0%&2/!1/!51@-3)!IC!3)',)$(1/@!71'')3)/(!2#90!(&!;#3(1(1&/!
(%)!7#(#>!!

!
2-345%& 6"&#$%&'(%)*& +*,*-.*-/.& (-%1&7,5*-*-8).& *$%& %(%)*.& -)&
/,*%385-%.9&.$81)&8)&*$%&:%;*&,.&)8<%.&1-*$&*$%&7%5/%)*,3%&8;&
*$%-5& ;5%=4%)/>& ,)<& *$%-5& /,*%385>&),?%"& #8& *$%& 5-3$*& 8;&
%,/$&)8<%&,5%& -*.&/8).*-*4%)*&%(%)*.&.$81)&,.&.?,::&(%5*-/,:&
5%/*,)3:%."&

B%)! '130(! (#:C! "4)/(! B9;)! H(#(10(1$0C! &3@#/18)0!)4)/(0!
%1)3#3$%1$#,,9! '130(! :9! "4)/(! B9;)C! (%)/! :9! "4)/(! H-:B9;)C!
J.&7-,)C!K&7-,)! #/7!D''0)(>!D/! (%)! ,)'(! 017)! &'! (%)! 41)2C!
(%)! %&318&/(#,! :&L)0! 3);3)0)/(! @3&-;0! &'!)4)/(0! 1/! #! $)3(#1/!
$#()@&39C! &3@#/18)7! #0! /&7)0! 1/! #! (3))>!"#$%! /&7)! 710;,#90! (%)!
/-.:)3!&'!)4)/(0C!(%)!;)3$)/(#@)!&'!(%)0)!)4)/(0!&'!(%)!(&(#,!#/7!

(%)! /#.)! &'! (%)! $#()@&39C!)>@>! (%)! "4)/(! B9;)>! B%)! -0)3! $#/!
)L;#/7!&3!$&,,#;0)!(%)!(3))!:9!$,1$=1/@!&/!(%)!M!&3!N!1$&/0!(&!(%)!
,)'(! &'! (%)! /&7)0>! 5&3!)L#.;,)C!)L;#/71/@! (%)! 789! /&7)! 1/!
51@-3)! O! 0%&20! (%#(! (%)! *PQPR! 789& :! 6"$;%<!)4)/(0! 3);3)0)/(!
O>ST! &'! #,,!)4)/(0! 1/! (%10! (3#$)>! K&-01/@! &4)3! (%10! 3)$(#/@,)!
3)4)#,0! .&3)! 0(#(10(1$0C! #0! 0%&2/! 1/! 51@-3)! OC! #0! 2),,! #0! (%)!
$&..&/! ')#(-3)0! '&3! (%)!)4)/(0! 3);3)0)/()7! :9! (%10! 3)$(#/@,)>!
B%)!/&7)0!#3)!$&,&3)7!#$$&371/@!(&!(%)!0&'(2#3)!$&.;&/)/(0!&'!
(%)!)4)/(0!(%)9!3);3)0)/(>!?'!#,,!)4)/(0!-/7)3!&/)!0(#(10(1$0!/&7)!
:),&/@! (&! (%)! 0#.)! 0&'(2#3)! $&.;&/)/(C! (%)/! (%10! /&7)! 21,,!
1/%)31(! (%)! $&,&3! -0)7! '&3! (%10! 0&'(2#3)! $&.;&/)/(C! #0! 1/! (%)!
"4)/(! 5,&2! 41)2>! ?'! #! /&7)! $&/(#1/0!)4)/(0! '3&.! 71'')3)/(!
$&.;&/)/(0C! 1(! 10! $&,&3)7! ,1@%(! @3#9>! U9! 7)'#-,(C! /&7)0! #(! (%)!
0#.)! ,)4),! 1/! (%)! (3))! #3)! &37)3)7! :9! 7)0$)/71/@! '3)G-)/$9>!
V,()3/#(14),9C!(%)!-0)3!$#/!0&3(!(%)!/&7)0!#,;%#:)(1$#,,9>!
B%)!)4)/(0! 3);3)0)/()7! :9! #! /&7)! #3)! 73#2/! #0! (%1/! 4)3(1$#,!
3)$(#/@,)0! (&! (%)! 31@%(!&'! (%)!/&7)C! 1/!$%3&/&,&@1$#,!&37)3! '3&.!
,)'(! (&! 31@%(>!B%10!.#=)0! 1(!)#09! '&3! (%)!-0)3! (&!.&4)!:#$=!#/7!
'&3(%! :)(2))/! /&7)0C! 0%&21/@! G-#/(1(#(14)! #/7! $#()@&31$#,!
1/'&3.#(1&/C!#/7!$&/0(1(-)/(!)4)/(0C!@141/@!7)(#1,)7!1/'&3.#(1&/>!
B%)! $&,&30! #/7! (%)! (&&,(1;! 1/'&3.#(1&/! '&3! (%)0)!)4)/(0! #3)!
7)()3.1/)7!1/!(%)!0#.)!2#9!#0!1/!(%)!"4)/(!5,&2!41)2>!!
H&.)!)4)/(0!1/!#!(9;1$#,!090().!(3#$)!$#/!:)!;#13)7!:)$#-0)!(%)9!
:3#$=)(! #/! &;)3#(1&/! 21(%! #! 0(#3(W)/7C! #/! &;)/W$,&0)! &3! #!
3)G-)0(W@3#/(! (9;)! &;)3#(1&/>! 5&3!)L#.;,)C! #! H-;)3410&3! X#,,!
6789<!)4)/(! 6#! (9;)! &'! =)3/),! 0)341$)<! $#/! :)! ;#13)7! 21(%! #!
$&33)0;&/71/@! H-;)3410&3! X#,,! Y)(-3/! 6789<<!)4)/(>! D(%)3!
)L#.;,)0! #3)! 779=! 63)G-)0(! '&3! ?WD<!)4)/(0! ;#13)7! 21(%! ?WD!
$&.;,)(1&/!)4)/(0>! Z1/01@%(! .#($%)0! -;! ;#13)7!)4)/(0! #/7!
$#,$-,#()0! (%)!),#;0)7! (1.)! :)(2))/! (%).>! B%)! (&&,(1;!
1/'&3.#(1&/! '&3! #/!)4)/(! (%#(! $#/! :)! ;#13)7! @14)0! (%)!),#;0)7!
(1.)! :)(2))/! (%10!)4)/(! #/7! 1(0! ;#13)7!)4)/(>! ! B%)! (&&,(1;! 1/!
51@-3)!O! 0%&20! (%)!#4)3#@)!),#;0)7! (1.)! 6[>*PO!.1$3&0)$&/70<!
'&3! #,,! (%)!)4)/(0! 1/! (%)!789&:! /&7)C! #0!2),,! #0! (%)!.1/1.-.C!
.#L1.-.C!#/7! (&(#,!),#;0)7! (1.)0C!#0! ()L(>!A)!#,0&!;3&417)7!#!
0-:(,)!410-#,!2#9!'&3!(%)!-0)3!(&!#001.1,#()!(%)!;)3'&3.#/$)!7#(#C!
21(%&-(! $%#/@1/@! (%)! &4)3#,,! $&.;&01(1&/! &'! (%10! 41)2>! ?/! (%)!
\),#;0)7!(1.)]!.&7)C!(%)!%)1@%(!#/7!$&,&3!&'!#/!)4)/(!3)',)$(!1(0!
),#;0)7! (1.)C! #0! 0%&2/! 1/! 51@-3)! *>! H%&3(C! 7#3=! :,-)!)4)/(0!
1/71$#()! 0%&3(!),#;0)7! (1.)0^! (#,,C! :31@%(! 3)7! 3)$(#/@,)0! 1/71$#()!
,#3@)3!),#;0)7!(1.)0>!5&3!(%)!/&7)0C!2)!-0)!(%)!0#.)!71$%3&.#(1$!
$&,&3! 0$#,)! '3&.!7#3=!:,-)C!&4)3!;-3;,)C! (&!:31@%(! 3)7! (&! 3)',)$(!
(%)13!#4)3#@)!),#;0)7!(1.)0>!!

!
2-345%& @"& #$%& '(%)*& +*,*-.*-/.& (-%1& -)& ':,7.%<& #-?%&?8<%&
1-*$& 4.%5A,<B4.*,C:%& ./,:%"& #,::9& 5%<& (%5*-/,:& C,5.& -)<-/,*%&
%(%)*.& 1-*$& :,53%& %:,7.%<& *-?%.D& .$85*%59& <,5E& %(%)*.& $,(%&
.$85*%5&%:,7.%<&*-?%."&#$%&)8<%.&8)&*$%&:%;*&;8::81&*$%&.,?%&
./$%?%"&

",#;0)7!(1.)0!.#9!4#39!:9!#/!&37)3!&'!.#@/1(-7)!7);)/71/@!&/!
(%)!)4)/(!(9;)>!">@>C!2%1,)!0&.)!789>789<!)4)/(0!(#=)!,)00!(%#/!
#! .1$3&0)$&/7! (&! $&.;,)()C! ?>@!)4)/(0! $#/! (#=)! &4)3! 0)4)3#,!
.1,,10)$&/70>!B%)3)'&3)C!2)!;3&417)7!#!-0)3_#7`-0(#:,)!0$#,)C!0&!
(%#(! 01.1,#3!)4)/(0! $#/!)#01,9! :)! $&.;#3)7!21(%!)#$%! &(%)3>!V!
:)/)'1(!&'!(%10!0$%).)!10!(%#(!#/#,90(0!7&!/&(!%#4)!(&!=/&2!2%#(!

146

Figure 2.22: Statistics view of Zinsight [33]. Some what like the profiling view of Visual
VM this provides statistical information about the running program.

The final view is called the sequence context view (Figure 2.23) and looks somewhat
similar to the function view in PARADE, showing a call stack of the program. However,
Zinsight doesn’t display a single point in time, but instead summarizes similar event
sequences leading up to some event. This is designed to answer questions like ‘how do
we get to a certain event in a program such as a lock call?’ and ‘what are the common
traces leading up to a certain event?’. A count on the lines leading from one event to
another indicates the number of times that that execution path was taken.

Like the systems mentioned above, Zinsight seems to be orientated towards perfor-
mance debugging and it was evaluated as such. The use of summarizing multiple calls
to events into a single view is very interesting.

CHAPTER 2. LITERATURE REVIEW 41

!

"#$"#%#&'(')*&+! ,(&-! '**.%! /*"! 0(..! %'(01! 2(%#3! %-%'#4%! (&3!
.(&56(5#%! *//#"! (! %)4).("! /6&0')*&(.)'-! 2-! %644(")7)&5! '8#!
#9#06')*&!)&! (! 0(..! 5"($8+! :*;#<#"=! 4*%'! */! '8#%#! %-%'#4%!
$"*<)3#!*&.-!(!*&#>;(-!'"(&%)')*&!/"*4!)&3)<)36(.!#<#&'%!)&!'8#!
'"(0#! '*! (! 0*&3#&%#3! 0*&'"*.! /.*;! "#$"#%#&'(')*&+! ?(<)5(')&5!
/"*4!'8#!(55"#5('#!#<#&'!/.*;!'*!)&3)<)36(.!#<#&'%!)%!6%6(..-!&*'!
%6$$*"'#3+! @)&%)58'! (..*;%! '8#! 6%#"! '*! 5*! /"*4! '8#! #<#&'! /.*;!
$(''#"&%!2(01! '*!)&3)<)36(.! #<#&'%+!A)"%'=! (! 6%#"! 0(&!8)58.)58'! (!
&*3#!)&! '8#!B#C6#&0#!D*&'#9'!<)#;+!E8#!)&3)<)36(.!#<#&'%! '8('!
'8)%!&*3#!"#$"#%#&'%!;)..! '8#&!2#!8)58.)58'#3!)&!'8#!F<#&'!A.*;!
(&3!B'(')%')0%!<)#;%+!B##)&5!'8#!)&3)<)36(.!#<#&'%!8)58.)58'#3!)&!
'8#!F<#&'!A.*;!5)<#%!'8#!6%#"=!(4*&5!*'8#"!)&%)58'%=!(&!)3#(!*/!
;8#&!G;8#"#!)&!'8#!'"(0#H!'8#%#!#<#&'%!8($$#+!!
!

!
!"#$%&'()'*+&',&-$&./&'01.2&32'4"&5'6+156'2+72'2+&'+122&62'
&4&.268'6+15.'+"#+9"#+2&:'".';&99158'7%&'<7%2'1='7'>$6;'911<8'
".:"/72&:'>;'2+&'>19:'&:#&6'7.:'%&<&72".#'?1%&'2+7.'@AB8BBB'
2"?&6)'
!

!
!"#$%&'@B)'C'$6&%'/7.'&3<7.:'7'.1:&'21'6+15'"26' ".:"4":$79'
&4&.26D' 2%7.6"2"1.6' >&25&&.' 2+16&' &4&.26' /7.' 7961' >&'
%&4&79&:D'2+&':76+&:'7%%15'".:"/72&6'7'2+%&7:'?"#%72"1.)'

I!%#0*&3!;(-! '*! "#<#(.!)&3)<)36(.!#<#&'%!)%!2-!0.)01)&5!*&! '8#!
2.(01!JKL!)0*&!%8*;&!)&!'8#!.*;#"!")58'!0*"&#"!*/!(!&*3#!)&!'8#!
B#C6#&0#! D*&'#9'! <)#;+! A)56"#! MN! %8*;%! '8#! 2"*;&! &*3#!!"#
$%&'%()*! G(.%*! %8*;&! ('! '8#! '*$! */! A)56"#! OH! "#<#(.)&5!)'%! P!
0*&%')'6#&'! #<#&'%+! B)4).("! '*! '8#! 5"($8)0(.! %-&'(9!)&! '8#!

B'(')%')0%! <)#;=! #(08! #<#&'!)%! "#$"#%#&'#3! 2-! (! '8)&! <#"')0(.!
"#0'(&5.#+!,*6%)&5! *<#"! (&!)&3)<)36(.! #<#&'!;)..! "#<#(.! #<#&'>
%$#0)/)0!)&/*"4(')*&!)&!'8#!'**.')$+!B#.#0')&5!(&!)&3)<)36(.!#<#&'!
;)..!8)58.)58'!'8)%!%)&5.#!#<#&'!)&!#(08!<)#;!)&!;8)08!)'!)%!<)%)2.#!
'*! /(0).)'('#! 0"*%%><)#;! &(<)5(')*&+! Q&! (33)')*&! '*! %##)&5!
)&3)<)36(.! #<#&'%!)&! '8#! B#C6#&0#! D*&'#9'! <)#;=! '8#! 6%#"! 0(&!
(.%*! #9(4)&#! '8#! '"(&%)')*&%! 2#';##&!)&3)<)36(.! #<#&'%! 2-!
0*&'"*.>0.)01)&5! *&! '8#! .*;#"! %)3#! */! (&! #<#&'+! E8#! ';*! %4(..!
(""*;%! '*! '8#! ")58'! */! '8#! &*3#%!)&! A)56"#! MN! %8*;! '"(&%)')*&%!
2#';##&!)&3)<)36(.!#<#&'%+!E8#!.*;#"!*&#!)%!3"(;&!)&!(!3(%8#3!
.)&#!%'-.#! '*!)&3)0('#!(! '8"#(3!4)5"(')*&! G/"*4!*&#!$"*0#%%*"! '*!
(&*'8#"H+!,*6%)&5!*<#"!'8)%!(""*;!5)<#%!6%!%$#0)/)0!)&/*"4(')*&!
(2*6'! '8)%! '"(&%)')*&R!;8).#!5*)&5!/"*4!(!!"! G2"(&08H!'*!(!+),!
G3)%$('08H! #<#&'=! '8#! '8"#(3!;(%! %6%$#&3#3! *&! $"*0#%%*"! S! (&3!
"#3)%$('08#3!*&!$"*0#%%*"!N+!E8"#(3!4)5"(')*&%!("#!)&3)0('#3!2-!
'8#! $"#%#&0#! */! (! &642#"! 2#';##&! $("#&'8#%#%! *&! '8#! #35#!
.(2#.%+!Q&!'8)%!#9(4$.#=!'8#!#35#!.(2#.!'#..%!6%!'8('!M!*6'!*/!'8#!P!
'"(&%)')*&%!)&<*.<#3!(!'8"#(3!4)5"(')*&+!!

E)! ,0FGCHIJ'J!'K,F'FLCMNOF'
E8#! /*..*;)&5! #9(4$.#!)..6%'"('#%! 8*;! (! $#"/*"4(&0#! (&(.-%'!
;#&'!(2*6'!)&<#%')5(')&5!<(")(2).)'-!)&!#.($%#3! ')4#!/*"!(&!)'-#
+.! 0(..! G(! 0#"'()&! 1)&3! */! 1#"&#.! /6&0')*&H+! T.(&0)&5! ('! '8#!
#.($%#3!')4#!%'(')%')0%!/*"!'8#%#!0(..%!)&!'8#!F<#&'!B'(')%')0%!<)#;=!
'8#!6%#"!;(%!06")*6%!(2*6'!'8#!6&#<#&!3)%'")26')*&!*/!'8#!#.($%#3!
')4#%=! (%! %655#%'#3!2-!A)56"#!U+!V-! ")58'>0.)01)&5!*&! '8#!&*3#!
)'-#+.=! '8#! 6%#"! 0*6.3! (%1!/0123# 245# 315#)'-)'-"#56573#
8294#:5;<57=5:>?!)&!*"3#"!'*!6&3#"%'(&3!;8('!8($$#!2#';##&!
(..!)'-#+.!G%'("'H!(&3!)'-"#+.!G#&3H!#<#&'%+!A)56"#!MM!%8*;%!
'8#!"#%6.'!*/!'8)%!)&C6)"-+!E8#!'*$!&*3#!"#$"#%#&'%!'8#!WXYZ!)'-#
+.! #<#&'%! '8('! %'("'!)&! .*(34*36.#!+@AB-C+!T*)&5! *&#! .#<#.!
3*;&!)&!'8#!'"##=!;#!0(&!%##!'8('!4*%'!*/!'8#%#!#<#&'%=!WXMW!*/!
'8#4=!)&3)0('#3!2-!'8#!2*.3!(""*;=!("#!)44#3)('#.-!/*..*;#3!2-!
(&!)'-"+!,*6%)&5! *<#"! '8)%!)'-"! &*3#! %8*;#3! '8#! 6%#"! '8('!
'8#! (<#"(5#! #.($%#3! ')4#! '*! #&3! '8)%! 0(..! ;(%! *&.-! M+P!
4)0"*%#0*&3%=!;8)08!)%!C6)'#!(00#$'(2.#+!!

!
!"#$%&' @@)' *+&' 7%%15' 6+15.' ".' >19:' ".:"/72&6' 2+&' ?162'
=%&-$&.29;' 27P&.'<72+' QRS@R' "#$%&T' =%1?'7.',U0'VW' 21'7.'
,U0H'VW)''

:*;#<#"=! 4*6%)&5! *<#"! '8#! &*3#! ('! '8#! 2*''*4!;)'8! Y! #<#&'%!
%8*;#3! '8#! 6%#"! '8('!)'! '**1! *&! (<#"(5#! MZ+S!4)0"*%#0*&3%! '*!
0*4$.#'#! '8#%#! 0(..%=! (&3!)&! '8#! ;*"%'! 0(%#! #<#&! SY+Z!
4)0"*%#0*&3%+!E8#!6%#"!0*6.3!&*;!3")..!3*;&!'*!%##!'8#!3#'().%!
*/! '8)%! &*3#! 2-! 0.)01)&5! *&! '8#! K!)0*&! '*! %##! '8#!)&3)<)36(.!
#<#&'%+!E6"&)&5!*&!J#.($%#3!')4#!4*3#L!%8*;#3!'8#!3)%'")26')*&!
/!'8#!#.($%#3!')4#!/"!#(08!*/!'8#!#<#&'%!*/!'8)%!&*3#=!%)4).("!'*!
'8#!J#.($%#3!')4#!4*3#L!/*"!'8#!F<#&'!B'(')%')0%!<)#;!)&!A)56"#!
U+! I/'#"! '8#! 6%#"! "#<#(.#3! '8#!)&3)<)36(.! '"(&%)')*&%! '*! '8#%#!
#<#&'%=!(&3!'8#!*&#%!$"#0#3)&5!)'=!(%!%8*;&!)&!A)56"#!MZ=!)'!;(%!
0.#("! ;8-! *&#!)'-)'-"! '"(&%)')*&! '**1! 4*"#! '8(&! SY!
4)0"*%#0*&3%+! ,*6%)&5! *<#"! '8#! "#3! 3(%8#3! '"(&%)')*&! .)&#!
"#<#(.#3!'8('!;#!"#0#)<#3!(&!#9'#"&(.!)&'#""6$'!G%C*#DEEFH[! '8#!
'8"#(3!;(%!%6%$#&3#3!*&!$"*0#%%*"!Y!(&3!;(%!"#3)%$('08#3!(/'#"!

149

Figure 2.23: Sequence Context view of Zinsight [33]. This is showing a summarization
of the various execution paths the program has gone through.

CHAPTER 2. LITERATURE REVIEW 42

2.4.5 TIE: Thread Interleaving Explorer

Unlike the systems above Thread Interleaving Explorer [42] doesn’t use data from a
tracing framework as input, instead it uses data from the Java Pathfinder model checking
tool mentioned above.

Like the software above, TIE is composed of multiple views. At the top is a panel
showing inter-leavings of the software with errors, which allows selection of a specific
interleaving for closer examination. A larger view of a particular interleaving is provided,
allowing the user to click on a specific transition in an execution schedule to examine
the source code and raw data from JPF at that point. A panel on the bottom provides
the means to step through the erroneous interleaving.

Different Interleavings

Current Interleaving Source JPF InformationStep Controls

Figure 2.24: Thread Interleaving Explorer software [42]. Note the numerous different
panels used to provide enable a user to zoom in from the more general information at
the top to more specific information in the bottom columns.

TIE is interesting because it shows another possible use for concurrent visualization
– not as a means of displaying a single execution, but as a means of showing multiple
incorrect potential executions.

CHAPTER 2. LITERATURE REVIEW 43

2.4.6 UML Sequence Diagrams

UML [49, 26] is described by its creators as “a general-purpose visual modeling language
that is used to specify, visualize, construct, and document the artifacts of a software
system”. UML has many different diagrams for different parts of software and different
stages of system development. In this thesis we are most interested in debugging the
behaviour of programs, so we focused on the UML diagrams specifically for analyzing
the behaviour of a program, which included state machine diagrams, activity diagrams
and communication and sequence diagrams.

State machine diagrams are similar to state machine diagrams from engineering and
indicate the state of single object and transitions to and from its various states. This
was too low level for analyzing the behaviour of a large system with many interacting
objects. An activity diagram contains nodes representing activities, with lines running
between the various activities, choices are represented by diamonds with several lines of
control leaving the diamond. Concurrency is represented by thick horizontal lines with
several lines of control leading off them. Generally, activity diagrams were too high level
for our purposes, although they did include support for concurrency. Communication
diagrams show the flow of communication among instances of objects by numbering lines
leading between objects represented by boxes, as shown in Figure 2.25. Communication
diagrams are as much about the static structure of communicating objects as they are
about showing object behavior and did not provide clear enough indication of control
flow for the task of debugging.

Figure 2.25: UML collaboration diagram [23]. The numbers show the order of method
calls between the object instances which are represented by the boxes.

Sequence diagrams show flow control as a set of object instances with the execution

CHAPTER 2. LITERATURE REVIEW 44

of methods (called execution specifications) shown along “life-line” that run down below
a box containing the object class. Method calls are shown as arrows between execution
specification blocks with call arrows having solid lines and return arrows being dashed.
Nested calls to functions are shown by adding execution bars on top of the outer function.
Figure 2.26 shows an example of a UML sequence diagram.

Figure 2.26: Basic UML sequence diagram [12]. Time flows vertically with the lines
representing the execution history of the object instances and the narrow blocks on the
lines showing when a method was called on an object.

Sequence diagrams show things such as loops, parallelism and locks using labelled
rectangles (called combined fragments) surrounding a group of execution specifications,
as shown in Figure 2.27.

Although there is some support for concurrency in UML, a number of researchers
have found the support inadequate and have proposed extensions.

Xie et al [65] proposed a set of extensions to sequence diagrams, called saUML
(synchronization adorned UML) to make them useful for teaching students about con-
currency. They use different colours for the method blocks to indicate thread state, such
as green for running, red for suspended and yellow for ready. When two or more threads

CHAPTER 2. LITERATURE REVIEW 45

Figure 2.27: UML Sequence diagram with combined fragments [12]. The boxes are used
to represent various aspects that are not covered by the lines and execution boxes.

CHAPTER 2. LITERATURE REVIEW 46

are inside an object the colour block shows the deepest nested one. Small boxes with
rounded corners overlaid on the method blocks indicate the state of the monitor of that
object instance. Figure 2.28 shows an example of a saUML.

r : Reader d : Database w : Writer

sd scenario6

startRead()

startWrite()

r : Reader d : Database w : Writer

startWrite()

startRead()

sd scenario6

nWriters = 0;
nReaders = 0;

locked;

locked;

nWriters = 0;
nReaders = 1;

unlocked;

nWriters = 0;
nReaders = 1;

Figure 10: UML and saUML renderings of a scenario pertaining to Question 7 on the post-test.

the small sample size. An a posteriori power analysis shows that
the statistical power of the first study was only 0.283, which means
there is roughly a 70% chance we missed an effect. Assuming the
effect size we observed holds, we would need a sample size of 65
to show statistical significance. We are currently working to repli-
cate this study using participants from several universities to create
a sufficiently large sample.

The saUML notation comprises several UML extensions and id-
ioms of use. Further studies are needed to judge whether all of the
extensions are needed or if a subset is sufficient. Moreover, having
now used saUML in several studies, we have identified several op-
timizations that might improve its usability. For instance, complex
synchronization states, such as that of the database in the second
experiment, comprise many orthogonal components (e.g., state of
the mutex lock and the value of each counter variable). Our current
convention is to display the entire synchronization state (i.e., every
component) when any one of them changes. Whether readability
would improve if we depict only the components that change is an
open question.

Our studies looked at tasks that involve reasoning about existing di-
agrams. Whether saUML is beneficial for tasks that involve creat-
ing diagrams from scratch is an open question. There are also ques-
tions regarding how well saUML scales for larger programs, espe-
cially compared with standard UML. For example, does saUML
provide a significant benefit over standard UML on programs that
use only mutexes if the programs are large, or utilize many, possibly
nested, locks? Also, does saUML continue to provide a significant
benefit for programs with condition synchronization if the programs
are large or involve many condition variables?

We recognize that this research was conducted to improve educa-
tional benefit and that further study is required to determine whether
and how it generalizes to practitioners. The programs and interac-
tion scenarios used in our study may not be representative of those
found in practice. Also, student participants may not be representa-
tive of expert practitioners, who have years of experience working
on concurrent software. Finally, the questions we used may not be
representative of the sorts of questions that arise in practice. We will
address these issues in future work with case studies of professional
programmers conducting real maintenance tasks on production sys-

tems.

References

ARISHOLM, E., BRIAND, L. C., HOVE, S. E., AND LABICHE, Y.
2006. The impact of UML documentation on software mainte-
nance: An experimental evaluation. IEEE Transactions on Soft-
ware Engineering 32, 6, 365–381.

BLOOM, B. S. 1956. Taxonomy of Educational Objectives, Hand-
book I: Cognitive Domain. McKay, New York.

CARR, S., MAYO, J., AND SHENE, C.-K. 2003. ThreadMen-
tor: a pedagogical tool for multithreaded programming. J. Educ.
Resour. Comput. 3, 1, 1.

CHOI, S.-E., AND LEWIS, E. C. 2000. A study of common pitfalls
in simple multi-threaded programs. In Proc. 31st SIGCSE Tech.
Symp. Comput. Sci. Educ. (SIGCSE 2000), ACM, New York,
NY, USA, 325–329.

FLEMING, S. D., ET AL. 2008. A study of student strategies
for the corrective maintenance of concurrent software. In Proc.
IEEE/ACM Int. Conf. Software Eng. (ICSE 2008).

HIGGINBOTHAM, C. W., AND MORELLI, R. 1991. A system for
teaching concurrent programming. In Proc. 22nd SIGCSE Tech.
Symp. Comput. Sci. Educ. (SIGCSE 1991), ACM, New York,
NY, USA, 309–316.

KOLIKANT, Y. B.-D. 2004. Learning concurrency: evolution
of students’ understanding of synchronization. Int. J. Hum.-
Comput. Stud. 60, 2, 243–268.

KRAMER, J. 2007. Is abstraction the key to computing? Commun.
ACM 50, 4, 36–42.

KUTAR, M., BRITTON, C., AND BARKER, T. 2002. A compari-
son of empirical study and cognitive dimensions analysis in the
evaluation of UML diagrams. In Proc. 14th Psychology of Pro-
gramming Interest Group.

KUZNIARZ, L., STARON, M., AND WOHLIN, C. 2004. An em-
pirical study on using stereotype to improve understanding of

Figure 2.28: Diagram of saUML [65]. Colour is used to represent thread state and the
rounded corner boxes show monitor state information.

Like TIE in section 2.4.5 Artho et al [27] describe a system that is used to visualize
the results of model checking. To do this they extend UML in a number of ways to better
support concurrency, including the addition of context switches and threads sleeping and
waiting.

Unlike standard sequence diagrams, threads are represented as hexagons on the right-
hand side of the diagram, rather than as active objects, which are represented as ob-
jects with thick borders. Execution is shown by dashed arrows leading from the thread
hexagon to the object instances. Context switches are shown by placing a different
thread hexagon below the previously executing thread, as seen in Figure 2.29.

When threads sleep, wait or call join a dashed arrow is shown returning to a thread
hexagon. Actions which have a “happens before” relationship to events in other threads
are shown as dotted lines running from the action to the thread hexagon. Examples
of this kind of relationship are threads starting, notification and threads joining other
threads, as shown in Figure 2.30.

JIVE [36] is a software system for visualizing and debugging the execution of Java
programs using UML. Object diagrams are used to show the relationships of the object
instances in a system to each other and Sequence diagrams are used to show the execution

CHAPTER 2. LITERATURE REVIEW 47

• join suspends the current thread until the target
thread has terminated;

• wait suspends the current thread until another
thread issues notify or notifyAll.2

Threads as a data structure are visualized like other ob-
ject instances in UML sequence diagrams. Our first
extension is the visualization of role of a thread as an
executable task by a hexagon. A dashed arrow point-
ing to the left symbolizes the thread scheduler running
a thread (task). As in UML sequence diagrams, solid
arrows depict a method call or return, and solid squares
show a method being executed.
Figure 1 includes these basic elements. It shows the

illustration of context switches between threads. At the
beginning of the scenario, the main thread is sched-
uled. This thread creates a new instance of Port. Dur-
ing the call to the constructor, the scheduler switches
to another thread,Worker. The interruption of themain
thread is shown by a gap in the time line of the call
from Server to Port. ThreadWorker executes for a cer-
tain amount of time without making any method call,
after which the main thread is scheduled again, and the
method call to Port completes.
Dotted lines show event dependencies according to

the happens-before relation [13]. If there is a dotted
line from a point p to a hexagon t, then any events fol-
lowing an activation of thread t could have started right
after p. Figure 2 shows the happens-before relation
based on a slightly more complex example, where a
worker thread is started by the main thread. At the be-
ginning of the program, the main thread is scheduled,
as depicted by a hexagon. A dashed arrow points to
the beginning of the sequence of actions of that thread,
symbolizing scheduling of actions of this thread. Cre-
ation of thread Worker involves initialization of the
data structure and is no different from initializing a
normal object. The thread is started by a library call,
which interfaces with the operating system. Any ac-
tions of thread Worker can occur at any time after this
point, symbolized by the dotted line. In other words,
actions of threadWorker could be moved up to the top
of the horseshoe-shaped dotted line.
The start of a thread is shown by a corresponding

action in the thread scheduler, using an dashed arrow
pointing from a hexagon to the left. Likewise, thread
suspension is depicted by such a dashed arrow point-
ing to the right, from the lower part of the black box

2This simplified definition holds if one thread is waiting on a
shared lock. For the complete definition that covers multiple waiting
threads, refer to the language specification [9].

main

Worker

main

create

Server WorkerPort

Figure 1. Thread switches.

main

run

start

create
main

Worker

WorkerServer

Figure 2. Thread creation and start.

denoting a method call, to the thread being suspended.
In Figure 3, the main thread runs and calls wait on
lock Port. The arrow originates from the end of the
method call rather than its middle because the current
thread still executes instructions up to its suspension.
Unlike thread suspension, thread termination is not

shown. No further actions of that thread exist, so there
is no compelling need to decorate thread termination.
On the other hand, thread termination may influence
the behavior of other threads waiting on that event,
and thus contribute to the happens-before relation. Fig-
ure 4 shows an example involving Thread.join. As in
subsequent figures, some initial thread activations have
been omitted for brevity. Thread main starts a worker
thread and waits upon its termination using join. This
suspends main until Worker terminates. Any events in
the main thread following that join call can only hap-
pen after Thread Worker has terminated, as illustrated
by the dotted line.
Thread notification is similar to re-activation of

a thread after suspension. In the previous exam-
ple involving join and thread termination, one event
leads to thread suspension (join), while another event
(thread termination) allows the suspended thread to
continue. The same pattern exists for wait/notify,
the key difference being that continuation of the sus-
pended thread is achieved by a special call (notify)
rather than termination of another thread.
Figure 5 shows an example for wait/notify. As in

Figure 4, suspension of the waiting thread is shown by

Figure 2.29: Context switches in Artho’s UML extension [27]. Note the hexagon threads
and the dashed lines that show when a thread starts executing in the object instances.

wait
main

main

Server Port

Figure 3. Thread suspension using wait.

join

start

run

Server

main

Worker

main

Worker

Figure 4. Thread suspension using join.

a dashed arrow pointing to the right. Here thread main
waits on Port, which is used as a lock and semaphore
according to standard Java semantics [9]. After sus-
pension, threadWorker is scheduled, which notifies all
threads waiting on Port. Notification leads to activa-
tion of one of the suspended threads (main in the ex-
ample). Once notified, a thread is again ready to run,
as shown by the happens-before relation. Activation is
takes place inside native method notify.
Notification can target a single thread, or all threads

waiting on a lock, using notifyAll in Java. Whenever
several threads wait for the same lock, notification will
enable all of them to run. In this case, the happens-
before relation concerns multiple threads. Further-
more, it is often the case that only a single thread
will continue to execute, while all the other threads re-
check a shared condition and then go back to being
suspended by calling wait again.
Figure 6 depicts such a scenario. At the beginning

of the situation shown, threadsWorker 1 andWorker 2
are waiting on lock Port. Threadmain calls notifyAll
on that lock, whereupon Worker 1 is scheduled first.
That thread can complete an action on global data
(e. g., consuming a shared resource, such as a con-
nection from a client). After that, the scheduler runs
Worker 2. In the example, the shared resource has
been consumed by Worker 1, so Worker 2 has to wait
again until another thread makes the resource in ques-
tion available again. Therefore,Worker 2 subsequently
waits again after re-checking its condition. This allows
the scheduler to executeWorker 1 again.

wait

main

Worker

main

notify

WorkerPortServer

Figure 5. Thread notification.

3. Design decisions

Our extension of UML sequence diagrams main-
tains a close and concise mapping [10]. We address all
commonly available concurrency artifacts [9, 15, 21],
using four new symbols. First, we distinctly express
the role of a thread as a task. Second, we make task
activations and context switches visible. The hexagon
as a task symbol is visually clear. Furthermore, it
allows attachment of arrows denoting thread context
switches, and lines representing the happens-before re-
lation. Locks are not directly visualized, but can be
shown by secondary notations, such as annotations.
Third, thread suspension is different from a nor-

mal context switch (where a thread can continue to run
again later). We chose to represent this with a sym-
bol that is the reverse of thread activation by a context
switch. We believe that this is consistent.
Finally, the happens-before relation [13] explains

possible event orderings. It is visualized by dotted
lines. Events are not totally ordered [13]. Thus, more
constraining visualizations, such as shaded regions,
fail for more complex scenarios.
We chose to illustrate calls to wait and notify like

any other method calls, by a solid black box. This does
not only provide consistency, but also allows for a bet-
ter illustration of the side effects of these methods.
The precise timing of thread activations cannot be

determined, as it occurs inside library calls. Hence, the
line visualizing the happens-before relation is placed
in the middle of such method calls. Thread suspension
via join is different, as the thread in question actually
has to terminate before said call returns. Therefore, the
line of the happens-before relation must be attached to
the bottom of the box, representing completed method
execution, which implies thread termination.
Method calls to wait do not affect the happens-

before relation. This is because wait has no direct ef-
fect on other threads, so any events of other threads are
not correlated to when the current thread is suspended.

Figure 2.30: Condition variable wait and notification in Artho’s UML extension. Note
the dotted lines which demonstrate notification of a lock to the waiting thread.

CHAPTER 2. LITERATURE REVIEW 48

of a thread amongst object instances. Various levels of zoom are available to provide
more or less detail about an object’s state, as can be seen in Figure 2.31.

Figure 1: Two JIVE screenshots. The left object diagram is a detailed view, and the right is a compact view. Both screenshots
illustrate simultaneous view of the sequence diagram, and source-code highlighting is included on the left.

standing how this and data are resolved requires an un-
derstanding of inheritance and variable shadowing. Our vi-
sualization methodology is able to clarify the relationships
among these features of object-oriented languages in general
and Java in particular.

Detailed Views

One possible visualization of the binary search tree is a de-
tailed view, as shown in the left side of Figure 1. This view
shows objects’ complete states, including inherited members.
The activation of the insert method (in blue) is placed
within its proper object context, in this case, the root of
a binary search tree; its caller is the main method, shown
in the red static context in the upper-left of the screenshot.
The member tables of each contour have been expanded in
this diagram. These tables show the variables defined within
the contour’s context; the tables can be configured to show
method definitions as well, but we have found this to take
inordinate space in the visualization. It is not generally nec-
essary to show the member tables of every contour (as in
the right screenshot of Figure 1, but it is done in this fig-
ure in order to demonstrate the highest level of detail. The
screenshot also shows specifically how structural links are
built between contours: the link starts at the value cell of
the member table and is drawn to the contour being refer-
enced. This allows structural links to properly implement
static variable scoping with inheritance.

The nesting of methods within their object contexts (and
of subclass contours within their superclass contours) is used
to clarify the semantics of static scoping. For example, the
highlighted code in Figure 1 references the variables left

and v. The latter is defined within the method as a for-
mal parameter, and so its scope is clear; however, there is
no symbol left within the insert method activation. Such
symbols can be resolved by stepping outward through the
containment hierarchy. In this case, left is defined within
BST:1, and that is the symbol referenced by insert. This
technique is fundamental to the contour model and has been
shown to be directly applicable to object-oriented languages
that exhibit single inheritance [Jayaraman and Baltus 1996].

Compact Views

The upper-right portion of Figure 1 gives another possible
visualization of a program execution state. This is a com-
pact view, a visual paradigm in which many of the details are
elided. The nodes of the tree are shown as dark-bordered
instance contours. Each is named for the class of which
it is an instance (in this case, DupTree), and an instance
count is added to distinguish individual objects. For ex-
ample, DupTree:1 is the first instance of the DupTree class.
The instance contours make up the instance space; the static
space is made up the light-bordered static contours. There
is one static contour for each class loaded by the Java sys-
tem. A static contour is nested within its superclass’ static
contour, and so since all classes in Java are subclasses of
java.lang.Object, all static contours are nested within the
static contour for java.lang.Object. The complications
and implications of the instance/static dichotomy will be ex-
plored in Section 4 along with other Java-specific concerns.
The arrows in the diagram are structural links, which indi-
cate that there is a reference from one object to another.
These links show the connection between nodes that form

Figure 2.31: Overview of JIVE [36] showing the various panels. The top left shows
the object instances and there values the bottom left shows a sequence diagram of the
execution.

Different threads are indicated by different colours as can be seen in Figure 2.32.

2.4.7 Visual Programming Languages

Visual programming languages are programming languages that have a visual compo-
nent, Shu [53] defines them as:

“a VPL can be informally defined to be a language which uses some visual
representation (in addition to or in place of words and numbers) to accom-
plish what would otherwise have to be written in a traditional one-dimensional
programming language”

In addition Chang et al [30] state that visual languages have three main goals:

“(1) to aim to make programming more accessible to some particular audi-
ence,”

CHAPTER 2. LITERATURE REVIEW 49

Figure 4: Sequence diagram with concurrent threads. The
main thread, shown in blue, terminates after initializing the
two Chase$Runner thread objects. The other two threads
have set up a simple chase condition.

a detailed view. Since object-orientation favors encapsula-
tion of data, we expect method overriding to be much more
prevalent than variable shadowing in real Java applications.
Therefore, in JIVE, we do include a this reference in the
member table which refers to the innermost instance contour
in a collection of nested contours, and we leave the detailed
explanation of overriding and shadowing to an instructor.

Threads

Java supports multithreaded applications; in fact, every Java
program that has a Swing or AWT user-interface is in-
herently multithreaded since the JVM will automatically
start the AWT-Event thread to process user input. Mul-
tiple concurrent threads imply multiple simultaneous paths
of method calls. This is easily represented in the contour
model through visual cues on methods and their return links.
Each thread’s path of execution is drawn in a different color.
Even if the same method definition is being used by multiple
threads, each thread has its own method contour since each
thread has its own stack. The same colors are used to high-
light the multiple threads of a contour diagram and sequence
diagram as well as the source code; this enforces the interde-
pendence of the view of the current state (contour diagram
and source code highlighting) and the history of execution
(sequence diagram). The JIVE-generated sequence diagram
for a simple multithreaded program is shown in Figure 4.
The program being visualized simply starts two threads and
lets them race to a finishing condition.

5 JIVE Architecture

In this section, we give an overview of the architecture of
JIVE. High-level descriptions are provided for the interpro-
cess communication mechanism by which JIVE and its visu-
alization client share data, the model for interactive execu-
tion, and the database query subsystem. We also present
some of the graph drawing research issues involved in JIVE.

Two-Process Architecture

We have explored the use of source-code transformation in
order to produce visual representations of the runtime state
in previous visualization tools [Gestwicki and Jayaraman
2002]. This model is difficult to maintain for a growing lan-
guage such as Java. Each time the language or libraries
change, changes must be made to any custom compilers or
interpreters that are written.

Our current approach abandons program transformation
in favor of a two-process architecture. The visualization
environment itself runs in one process. The user provides
to JIVE the program he or she wishes to visualize, and
JIVE starts the application in a second process, called the
client process. Communication between the two processes
is made possible by the Java Platform Debugger Architec-
ture (JPDA)In order to guarantee source-code highlighting
functionality, a program must be loaded from its source code,
but JIVE can run visualizations from compiled class files as
long as they contain debug information. JIVE supports mul-
tithreaded programs that are uniprocessing, but the design
does not currently allow for visualization of distributed or
multiprocessing applications.

Once JIVE has started the client process, it registers lis-
teners via JPDA and awaits notification. When the client’s
state changes, its execution is suspended, and notification of
the event is sent to JIVE for processing. Once the data model
and the appropriate views have been updated, JIVE resumes
the client program and returns to waiting for events.

The amount of processing that the client performs before
suspending is depends on user preferences. JIVE allows for
different step sizes, including individual source code lines,
method invocations, or traditional breakpoints in the source
code. It is also possible to disable event suspension, in which
case events stream continuously into JIVE, which processes
them sequentially.

Interactive Execution

As the client program runs, it is monitored for changes;
these changes are stored by the JiveLog subsystem. The
log is coupled with a database into which execution history
is stored. The JIVE prototype uses an in-memory model
for faster queries and processing, but the entire model can
be externalized in situations with excessive data or limited
memory. The log can be saved to a file for offline analysis.

Execution events received from the client are interpreted
into a simpler set of events by JIVE. The execution his-
tory is therefore expressed through a sequence of declara-
tive events [Richner et al. 1998]. These events are memento
objects which are able to commit or un-commit themselves
from a program state model [Gamma et al. 1995]. In this
way, multiple states can be shown at once by notifying the
state models which events have been committed or rolled
back. The seven events used by JIVE correspond to the
following execution events: static context creation, object
creation, method call, method return, exception thrown and
caught, change in source line, and change in variable value.

Figure 2.32: Multiple threads in JIVE [36]. Colour is used to differentiate the threads.

“(2) to aim to improve the correctness with which people perform program-
ming tasks, and/or ”

“(3) to aim to improve the speed with which people perform programming
tasks ”

A common type of visual language is the ”boxes and wires” language where a pro-
grams elements such as branches, loops and mathematical expressions are represented
somewhat like an engineering flow chart, as shown in Figure 2.33.

By Chang et al’s [30] definition many of the systems we have investigated have
elements of visual languages. As Diehl [34] notes visual languages essentially have a
two directional information flow. A user performs actions sending information to the
program; the program sends changes back by updating the user interface. The systems
we have studied don’t operate like this. Information flows from an executing program
to the visualization system, not back from the visualization to the executing program.

Another difference is that often visual languages are showing the static structure of a
program and not the dynamic behaviour of a system, which is important for debugging.

Finally, there are some large differences in overall goals. The systems we have studied
have a variety of purposes, such as debugging, monitoring and in some cases documen-
tation like UML. Generally they aren’t designed to be complete programming languages
environments.

CHAPTER 2. LITERATURE REVIEW 50

Figure 2.33: LabVIEW – an example of a ”boxes and wires” visual language [20][6].
”boxes” are operations on a stream of data that are carried between the operations by
the ”wires”. Some ”boxes” will be used for input and output.

CHAPTER 2. LITERATURE REVIEW 51

We decided that ultimately visual languages weren’t directly relevant to our goals of
improving concurrent debugging. In Section 6.2.6 of Chapter 6 we give a brief discussion
of how our system could be extended to become a visual language.

2.4.8 Common Features Summary

Only a small sample of such a vast field has been given here, however we feel that we
can draw some conclusions about some of the common elements, goals and of the field.

A common element across all the visualizations is the use of a timeline or space
to represent the flow of time. This seems like the easiest approach as can be seen
when compared to UML communication diagrams, which represent event order using a
sequence of numbers.

Although systems like the Thread Interleaving Explorer were orientated towards
finding errors (specifically concurrency errors) the majority of systems we looked at
were oriented towards performance debugging. Debugging performance is obviously
important, but we contend that it isn’t used as frequently as error debugging is.

For data gathering, these systems generally gathered all, or at least a large amount,
of data from the running program. This volume of data may be relevant to performance
debugging, but it is somewhat hard to see its relevance to the performance of error
checking debugging. In these cases programmers may have a fairly good idea of the
location of the problem and may only need a very small set of trace data to achieve their
goals.

Most systems, except for UML sequence diagrams, were oriented around threads
rather than the objects.

Another problem that we noticed was the lack of debugging for program state, in
the case of PARADE and JIVE it seems that how program state is changing over time
isn’t visualized effectively. The state of a program is arguably as important to error
debugging as the location within an execution and something that we felt hasn’t been
properly addressed.

Finally, most of the work seems to be focused on providing a high level overview
of an execution, even UML sequence diagrams often provide only an abstraction of an
execution and not low level detail about state and specific program actions such as
branches and loops that programmers need to conduct error debugging.

CHAPTER 2. LITERATURE REVIEW 52

2.5 Temporal Notations from outside Software Visualiza-

tion

While investigating software visualization, we noticed similarities between the visualiza-
tions being created for visualizing execution traces and software from the fields of music
production software and Western music notation. It was realized that these were only
two of a rich array of “visualizations” dealing with time from outside the traditional
scope of visualization and information visualization.

What interested us about these fields is that they deal with complex multidimensional
data and have been an enormous success from an artistic and market perspective. We
hoped that an analysis of these systems in comparison to visualization would provide
insight into what makes them effective and whether ideas from them can be used to
build a better system for concurrent trace visualization.

Though there are many different systems and notations in this area we will outline
the two we are most familiar with - Audio editing and sequencing software (particularly
the software Logic Studio) and Music Notation. After giving an outline of each and
how they use the various elements of visualization, we will briefly compare them to
concurrency and software visualization.

Unfortunately, there does not seem to be a wide variety of published literature ana-
lyzing these systems as visualizations.

2.5.1 Music Notation

Although composers will write and edit music using notation, the primary use for nota-
tion is for musicians to be able to perform music. In this section we will focus on the
elements of music notation common to most instruments and its common uses, so we
will make certain assumptions for example we will use a treble clef and a 4/4 meter for
the sake of simplicity.

At the most basic level music could be viewed as a scatter plot relating pitch and
time, with pitch being determined by the position of the mark vertically and the sequence
in time being determined by the horizontal position. The plot points are called notes
and have an ellipsoid shape, horizontal lines, called a stave, make it easier for performers
to see the pitch of a note. This is shown in Figure 2.34.

This doesn’t tell the whole story since music where the notes were all the same
duration would be boring, so different relative lengths are shown using several different
glyphs as shown in Figure 2.35. Bar lines are used to divide up major divisions of time

CHAPTER 2. LITERATURE REVIEW 53

Figure 2.34: Basic music notation showing pitch, time and the stave.

in this case every bar has 4 subdivisions that are one quarter note long (a whole note
takes up all four beats in a bar). In practice, notes of longer duration are engraved with
more space in the bar, providing two indications to the performer of the note duration.

Figure 2.35: Note lengths indicated by different glyphs.

Music is not simply a series of pitches of constant volume played at constant speed
with the instrument producing the same tone every time, so various methods have been
invented to indicate volume, speed and timbre.

Volume is indicated by text markings such as p for soft and f for loud. Changes in
volume are indicated by crescendo lines, as shown in Figure 2.36.

Figure 2.36: Text and lines indicating volume.

Text is used to indicate what speed a section should be played at, often in combination
with a text metronome marking. Text can also be used to indicate speeding up or slowing
down as is shown in Figure 2.37

Various glyphs are commonly used to mark changes to the timbre of an instrument
such as staccato marks (a dot above a note) indicating a short and sharp attack then
silence. Lines are also used to indicate that a phrase should be played smoothly Also
glyphs and text are widely used for instrument-specific things such as fingering numbers
for guitar music as is shown in figure 2.38.

CHAPTER 2. LITERATURE REVIEW 54

Figure 2.37: Different text used to indicate speed and changes to speed.

Figure 2.38: Different glyphs used to communicate a variety of different kinds of infor-
mation.

By definition, music on a page is static so there is little interaction beyond what a
pen or pencil can do. There is however a micro and macro view possible since the shape
of a line of notes can provide a kind of macro view to a user. This is possibly more
important for conductors of groups of musicians, who use a score that combines multiple
parts. A conductor can use the overall shape to tell what is happening without having
to recognize every single note of every single instrument.

More information about music notation can be found in ‘Music Notation’ by Mc-
Grain [43]. An overview of the history of music notation can be found in Rastall [47].

2.5.2 Non-Linear Audio Editing

Historically, the recording and editing of music was conducted entirely aurally using
multitrack tape recorders. The creation of music recording software such as the Logic
Studio [8] series allowed musicians to see a visual representation of the recording or
composition they were creating.

At the heart of this software is the timeline view (Figure 2.39), which provides an
overall view of the production. Vertical space is used to divide the different “tracks” or
instruments, and horizontal space is used for the blocks of content of the tracks. Tracks
can be composed of different information, either digital sound recorded from an external
source or midi data used to create sounds on synthesizers. Often, a zoomed out view
of this content is displayed in the content blocks as shown below, to give some idea of
what a track is composed of.

The lines overlaid on the tracks are “console automation”, which is named after

CHAPTER 2. LITERATURE REVIEW 55

Figure 2.39: Track view of Logic Audio showing audio and midi tracks with console
automation lines overlaid [8].

CHAPTER 2. LITERATURE REVIEW 56

the motorized sliders sometimes seen on large mixing consoles. This allows control of
parameters such as volume and panning over time.

Colour is used throughout to differentiate elements of the production.
Numerous subsidiary views exist providing things such as mixing control, transport

control (play, rewind etc), control of synthesizers and more. Of most interest to us are
the piano roll view and the sound editor view. These provide low level editing of the
different kinds of content used in music production software.

The piano roll view (Figure 2.40) is based on old player pianos, all the notes and
semitones are arranged vertically with notes and their length arranged horizontally as
shown. Often, colour is used to indicate relative volume of individual notes, providing
information similar to music notation. The screen can be scrolled in both directions to
allow longer passages and higher or lower notes.

Figure 2.40: Piano roll view of midi data with note pitch at the top and note volume at
the bottom [8].

The sound editor view (Figure 2.41) allows editing of the recorded sound down to
the sample level.

CHAPTER 2. LITERATURE REVIEW 57

Figure 2.41: Sound edit view showing editable sound file [8].

CHAPTER 2. LITERATURE REVIEW 58

These views provide the micro/macro view that is common to visualization, providing
detailed information and control over subsets of the data.

2.5.3 Comparison to Software Visualization

There are several ways we can compare software visualization, but first it will be useful
to look at some of the differences between music and programming and in particular
concurrent programming.

Music is (generally) composed as a series of events fixed in time at the point of
composition. In contrast, the position in time of events in a concurrent program is
determined by their sequential order in the program and also by the operating systems
scheduler at runtime. This means there is no single “performance” of a program, as
there is with music.

Another important difference is that music is essentially “embarrassingly parallel”
although there is communication in the form of rhythm this is completely synchronous,
happening at regular and easily predictable intervals that are known in advance. This is
completely different from many parallel applications, which have an undefined pattern of
events. There is also no competing for shared resources, you will never see two violinists
competing for a bow, which is a common feature of concurrency.

Despite this, we feel that the most important difference is the goals of these ap-
proaches and software visualization. Software visualization takes its goals and impetus
from scientific visualization and information visualization, in that it attempts to orga-
nize and summarize complex data to provide insights that might not be obvious from
the display of raw data. This leads to things like multiple views and call stack views
present in Zinsight or PARADE which provide independent views of an underlying data
set to gain insights into different areas of a programs execution.

In contrast recording, editing and composing have a functional goal of allowing the
most efficient production of music. It is assumed that a user will spend an often consider-
able amount of time familiarizing themselves with the notation or software. Ultimately,
this means that the goal isn’t simplification, but displaying as much of the information
as possible in as small as space as possible to make it easy for an experienced user to
perform their task.

If music notation was designed in the same way as some of the software visualizations
we have looked at, there would be separate “views” for the speed, dynamics, volume
and time versus pitch, instead these are all integrated into a single view allowing rapid
communication of information to the user. This “integrationist” approach is also seen to

CHAPTER 2. LITERATURE REVIEW 59

a lesser extent in software like Logic Studio, which has a main view timeline view with
dense integrated data and numerous subsidiary views displaying additional data. We feel
that these sub-views are categorically different from the views found in software, since
they usually aren’t meant to be viewed at the same time and often aren’t absolutely
crucial to understanding the production in its entirety. It is possible that these sub-
views could be designed away with features such as a zoomable timeline, which smoothly
integrates low level editing and high level editing.

The “integrationist” approach greatly influenced our thinking about how to design
a system useful to programmers debugging concurrent programs.

Chapter 3

Design

3.1 Design of Beat

Our investigation of existing visualizations and temporal notations led to the design of a
new trace visualization system called Beat. In this section we address the design of Beat
and how it draws from and improves on existing visualizations and temporal notations
to meet the goals we laid out in the introduction. In particular, we will discuss what
data we chose to visualize, how we used the various elements of visualization we have
previously identified and various other issues specific to the data we were visualizing.

3.2 Visualization Data

To meet our goals of being useful for debugging it was important that the right infor-
mation be selected for visualization.

Existing trace visualizations informed our design in their use of tracing method entry
and exit events and displaying the method calls as blocks. Also, designs such as PARADE
mentioned in section 2.4.2 informed our decision to include information about locks and
thread state.

From the temporal notations we had investigated we decided that we wanted to
include lower level data such as the source code, and information about loops, branches
and exceptions in some form. We hoped that the addition of this data would make
debugging more effective, as the addition of lower level data in the temporal notations
did.

Experience with tracing frameworks such as DTrace suggested that inclusion of state
in our diagram would greatly improve the usefulness of our software for debugging.

60

CHAPTER 3. DESIGN 61

Areas such as the static program structure didn’t interest us as much because we
didn’t feel that they would help with debugging, being quite high level in contrast to our
goals of representing lower level information effectively. Also, this information didn’t
seem to be used much by existing software visualizations, leading us to believe it wasn’t
much use for debugging.

3.3 Space

As with the other techniques we studied, the main component of our design is space.
Music software and notation gave us the idea of using all the space for a single, highly
integrated view for all the data, rather that using separate windows for different data.

Many of the trace visualizations we had investigated had time running along the
horizontal direction, we decided against doing it this way because we were going to
include source code in the diagram which “naturally” runs with time vertically rather
than horizontally.

Having the source code in the diagram also added to our decision to use tracks like
in audio software, rather than lines like UML sequence diagrams. As we mention in
our discussion of existing visualizations there were two different approaches to using
tracks, one was to be have a track represent a thread like PARADE. The other was
to represent object instances like UML sequence diagrams. We decided on the second
approach because we felt that an object instance view would be more familiar to our
users and useful for the task of correctness debugging. Figure 3.1 shows the basic layout
of tracks.

Method calls were represented by blocks similar to UML sequence diagrams or Zin-
sight, as shown in Figure 3.2.

3.4 Text

The decision to include source code text within the method blocks was inspired by how
audio visual software includes elements such as wave forms and images within the blocks
of content. We feel by including text we can gain similar advantages of making it easy
to relate the visual elements to the underlying sounds or execution.

Object instances are identified by having their name in a fixed position header for
the track. As an example for our design we will use Java code with a basic producer
consumer program. Due to limits of horizontal space some parts of the source code will

CHAPTER 3. DESIGN 62

Track Track

Object Instance

Track

Object Instance

Track

Object InstanceTime

Figure 3.1: Basic use of space for object instances in Beat.

Object Instance Object Instance Object InstanceTime

Method

Method

Method

Method

Figure 3.2: Method calls to object instances represented as blocks in the object tracks.

CHAPTER 3. DESIGN 63

be cut off, the full source code for these examples will be in the appendices. This was
noted as a problem and some methods of dealing with it are discussed in section 3.10.

Because we were concerned that if method blocks got particularly large the user
might not be able to identify which method had been called when it returned we added
the line of the method call at the top of the method block where the method call returns.
The addition of source code can be seen in Figure 3.3 below.

 Consumer consumer =
 new Consumer(data);

Main.java Data.javaProducer.java Consumer.java
public void doStuff(){
 Data data = new Data();
 Producer producer =
 new Producer(data);

 producer.run();

 consumer.run();

public Producer(Data c) {
 data = c;
}

public void run() {
 for (int i = 0; i < 5; i++) {
 data.put(i);

 }
}

public Consumer(Data c) {
 data = c;
}

public void run() {
 int value = 0;
 for (int i = 0; i < 10; i++) {
 value = data.get();

 }
}

public void put(int value) {
 contents = value;
 available = true;
}

public int get() {
 available = false;
 return contents;
}

Figure 3.3: Design with source code included in method call boxes.

3.5 Lines, Colors and Icons

Lines are used to make the flow of execution between methods in object instances clear,
similar to the way that they are used in UML sequence diagrams. Lines are placed as
an overlay on top of the blocks and object tracks.

There were a number of different things that could have been represented using

CHAPTER 3. DESIGN 64

colour, we could have used it to represent thread state like saUML or to differentiate
threads like JIVE. We felt a problem with using colour for thread state would make it
hard for the user to differentiate threads when there were a large number executing at
the same time. By using colors for threads it would be easy to distinguish threads.

Another area we applied colour was to the method blocks, where we gave a soft
version of the thread colour as a background so that it was obvious what thread was
executing in a method. Lines and colours are shown in Figure. 3.4.

 Thread producerThread =
 new Thread(producer, "Producer");
 Thread consumerThread =
 new Thread(consumer, "Consumer");

 producerThread.start();
 consumerThread.start();
 sleep(100);
}

Main.java Data.javaProducer.java Consumer.java

public void run() {
 for (int i = 0; i < 5; i++) {
 data.put(i);

 data.put(i);
 }
}

public void run() {
 int value = 0;
 for (int i = 0; i < 10; i++) {
 value = data.get();

 value = data.get();
 }
}

public synchronized
 int get() {
 while (available
 == false) {
 try {
 wait();

 } catch (InterruptedException e) {}
 }
 available = false;
 notify();
 return contents;
}

public synchronized
 void put(int value) {
 while (available
 == true) {
 try {
 this.wait();
 } catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 notify();
}

Figure 3.4: Adding lines showing path of execution between method blocks.

Different thread specific events (such as a thread starting, waiting or sleeping) were

CHAPTER 3. DESIGN 65

represented using icons. A dashed line was used to indicate the period of time that a
thread was inactive i.e. sleeping or waiting. A bright border around synchronized code
blocks and methods was used to indicate that an object was locked by a thread. This
can be seen in Figure. 3.5.

 Thread producerThread =
 new Thread(producer, "Producer");
 Thread consumerThread =
 new Thread(consumer, "Consumer");

 producerThread.start();
 consumerThread.start();
 sleep(100);
}

Main.java Data.javaProducer.java Consumer.java

public void run() {
 for (int i = 0; i < 5; i++) {
 data.put(i);

 data.put(i);
 }
}

public void run() {
 int value = 0;
 for (int i = 0; i < 10; i++) {
 value = data.get();

 value = data.get();
 }
}

public synchronized
 int get() {
 while (available
 == false) {
 try {
 wait();

 } catch (InterruptedException e) {}
 }
 available = false;
 notify();
 return contents;
}

public synchronized
 void put(int value) {
 while (available
 == true) {
 try {
 this.wait();
 } catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 notify();
}

zzz

...

Thread Exit

Thread Sleep

Thread Start

Thread Wait

Thread Notify

Figure 3.5: Thread state being shown by icons and dashed lines.

CHAPTER 3. DESIGN 66

3.6 Loops, Branches, Errors and Exceptions

These elements of program execution represent jumps to other points within the linear
flow of the source code and so need some special handling.

For loops it was decided to simply repeat the loop the number of times it was exe-
cuted, at shown in Figure. 3.6.

 Data data = new Data();
 Producer producer = new Producer(data);
 Consumer consumer = new Consumer(data);
 producer.run();

Main.java Data.javaProducer.java

public void run() {
 for (int i = 0; i < 3; i++) {
 data.put(i);

 data.put(i);
 }
}

 data.put(i);
 }
 for (int i = 0; i < 3; i++) {
 data.put(i);

 data.put(i);
 }
 for (int i = 0; i < 3; i++) {
 data.put(i);

public void put(int value) {
 contents = value;
 available = true;
}

public void put(int value) {
 contents = value;
 available = true;
}

public void put(int value) {
 contents = value;
 available = true;
}

Figure 3.6: Thread looping shown by repeated loop body.

For branches it was decided that we would only show the content of the block executed
by the branch, this is shown in Figure 3.7.

For errors and exceptions the place where the exception is thrown is usually different
from where an exception is caught. Throws use a T icon and catches use a C icon, errors
terminate the thread using an E icon, as shown in Figure 3.8.

CHAPTER 3. DESIGN 67

 Data data = new Data();
 Producer producer = new Producer(data);
 Consumer consumer = new Consumer(data);
 producer.run();

Main.java Data.javaProducer.java

public void run() {
 for (int i = 0; i < 3; i++) {
 if(i % 2 == 0){
 data.put(i);
 }else{}

 data.put(i);
 }
}

public void put(int value) {
 contents = value;
 available = true;
}

public void put(int value) {
 contents = value;
 available = true;
}

 data.put(i);

for (int i = 0; i < 3; i++) {
 if(i % 2 == 0){
 }else{
 System.out.
 println("odd number");
 }

 for (int i = 0; i < 3; i++) {
 if(i % 2 == 0){
 data.put(i);
 }else{
 }

Figure 3.7: Branches shown by only showing the content of the branch taken.

CHAPTER 3. DESIGN 68

 Data data = new Data();
 Producer producer = new Producer(data);
 Consumer consumer = new Consumer(data);
 producer.run();

Main.java Data.javaProducer.java

public void run() {
 for (int i = 0; i < 3; i++) {
 if(i % 2 == 0){
 try {
 data.put(i);

public void put(int value) {
 if(value == 0){
 throw new BadValueException();

 for (int i = 0; i < 3; i++) {
 if(i % 2 == 0){
 }else{
 throw new
 RuntimeException(
 "Odd number found!");

 } catch (
 BadValueException e){
 e.printStackTrace();
 }
 }else{}
 }

E

T

C

Figure 3.8: Exceptions in a program thread shown by T, C and E icons.

3.7 Context Switches

As discussed in section 2.2.5, a context switch is when the operating system scheduler
decides that a thread has had enough time on the processor and needs to be exchanged for
another thread or program. Context switches cut across the other elements of our design
since they potentially represent an essentially arbitrary transfer of control between two
threads in a system. We decided to represent context switches with a dashed grey line
running between object columns showing when a context switch occurred in addition to
an icon and the use of the dashed line to show when a thread was in active. The context
switch design is shown in Figure 3.9.

It was felt that the addition of context switches would help improve understanding
and in particular help debugging race conditions.

3.8 State

We considered a number of approaches for integrating state changes into our design. Our
first concept was to include additional lines showing the variable that had been changed
and what it had been changed to, with some method of highlighting the change, this

CHAPTER 3. DESIGN 69

 Thread producerThread =
 new Thread(producer, "Producer");
 Thread consumerThread =
 new Thread(consumer, "Consumer");

 producerThread.start();
 consumerThread.start();
 sleep(100);
}

Main.java Data.javaProducer.java Consumer.java

public void run() {
 for (int i = 0; i < 5; i++) {
 data.put(i);

public void run() {
 int value = 0;
 for (int i = 0; i < 10; i++) {

 value = data.get();
 }
}

public synchronized
 int get() {
 while (available
 == false) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 available = false;
 notify();
 return contents;
}

public synchronized
 void put(int value) {
 while (available
 == true) {
 try {
 this.wait();

zzz

 value = data.get();
...

Context Switch

Figure 3.9: Context switch shown with switch icon and grey line running between thread
lines.

CHAPTER 3. DESIGN 70

can be seen in Figure 3.10.

 Data data = new Data();
 Producer producer = new Producer(data);
 Consumer consumer = new Consumer(data);
 producer.run();

Main.java Data.javaProducer.java

public void run() {
 for (int i = 0; i < 3; i++) {
 i = 0
 data.put(i);

 }
 for (int i = 0; i < 3; i++) {
 i = 1
 data.put(i);

public void put(int value) {
 value = 0
 contents = value;
 contents = 0
 available = true;
}

public void put(int value) {
 value = 1
 contents = value;
 contents = 1
 available = true;
}

Figure 3.10: Changes in program variables represented by additional lines showing what
variables have been changed to.

Our second concept was to have two views for method blocks; the source code and
the state changes, as shown in Figure 3.11 below.

One of the challenges of visualizing state changes was that if an object field was
changed in methods of other objects that weren’t being visualized, it would mean that
changes wouldn’t be visualized. A method to fix this would be to do a before and after
on an objects fields or local variables when they were passed to methods that weren’t
being visualized.

In addition, there has to be a way of filtering the state data to show just the important
variables or changes. Another useful feature is to provide a method of displaying complex
objects like arrays and hashes in a textual form.

3.9 Concurrency Errors

Some method of highlighting concurrency errors would be useful, so we considered plac-
ing a box with a jagged border around the location of the concurrency error, as shown

CHAPTER 3. DESIGN 71

 Data data = new Data();
 Producer producer = new Producer(data);
 Consumer consumer = new Consumer(data);
 producer.run();

Main.java Data.javaProducer.java

public void run() {
 for (int i = 0; i < 3; i++) {
 data.put(i);

 i = 1

public void put(int value) {
 contents = value;
 available = true;
}

public void put(int value) {
 value = 1
 contents = 1
}

 i = 2

public void put(int value) {
 value = 2
 contents = 2
}

Figure 3.11: State only mode for method blocks. Source code is hidden and only changes
to program variables are shown.

CHAPTER 3. DESIGN 72

in Figure 3.12. We were unable to complete this as we will discuss in Chapter 4.

Lock1 lock1 = new Lock1();
Lock2 lock2 = new Lock2();

Thread1 t1 = new Thread1(lock1, lock2);
Thread2 t2 = new Thread2(lock1, lock2);

Thread thread1 = new Thread(t1);
Thread thread2 = new Thread(t2);

thread1.start();
thread2.start();
Thread.currentThread().sleep(1000);

Main.java Thread1.java Thread2.java

public void run() {
 synchronized(lock2){
 Thread.currentThread().sleep(1000);

zzz

 synchronized(lock1){

zzz

zzz

public void run() {
 synchronized(lock1){
 Thread.currentThread().sleep(1000);

 synchronized(lock2){

Deadlock Detected

Figure 3.12: Possible method of highlighting a program deadlock.

3.10 Interaction

It was realized early on that the amount of data we were trying to represent would
require a scrolling view and that even with scrolling the design of Beat would require
large screen sizes to be effective. We felt comfortable with this as large screens have
become much more affordable.

Even with a larger screen there was still going to be a great deal of data so we
considered a number of methods for dealing with this. The most basic was to allow
resizing, rearranging and hiding of columns to organize the data better. Another option
was to expand or contract columns when the mouse was over it or clicked on the column.

CHAPTER 3. DESIGN 73

A final option was to provide improved filtering to select which methods of an object
and maybe even which branches and loops to display.

To provide the macro/micro or context+focus we considered creating a zoomable
interface that displayed more or less information as the user zoomed in or out. For
example, when zoomed out the interface would only display method names and no
source code, but when zoomed in it would show source code or state information.

In the next section we will discuss how we implemented the design and the choices
and compromises that were made.

Chapter 4

Implementation

4.1 Implementation Choices

Based on the choices we had made for our design we knew there were a number of pieces
of functionality we would have to implement to create the software:

• A graphical user interface to allow the user to generate the visualization from code
they had written.

• A component to gather data from the user’s running program.

• An infrastructure component that ran the program and processed the resulting
data.

• A display component that shows the visualization.

To create these components we had to consider a number of different options such
as what language we should visualize, whether to create a standalone application or
integrate with an existing application such as an IDE, how to gather the low level data
needed by our design and what display technology to use to generate the visualization.

In this section we will discuss the choices we made and then provide some detail
about how Beat is implemented.

4.1.1 Language

We had to choose both a language to implement our design and a language to target
for visualization. It was decided that using the same language for both would be the
simplest approach.

74

CHAPTER 4. IMPLEMENTATION 75

A number of criteria were set for the implementation and target language. The
language had to be something we were very familiar with, including details about how
to gather runtime data from it. It had to meet our goal of being useful to the average
programmer, so a language that had widespread familiarity was important. Since a
language doesn’t stand alone it had to have good support from tools, documentation
and libraries. Built-in support for concurrency would be a plus.

We had extensive experience with the Java [4] and Ruby [21] languages and under-
stood in general how to approach data gathering in each. Java is extremely well known
by our target audience, much more so than Ruby which is still relatively obscure. Ruby
has a small number of useful libraries, tool support for low level manipulation of objects
and functions, reasonable documentation, but limited Integrated Development Environ-
ment (IDE) support. Java has a vast array of libraries, good tools support for parsing
and manipulating the language, generally excellent documentation (although some areas
can be difficult to find), and excellent IDE support particularly from the Eclipse [2] and
Netbeans [25] IDEs.

Java and Ruby both have downsides in that both have relatively complex syntax
and as a result can be complex to parse, which is necessary to perform instrumentation
to add the data gathering probes, as discussed in section 2.2.6. In contrast, languages
like LISP and Smalltalk have simpler syntax, but are probably even more obscure to a
general programming audience than the Ruby language.

In the end all these reasons meant that Java was the best choice to meet our goals.

4.1.2 Standalone program versus IDE

We had a choice in how we wanted to implement our design, either as a standalone
application or as a plugin of another program such as an IDE. Our goal of being useful
to programmers meant that we wanted it to be available on all platforms (or at least
the ones which have a Java Virtual Machine (JVM) implementation).

An advantage of implementing a standalone application would be that it would give
us complete control over how the application worked. However, there were many dis-
advantages to writing a standalone application. It meant writing a lot of boilerplate or
“plumbing” code that was necessary for an application, but irrelevant to the actual task
of implementing our design. Toolkits for writing GUIs can be fraught with difficulty and
incompatibility when creating cross-platform applications, although toolkits such as QT
or Java’s Swing library have reduced this somewhat.

The advantages of using an IDE is that we could avoid writing a lot of the boilerplate

CHAPTER 4. IMPLEMENTATION 76

code for the GUI and also for things such as support for running and monitoring an
executing program. IDEs also tend to be familiar to a wide range of programmers,
which helps meet our goal of being useful to a wide range of programmers. Finally, IDEs
such as Eclipse are cross-platform, which largely solves the problem of portability for
us. One disadvantage of IDEs is that the process of developing a plugin can be complex
and sometimes lacking documentation.

Given the advantages of IDEs we decided to use the Eclipse IDE which we were
familiar with.

4.1.3 Gathering Trace Data

The most difficult implementation choice for Beat was deciding how we would gather
data from the running concurrent program. From our design it was obvious that we
would need to gather a great deal of information including low level information such
as loops and if/switch statements, but it wasn’t immediately obvious exactly how to go
about this.

There were two possible directions to take, one was to use the debugging system that
is built into the JVM and simply receive debugging events from the running program.
The other was to instrument the source code or byte code of the program with additional
“probe” methods that record information from the running Java program.

The Java Platform Debug Architecture [16] (JPDA) comes with the JVM and is
used to implement debuggers for the Java language. JPDA is composed of three parts:
Java Virtual Machine Tool Interface [17] (JVMTI), which is part of the JVM and allows
C code modules to be written which interact with the JVM at runtime to gather data
such as method entries and exits, and The Java Debug Wire Protocol (JDWP) which
defines the format for sending events from the JVM to a remote debugger. Finally, the
Java Debug Interface (JDI) is a set of Java libraries for implementing Java debuggers in
Java. The JIVE system mentioned in section 2.4.6 uses the JPDA to gather data for its
visualizations.

Implementing event receiving was relatively straight-forward and just required the
implementation of a number of classes and the use of some of the classes that were part
of the JDI. Listing 4 shows the program to be debugged being launched using some of
the built in classes for launching programs. Listing 5 shows registering for method entry
events. Listing 6 shows receiving events from an event queue and passing them to a
handling function.

The approach based on the JVMTI didn’t work out for three reasons. JVMTI doesn’t

CHAPTER 4. IMPLEMENTATION 77

// mainArgs contains a command to launch the program to be debugged

void launchTarget(String mainArgs) {
List connectors = Bootstrap.virtualMachineManager().allConnectors();
Iterator iter = connectors.iterator();

LaunchingConnector commandLineConnector

while (iter.hasNext()) {
Connector connector = (Connector) iter.next();
if (connector.name().equals("com.sun.jdi.CommandLineLaunch")) {

commandLineConnector = (LaunchingConnector)connector;
}

}

Map arguments = connectorArguments(connector, mainArgs);

VirtualMachine = connector.launch(arguments);
}

Listing 4: This example shows how to launch a program using the JDI library [15].

public void requestEvents(VirtualMachine vm) {
EventRequestManager mgr = vm.eventRequestManager();

// register for method events

MethodEntryRequest menr = mgr.createMethodEntryRequest();
menr.setSuspendPolicy(EventRequest.SUSPEND_NONE);
menr.enable();

}

Listing 5: Registering to receive method entry events from remote program [15].

CHAPTER 4. IMPLEMENTATION 78

void run(VirtualMachine vm) {
EventQueue queue = vm.eventQueue();
while (connected) {

try {
EventSet eventSet = queue.remove();
EventIterator it = eventSet.eventIterator();

while (it.hasNext()) {
handleEvent(it.nextEvent());

}

eventSet.resume();
} catch (InterruptedException exc) {

// Ignore

} catch (VMDisconnectedException discExc) {
handleDisconnectedException();
break;

}
}

}

Listing 6: Method to receive registered events from the debugger [15].

CHAPTER 4. IMPLEMENTATION 79

allow monitoring of low level events like loops, branches and exceptions, which were
crucial to our design. Secondly, JVMTI offers no way to tie a method call to a specific
object without stopping the JVM and analyzing the stack to find what instance of the
object had had the method call executed on it, stopping the JVM to get this information
caused serious performance problems. Finally, there was no way to uniquely identify an
object instance across the entire execution of a program, since object ID in Java isn’t
guaranteed to be unique.

For these reasons we chose to try the second approach based on instrumenting code.
Our first approach to instrumenting the code was to use the tools provided by the As-
pectJ [10] Aspect oriented programming toolkit. Aspect oriented programing is designed
to deal with “cross cutting concerns” in a program, these are “concerns” or pieces of
functionality that are part of a wide range of a system’s modules, but are not directly
related to any one module. A common “cross cutting concern” is providing logging for
a program without needing to scatter calls to logging methods throughout, the source
code which was similar to what we were trying to do.

In aspect oriented programming you provide pointcuts, which are points within the
source code at which to attach “advice” to method calls or method bodies. Basically, this
allows you to add extra code to methods before runtime to provide various information
about when a method is entered or exited. Pointcuts are created using a Java like syntax,
as shown in Listing 7.

AspectJ suffered from the same problem as the JVMTI – we couldn’t gather the
low level details about loops, branches and exceptions. Additionally, AspectJ didn’t
properly support the synchronized keyword that is part of the Java language.

To fix these problems we used the ANTLR [7] parser generator tool and an existing
Java grammar that comes with the ANTLR software. This works somewhat like a filter,
the source code is passed from input to output, with additional methods being inserted
into the code at important points. A sample of this can be seen in Listing 8, which shows
a small part of an ANTLR grammar file with statements to output code included.

Although the combination of AspectJ and ANTLR worked, it was prone to break-
ing and was very complex to extend, making it difficult to add extra features without
problems.

While working on other parts of the implementation we came across a better solution
to this problem. We found that part of the Java Development Toolkit [1] (JDT), which
is the part of Eclipse that implements the various parts of the IDE that allow Java
programs to be written, run and debugged, has a built-in lexer and parser that can
parse Java source to an abstract syntax tree that can then be examined, modified and

CHAPTER 4. IMPLEMENTATION 80

public void aspectProbe(EventType event, JoinPoint joinPoint){
// code to create probe event goes here

}

// only add pointcuts within objects that have the

// @BeatTrace annotation

pointcut tracedObject() : within(@BeatTrace *);

// point cut for methods

pointcut method() : tracedObject() &&
!execution(public void Runnable.run()) &&
execution(!synchronized !static * *());

// add probe before method call

before() : method() {
aspectProbe(EventType.methodStart, thisJoinPoint);

}

// add probe after method call

after() : method(){
aspectProbe(EventType.methodEnd, thisJoinPoint);

}

Listing 7: Probing methods using AspectJ pointcuts.

CHAPTER 4. IMPLEMENTATION 81

statement
: block
| ASSERT {a(" assert ");} expression (’:’ {a(":");}

expression)? ’;’ {a(";");}

| ’if’ {a(" if ");} parExpression
{
probeStack.add("beat.collector.EventType.ifStatement");}
statement {probeStack.removeLast();}
(
options {k=1;}:’else’ {a(" else ");}
{
probeStack.add("beat.collector.EventType.elseStatement");}
statement {probeStack.removeLast();

}
)?

| ’for’ {a(" for ");} ’(’ {a("(");} forControl ’)’ {a(")");}
{

probeStack.add("beat.collector.EventType.forLoop");}
statement {probeStack.removeLast();

}

| ’try’ {a(" try ");} block
(catches ’finally’ {a(" finally ");} block
| catches
| ’finally’ {a(" finally ");} block
)

| ’switch’ {a(" switch ");} parExpression ’{’ {a("{");}
switchBlockStatementGroups ’}’ {a("}");}

| ’synchronized’ {a(" synchronized ");} parExpression block

| ’return’ {a(" return ");} expression? ’;’ {a(";");}

| statementExpression ’;’ {a(";");}

| id3=Identifier {a($id3.text);} ’:’ {a(":");} statement
;

.

Listing 8: Example of part of an ANTLR grammar used for processing a block of Java
code to add tracing probes.

CHAPTER 4. IMPLEMENTATION 82

written back to a source file.
A simple recursive descent parser was used on the abstract syntax tree to examine

the details of classes in the system and add method calls to probe methods by simply
adding nodes to the AST before writing it out to a separate source file. More information
about this process will be given in section 4.3.

4.1.4 Visualization display choices

The decision to use an IDE constrained our choices about what display technology to
use; we investigated three main approaches to solving this problem.

Eclipse uses SWT as its native toolkit for creating widgets like buttons and text
fields. Although we investigated this a bit we were concerned that all our time would
be spent writing low level code for drawing lines and positioning text. Additionally we
knew of a library called the Graphical Editing Framework (GEF) which was designed
for creating things such as UML editors and “boxes and wires” visual languages, which
seemed more relevant to what we were trying to do.

The GEF is essentially a Model View Controller framework for representing and
modifying an applications model/data objects. To actually draw the visualizations the
GEF relies on a 2D drawing framework called Draw2D. Since the GEF was primarily
oriented towards creating “boxes and wires” visual languages, which wasn’t relevant to
what we were trying to achieve, we decided to try to use Draw2D independently to
create our visualization. Draw2D is certainly capable of creating our design, however
we found the documentation so poor that it was difficult to understand how to go about
implementing our design and after making little headway we decided to try a different
approach.

Using HTML embedded in a browser may seem like a strange choice, however it has
a number of advantages. HTML has good support for text and with the canvas object
drawing vector images included with modern web browsers would provide the support
we needed to create our design. Probably the most important thing that influenced
our decision was our experience with HTML and developing complex graphical and
Javascript- driven pages.

4.2 Plugin Infrastructure

Plugin Infrastructure is a catch-all term for the parts of the plugin that coordinate the
data gathering, data processing and visualization display.

CHAPTER 4. IMPLEMENTATION 83

Developing a plugin for Eclipse is relatively straight-forward thanks to the Plugin
Development Tools (PDT) that are available as part of the Eclipse “classic” distribution.
The PDT provides plugin templates and simple tools to perform tasks such as running
another copy of Eclipse with the plugin that is being created enabled, making testing
and debugging relatively easily.

To extend and integrate with Eclipse there are a number of integration points that
a plugin can plug into. This is done by implementing an interface and registering the
plugin class by using an xml file to set that integration point of Eclipse to use the class
that you create.

Beat uses four of these extension points. The first is a launcher extension, which
Eclipse uses to launch programs for an IDE project (note: this is not necessarily a Java
program). The second is an extension of the run configuration menu that is used to
configure the launcher, we just use the options provided by the JDT for consistency and
ease of use. Thirdly, we have a toolbar shortcut to run the program. Finally, we have a
view extension which adds our visualization view to Eclipse which is simply a subclass
of an Eclipse ViewPart with a child web browser object. Listing 9 shows the xml code
for the launcher extension.

<extension
point="org.eclipse.debug.core.launchConfigurationTypes">

<launchConfigurationType
delegate="beat.BeatLauncher"
id="Beat.RunLauncher"
modes="run"
name="RunLauncher">

</launchConfigurationType>
</extension>

Listing 9: Configuration of a launcher extension for Eclipse in the XML plugin configu-
ration.

4.2.1 Launcher and the JDT

At the heart of the plugin infrastructure is the launcher, which extends Eclipse’s built-in
mechanism for launching programs. Rather than develop all our own code for running a
Java program we simply extended the existing Java launcher that comes with the JDT.
Since we had to make fairly extensive modifications to the launch behaviour we found
the source code for the launch method and modified it extensively to provide the launch

CHAPTER 4. IMPLEMENTATION 84

functionality. We also used the run menu configuration panels that are part of the JDT,
these allow the configuration of a Java program by providing an interface that lets the
user specify things like program arguments and environment variables.

A brief overview of the process that Beat goes through to load and run a program
and produce a visualization is:

1. Verify the name of the class to be run and the working directory to run in.

2. Load the program and virtual machine arguments from the launching menu system.

3. Run the source code preprocessor.

4. Create an object to handle running the program.

5. Run the program.

6. Load the data from the program and render the HTML visualization.

7. Show the Beat visualization view and set the Browser.java instance to the gener-
ated html page.

4.3 Data Gathering

Gathering data to generate the Beat visualization involves a number of parts’. Selecting
which Java classes to trace, adding instrumentation to the source code, recording data
at runtime, loading the data and processing it into a form useful for display.

4.3.1 Trace data annotations

Tracing every single instance of every single object in a running Java program was
deemed impractical due to the large amount of unnecessary data it would produce. This
meant that a way of selecting which classes to include in the visualization was needed.
There were two ways we considered to allow the user to select which classes to trace. The
first approach was to use a GUI to select the classes from within the existing project,
The second was to use Java’s source code annotation mechanism.

We chose to use annotations mainly for the sake of expediency; by implementing it
this way we could simply detect the annotations in our instrumentation code, rather
than implementing additional GUI code passing the information from the GUI to the
instrumentation processor. One possible problem with annotations is that to identify
what class needs to be instrumented requires examining all the source code of a project

CHAPTER 4. IMPLEMENTATION 85

for the annotation, which could be inefficient in large programs, GUIs wouldn’t face this
problem.

4.3.2 Source Code instrumentation

As mentioned above we chose to use the JDT to implement the source code instrumen-
tation. The basic process is as follows:

1. Find the files that need to be checked for the annotation from the current project.

2. Check the files for the @BeatTrace annotation used to mark classes to be traced.

3. For each file, parse the source code into an abstract syntax tree.

4. Record the method names and types of each file being traced for use later on.

5. Process the source code of each of the methods of the files (this will be explained
in more detail below).

6. Add the interface used to get a unique object identifier for the traced object to
each file.

7. Write the modified abstract syntax trees out to a source file in a directory called
preprocessor-src.

8. Compile the modified source using the project options.

The fifth step is done using a recursive descent parser that takes the block of code of
each method and goes through every statement in a method recursing as necessary. In
Java a statement can be things such as an assignment, for loop, if statement or another
block. Listing 10 below gives a basic outline of the tree structure of a Java source file.

There are a number of different instrumentations that we perform on the code as
shown below.

• Add a method to the class to return the object identifier for the instance of that
class.

• Methods have a probe inserted at the start of the method.

• If statements are handled by inserting probes at the start of each branch and at
the start of each else and else if block.

CHAPTER 4. IMPLEMENTATION 86

class
method

block
statement
statement
statement

method
block

statement
block

statement
statement

Listing 10: Diagram showing basic tree structure of Java source code. A classes is made
up of methods which contain blocks of statements.

• Do, while and for loops are handled by inserting probe methods at the start and
end of a loop.

• Synchronized blocks have a probe before the block is entered, after the block is
entered and after the block is exited.

• Expression statements can include a wide variety of different expressions, most
importantly method calls. Calls to methods are handled by inserting a probe
before and after the method call.

• Return statements are handled by inserting a probe before the statement. Since
not all methods have a return statement (i.e. void methods) we check if a method
has a return statement and add a method exit probe at the end if it doesn’t. This
is actually a bug since a void method could have both return statements and the
possibility of exiting a method at the end.

• Exceptions are handled by putting probes before throw statements and at the start
of catch blocks.

• The main method of a program and the run method of a Thread or Runnable are
handled slightly differently from regular methods. A major difference is that these
methods are where a program or thread starts and are not called by another object.
Because of this they have special probe names to distinguish them and special
probe methods, which will be explained in the next section. Another problem is

CHAPTER 4. IMPLEMENTATION 87

that RuntimeExceptions (which are unrecoverable errors) can cause a program or
thread to exit unconditionally, so these methods have their contents wrapped in
a try, catch block to catch these exceptions and ensure that the data recorded for
that thread is written out to disk.

To perform the actual instrumentation we use code like the code in Listing 11 which
inserts a probe before and after a method call and produces output like Listing 12 which
shows a method call being traced.

4.3.3 Runtime method probes

Data is recorded on a per thread basis using a thread local ArrayList.java object to store
the probe data for that thread. We decided to record data like this in the hope that
it would avoid excessive disk IO compared to just writing every event straight to disk.
When the thread or program exits it writes the data out to a file named after the thread
in a subdirectory of the Eclipse project directory called “beat thread data”.

The probe method stores the following information; the event type, the random
object id generated for that class, the name of the thread, the name of the class, the
name of the method and finally the time that the event occurred.

4.3.4 Data loading and processing

To make the data useful for visualization we need to process the raw text data into
a form that can be used to draw both the object columns and the thread lines. We
decided to do this by taking the raw event data and creating a number of model objects
representing different parts of the execution. The class diagram in Figure 4.1 shows the
basic attributes and relationships between the different model objects that were used.

After the program is run the event data files are loaded and each line is processed to
generate a RawEvent.java object that contains the basic information about an event.

The object and thread information that each event contains is used to create a single
ThreadData.java object to represent the thread that the event is from and a single
ObjectData.java object to represent the instance that the event is from. The ThreadData
and ObjectData objects also have lists of the RawEvents and the RawEvent contains a
reference to the ThreadData and ObjectData objects.

To make it easy to ensure that threads are separated correctly when two or more
threads are executing in a single column, the data is also organized by thread and by
object in a separate object called ThreadDataObject, which contains a list of Raw-
Event.java objects from that Thread and Object instance.

CHAPTER 4. IMPLEMENTATION 88

// processes a method invocation to check if we want to trace it.

private void processMethodInvocation(ListIterator x, String[] names,
Expression expression, String className, String methodName,
Statement statement) {

if(names == null || names[0] == null)
return;

if(names[0].equals("threadStart")){
processThreadStart((MethodInvocation) expression,

className, methodName, statement);
return;

}

int lineNumber = compilationUnit.getLineNumber(
expression.getStartPosition() +
expression.getLength());

ExpressionStatement beforeExp = ast.newExpressionStatement(
makeProbe(names[0], className,

methodName, lineNumber));

// add trace probe before method invocation statement

x.previous();
x.add(beforeExp);
x.next();

// add trace probe after method invocation if necessary

if(names[1] != null){
ExpressionStatement afterExp =

ast.newExpressionStatement(
makeProbe(names[1], className,
methodName, lineNumber));

x.add(afterExp);
}

}

Listing 11: Code to insert method probes around a method call. The lines con-
taining ExpressionStatement are the code for the methods to insert. The lines like
x.add(beforeExp) add the method probes.

CHAPTER 4. IMPLEMENTATION 89

beat.collector.TimestampCollector.probe(
beat.collector.EventType.methodCall,
((beat.collector.ObjectId) this).getObjectId(),

Thread.currentThread().getName(),
Producer.class.getName(), "run", 17);

data.put(i);
beat.collector.TimestampCollector.probe(

beat.collector.EventType.methodCallExit,
((beat.collector.ObjectId) this).getObjectId(),

Thread.currentThread().getName(),
Producer.class.getName(), "run", 17);

Listing 12: Diagram showing the result of inserting probe methods before and after
method call.

ThreadData
name : String

Id : int
clazz : String

ObjectData

ThreadObjectData
type : String
methodName : String
lineNo : int
time : long

RawEvent

clazz : String
source : String[]
sourceString : String

SourceData

*

1

*

1

*1

1

1

1

1

*1

Figure 4.1: Class diagram of the relationship between the various model objects. These
objects are how we structure the results we receive from the running program to use for
processing and displaying the results.

CHAPTER 4. IMPLEMENTATION 90

After this, the raw events for each type are sorted by the timestamp and some
adjustments to the data are made. A thread start event is added to a newly created
thread at the point in time that Thread.start() is called, since a thread may not be
scheduled to run as soon as Thread.start() is called. There were many more minor
adjustments made to the data to ensure precise positioning and to correct other problems
with the raw data.

4.3.5 Context Switches and DTrace

Our design included the visualization of context switches, unfortunately due to a lack of
time and technical constraints we were unable to complete this aspect of data gathering,
although we will give a basic outline of how we intended to do it and some challenges of
implementing this.

A simple method is to simply to check if there are long gaps between events that
aren’t due to things such as method calls to other objects, the problem with this is that
it isn’t completely reliable and becomes more difficult on multiprocessor systems.

Another way to gather data about when context switches occur requires information
from the thread scheduler, in the kernel of the operating system that the program is
executing on. As we mentioned in section 2.2.6 DTrace is a tracing framework that
allows the tracing of events within an operating system kernel. Listing 13 shows a
couple of methods for probing a kernel scheduling function in the Mac OSX kernel.

An obvious limitation to DTrace is that it is only available on Solaris and Mac
OSX, with similar tools available for Linux. Unfortunately nothing like this seems to be
available for Windows, which limits the platforms that tracing context switches could
be performed on.

While working on this we found a number of technical problems. We found that
we had to find a unique thread identifier available in both kernel space and user space.
Thread ID in Java doesn’t correspond to kernel thread identifiers, so to solve this a
kernel extension that passes a kernel internal ID back to user space was necessary.

Another technical limitation is that we can’t get the exact line at which the context
switch occurred. It could possibly be done by analyzing the stream of byte codes that
make up the program and looking for debugging byte codes indicating a line number.

Finally, support on Mac OSX was incomplete particularly, in the area of support
for tracing the scheduler. Support on Solaris seems better, but we lacked the time to
investigate this fully.

CHAPTER 4. IMPLEMENTATION 91

fbt::thread_timer_event:entry
/pid == $target/
{

self->swout = (uint32_t)curthread;
/* uint64_t tstamp sits in arg0:arg1.
timer_t new_timer is arg2! */
self->swin = ((uint32_t)arg2 -

offsetof(struct thread, system_timer));
}

fbt::thread_timer_event:entry
/self->swout != self->swin && pid == $target/
{

printf("%d %d %u\n", self->swout, self->swin, walltimestamp);
self->swin = 0;
self->swout = 0;

}

Listing 13: Probing the entry of a scheduling function in the Mac OSX kernel.

Without detection of context switches, visual anomalies are produced in the visu-
alizations - threads will appear to be executing when in fact the thread is switched off
the processor. With additional time and better support for DTrace on our targeted
platforms, implementing visualizing context switches should be feasible.

4.3.6 Program State and Concurrency errors

Due to time limitations we were unable to complete the tracing of program state or
the detection of concurrency errors. This had some consequences for how effective our
software was, as we will see in the next chapter.

4.4 Visualization Generation

4.4.1 Ruby and Templating

Because we weren’t entirely sure how we were going to generate the HTML file for display
we decided to use the JRuby language to help us while prototyping. We did this for a
couple of reasons. When working with HTML you are mostly working with text, which
JRuby is very good at. Also, we wanted something flexible so that we could change
things easily before settling on an approach, which would have required more work in

CHAPTER 4. IMPLEMENTATION 92

Java. In the longer term the Ruby prototyping code will be removed and replaced with
pure Java code to generate the template and other parts of the code.

As mentioned above, a template is used to generate an HTML file for display. The
template is an ERB template, which is the standard templating system that comes with
the JRuby language. Like PHP or JSP, ERB allows code snippets to be embedded in a
text file that get run when the template is rendered. A short JRuby script is run from
Eclipse to render the template. The script also performs the syntax highlighting using
the CodeRay syntax library.

Data is passed to the script through setting variables which the JRuby interpreter
makes available to the script. Aside from the model objects such as RawEvent and
ThreadObjectData mentioned above, other information such as the source code for each
object, various bits of positioning information and a helper object that provides various
drawing functions are included.

The template simply loops through the list of objects and generates the object
columns by checking the first and the previous event and seeing if they are part of
a block of source code and outputting an HTML div element and placing the generated
source inside. The positioning of a code block is stored inside the RawEvent and is
generated using the algorithms discussed in the next section. Listing 14 shows part of
the templating code.

4.4.2 Text Positioning

One of the things we discovered early on was that there was either a large amount of
space where nothing was happening in a thread or method boxes were too small or large
for the source code. We created an algorithm that would remove blank space while
maintaining the overall order of events relative to the previous and subsequent events,
as well as ensuring that the boxes for text would be large enough to contain the text.
Figure 4.2 shows an overview of the results of the time compression.

Another problem was ensuring that when two threads were executing inside a single
thread that the code boxes for threads were placed side-by-side, not overlapping. An
algorithm was created to space the threads correctly when two or more were threads were
executing at the same time. A challenge with this was to ensure that a thread stayed
in the same horizontal position if there were several other events in another thread in
between. Figure 4.3 gives an example of this.

CHAPTER 4. IMPLEMENTATION 93

<div id="visualization">
<div id="thread-colors">

<%= threadColorBox %>

</div>
<% viewHelper.getObjectOrder.each do |object| %>

<div id="<%= object.oid %> "
class="object-column object-column-<%= object.oid %> "
style="height: <%= headerSpace + columnHeight + 50 %> px">

<div class="object-header">
<%= object.clazz %>

<%= object.oid < 0 ? "static" : object.oid %>

</div>

<div class="column-header"></div>
<% viewHelper.getTODS(object).each do |tod| %>

<% (1..tod.events.size()-1).each do |n| %>

<div
class="<%= eventClass(previous, event, inSync)%> "
style="<%= eventStyle(previous, event, headerSpace)%> ">

<pre class="code">
<% removeIndent(previous, event).each do |line| %>

<%= line %> <%= "\n" %>

<% end %>

</pre>

<%= eventDetails(previous, event)%>
</div>

<% end %>

<% end %>

</div>
<% end %>

</div>

Listing 14: Snippet of ERB templating code used to create visualization. The “<%”
elements are used to insert data into the template either directly from the data structure
shown above or further processed through functions that are called from the template
such as “eventClass”.

CHAPTER 4. IMPLEMENTATION 94

Boxes resized to fit text better

Space Compressed

Figure 4.2: Method blocks get unnecessary space between them removed while remaining
order while also ensuring that the blocks fit the source code text.

CHAPTER 4. IMPLEMENTATION 95

Thing.java

Figure 4.3: When multiple threads are executing within an instance once Beat ensures
that the method call blocks remain in line horizontally.

CHAPTER 4. IMPLEMENTATION 96

4.4.3 Canvas Object and Threads

The thread lines for our application were drawn using the canvas tag that is part of
the HTML5 standard [3]. The canvas tag allows the creation of vector graphics such as
lines and boxes similar to other vector drawing software packages. A variety of Javascript
functions are used to create allow lines, shapes, fills and other vector elements. Listing 15
has an example of some of the code used for drawing thread lines in Beat.

ctx = canvas.getContext(’2d’);

ctx.clearRect(0,0, width, height);

if(type == "notify" || type == "thrown" || type == "exception"){
drawIcon(ctx, line[0][0], line[0][1], type, color);
ctx.moveTo(line[0][0], line[0][1] + icon_height+2);

}else{
ctx.moveTo(line[0][0], line[0][1]);

}

ctx.lineTo(line[1][0], line[1][1]);

ctx.stroke();

drawThreadName(ctx, color, line, name, y, height);

if(end_type == "exit" || end_type == "threadDeathException"){
drawIcon(ctx, line[1][0], line[1][1], end_type, color);

}

Listing 15: Snippet of line drawing code in Javascript using the canvas tag. The context
is an object with methods to draw on the canvas.

In the beginning we tried creating a single large canvas object that covered the
entire visualization, but this caused significant performance problems so we abandoned
this approach. To draw the lines we settled on updating the position and the contents
of the canvas object every time the user scrolled or resized the browser view. This also
meant that we had to redraw the lines with new data on every change.

The browser object allows functions to be registered which can be called by JavaScripts
running in the browser. To implement a function you simply create a Java class and
register it with the browser object. To update the canvas, handlers for the HTML resize
and scroll events were created, which called the Java functions to get new data. The

CHAPTER 4. IMPLEMENTATION 97

Java functions would work out what data was necessary for the canvas to display then
pass it to the canvas drawing function.

4.4.4 JQuery and CSS

To provide features such as column reordering and resizing we used the JQuery li-
brary [18]. JQuery is a simple library that makes writing code that manipulates HTML
documents using Javascript easy.

The styling and colouring of the template has three parts. The first is a simple static
css file loaded by the browser when the page is loaded. This file contained all the static
information and basic styles, such as basic positioning.

The second part are the styles for positioning the source code boxes inside the
columns, these are applied directly to the div elements that contain the source code.

The third part are styles that are specific to a thread, basically things like the colours
of the code boxes. These are generated dynamically as an inline style sheet inside the
template, each time the visualization is run.

Chapter 5

Evaluation

5.1 Evaluation Introduction

Ideally, we would have conducted a study to compare our software with users using
software that was “non-integrationist” or used separate windows for data, but given our
limited time and resource this was deemed impractical. Instead, we decided to conduct
a smaller pilot study testing how useful Beat was compared with just using program
source code. This would help us continue the development of Beat, which we would test
against other systems in the future.

5.2 Evaluation Method

Our test involved participants solving two simple concurrent programming problems, one
using Beat and one with just the source code. Participants would be timed performing
the tasks and answer a short evaluation questionnaire giving their impressions of it.
Appendix A contains the full questionnaire.

We chose to test our software with 300-level and post-grad students, because they
were more likely to have experience with concurrent programming and because we didn’t
have access to a large enough sample of working concurrent programmers. Partici-
pants were found by placing advertisements around the computer science department at
Massey University in Palmerston North and by approaching students that we knew were
300-level or post-grad. We were only able to test 20 participants in total, which should
be kept in mind when we review the results of the test.

As part of the test-taking participants were given help by the test giver if requested,
we felt this was appropriate given that, like music software, we expect the tool to not

98

CHAPTER 5. EVALUATION 99

Group Task 1 Task 2
1 Deadlock With Beat Race Condition With Source
2 Race Condition With Beat Deadlock With Source
3 Deadlock With Source Race Condition With Beat
4 Race Condition With Source Deadlock With Beat

Table 5.1: Table showing the different groups and the tasks they performed.

be used in isolation from an instructor.

5.2.1 Tasks and Timing

The two tasks were simple find-the-concurrency-bug tests where the participants simply
had to point out how to fix the bug in the program. The first task was a program
with a simple race condition bug where an object was shared between two threads. The
second task was a simple deadlocked program where the order of two locks was reversed.
Appendix B contains the source code of the two examples.

To perform the test participants were divided into 4 groups as follows as shown in
Table 5.1. Four groups with different orders of performing the two tasks were used to
ensure that the order of the tasks and the order that Beat was used in didn’t effect our
results.

5.2.2 Previous Experience

Our questionnaire had a number of questions related to the participants previous expe-
rience.

• Have you have taken 159.355 Concurrent Systems or another concurrency related
paper?
Yes / No

• How would you rate your level of experience with concurrency and knowledge of
concurrency issues such as race conditions and deadlocks?
Low 1 2 3 4 5 High

• How much experience do you feel you have with using the Eclipse IDE?
Low 1 2 3 4 5 High

Also we had a number of questions related to users subjective experience of using
Beat.

CHAPTER 5. EVALUATION 100

• Which task was easier?
Race Condition / Beat / About the same

• Did Beat help you solve the task that you used it for?
Yes / No

• Do you think Beat would have been useful for solving the other task?
Yes / No

5.2.3 Timing and Experience Questions

Timing participants and asking questions about their level of experience was designed
to address a number of subquestions about Beat to help answer the broader question of
how effective it was:

• Was using Beat significantly faster?

• Was Beat helpful in one not the other?

• Was using Beat significantly easier?

• What effect did experience have?

• Did the order that Beat was used in have any effect?

• Was one of the tasks harder than the other?

5.2.4 UI Questions and Comments

There were also a number of specific questions we wanted to answer about parts of our
visualization which weren’t covered by the timing data. These generally related to parts
of our visualization that were particularly novel.

• Was the software user interface responsive enough?

• Were the visualizations produced easy to relate to the source code of the example
program?

• Did the layout of the visualization and the use of color and space make it clear
how the program was working?

• Do you feel that the inclusion of source code in the diagram helped you to relate
to how the test program was executing to your source code?

CHAPTER 5. EVALUATION 101

Test DeadLock Race
P-Value 0.0173 0.0029
P-Value > 0.05 False False
Mean With Beat 6.7min 6min
Mean With Source 3.8min 1.6min
Standard Deviation With Beat 3.917min 2.944min
Standard Deviation With Source 2.700min 1.506min

Table 5.2: Comparison data on the underlying distribution and averages of the two tasks.

Finally, we wanted to gather any comments about the software, both positive and
negative, and also to make observations about participants when taking the test.

• Please comment on any things you liked about the software.

• Please comment on anything you disliked about the software.

• Do you have any recommendations for future changes?

5.3 Timing and Quantitative Questions Results

Full results are available in Appendix C.

5.3.1 Was using Beat significantly faster?

To compare whether using Beat was significantly faster we compared the timing data
of each of the tasks using Beat to the corresponding task using just the source, without
reference to the order of the tasks. The comparison was made using the mean time of
each task.

To ensure that the distributions of the two tasks were different we used the common
statistical function the t-test which tells whether data from two tests is distinct or
from the same underlying distribution. We made the assumption that the underlying
population was normally distributed and acknowledge that our small sample size could
lead to bias in our results, in spite of these limitations we feel the t-test was the best
option available for performing the comparison. The results can be seen in Table 5.2.

The results of the table show that on average using Beat was slower than using just
the source. They also show that the data from using Beat and just using the source were
from separate distributions, showing that the comparison is valid. It isn’t unexpected
that Beat took longer since as we mentioned in our discussion of software of this sort

CHAPTER 5. EVALUATION 102

of software is designed to be used by experienced users and we didn’t have time to let
users become experienced enough to conduct a truly effective test.

5.3.2 Was Beat helpful in one not the other?

As can be seen in Table 5.2, using Beat took longer than using the source alone, although
it seems that in the case of the deadlock task the difference in performance was less
compared to the race condition task.

5.3.3 Was using Beat significantly easier?

The results in Table 5.2 suggest that Beat wasn’t easier to use since it took participants
longer to complete the task using Beat. However, a majority of users did report in the
questionnaire that Beat helped them solve the task they used it for and felt it would
help with the other task if they had been using it for that, as shown below:

• Did Beat help you solve the task that you used it for?
15 / 19 answered Yes

• Do you think Beat would have been useful for solving the other task?
18 / 19 answered Yes

5.3.4 What effect did experience have?

To check whether experience had any effect we compared participants’ reported experi-
ence levels to the time taken to perform the task. We used Pearson’s correlation in the
form of the Excel CORREL function to check if there was any relationship between the
two variables. Pearson’s correlation produces a value between -1 and 1, -1 indicating a
perfect negative linear correlation, 1 indicating a perfect positive linear correlation and
0 indicating no correlation. Table 5.3 shows the correlation values for the different tasks
and concurrency and Eclipse experience levels.

The results indicate a small negative correlation between concurrency experience and
the tasks, in other words those with more experience in concurrency performed the task
in a shorter time. Experience with Eclipse only seems to have effected the time taken
to complete the Race Condition test and doesn’t seem to have effected the time taken
to complete the Deadlock test.

Because only one participant had never taken the a concurrency course at Massey
University or elsewhere we considered it impossible to make a valid comparison based

CHAPTER 5. EVALUATION 103

Comparison Correlation
Concurrency vs Deadlock -0.401
Concurrency vs Race -0.321
Eclipse vs Deadlock 0.082
Eclipse vs Race -0.315

Table 5.3: Correlations between difference experience levels in concurrency and Eclipse
and time taken to complete a task.

Task Mean
First

Mean
Second

Std. Dev.
First

Std. Dev.
Second

Deadlock With Beat 9.5min 5.8min 1.0min 3.701min
Race With Beat 8.0min 4.0min 1.225min 2.828min
Deadlock With Source 3.0min 4.6min 1.414min 3.578min
Race With Source 1.8min 1.4min 1.789min 1.342min

Table 5.4: Comparison of using Beat first and second and using Source first and second.

on whether experience in a formal educational environment had an effect on the time
taken.

5.3.5 Did the order that Beat was used in have any effect?

We had tested using Beat both first and second to test whether the order that Beat is
used had an effect on the data, the results are in Table 5.4.

As the results show the order that Beat is used does seem to have an effect on the
outcome of the test, with those who used it second showing better average times. The
order that the source was used in doesn’t seem to have had as great an effect on the
times for using the source as it does when using Beat.

5.3.6 Was one of the tasks harder than the other?

To check if one task was harder than the others we compared the mean of the times
taken to complete the two tasks without reference to the use of Beat or the order of the
tasks. The results are in Table 5.5 and show that the deadlock task took slightly longer
to complete on average.

We also asked participants what task was easier, the results are shown in Table 5.6.
Again, the deadlock task seems to be slightly harder than the race condition task.

CHAPTER 5. EVALUATION 104

Task Mean Standard Deviation
Deadlock 5.526min 3.470min
Race 4.0min 3.162min

Table 5.5: Mean times for the two tasks without reference to use of Beat.

Task Count
Race 10
Deadlock 5
Same 4

Table 5.6: Participants rating of what was task was easiest.

5.4 Visualization Design Questionnaire Results

• Was the software user interface responsive enough?
19 / 20 answered Yes

• Were the visualizations produced easy to relate to the source code of the example
program?
18 / 20 answered Yes

• Did the layout of the visualization and the use of colour and space make it clear
how the program was working?
17 / 20 answered Yes

• Do you feel that the inclusion of source code in the diagram helped you to relate
to how the test program was executing to your source code?
19 / 19 answered Yes

The results show that participants felt that the user interface was responsive enough
and that the layout, colour and use of space was adequate. Participants also felt that
the inclusion of source code was useful, which is encouraging given that the addition of
source code is one of the novel parts of our design.

5.5 Comments From Questionnaries

In this section we will review some of common comments made about Beat and provide
a brief discussion of them. We have divided it up into sections on what people liked,
minor and UI problems and major dislikes and additional features.

CHAPTER 5. EVALUATION 105

5.5.1 Like Comments

In general participants liked the colour and layout, reordering and expanding of lanes
and generally found the approach to displaying threads and objects useful as indicated
above in the questionnaire results and in many of the comments such as:

“It’s clarity (good contrast, soft colouring). The ability to reasize and reorder
the threads. The rubber banding while modifying. The timeline approach to
visualize the thread that are currently executing and the transfer of control”
- Participant 7

“A great tool for demonstrating concurrency. Representation is very clear.”
- Participant 9

“Logical layout of objects, time, code and process life” - Participant 14

5.5.2 Minor UI problems

“A method of disabling a selected thread.” - Participant 7

We should also have methods for easily disabling object instances as well.

“Thread key hides some col info.” - Participant 12

“Legend for the symbols used in Beat.” - Participant 9

Beat needs a separate area for meta information like this.

“order the columns in a more intuitive manner” - Participant 2

This probably means order things automatically, which may be possible but not easy.
Adding a feature that maintains column order between runs would be relatively easy
however.

“Some codes are cut (column width for Threads’ codes are not wide enough)”
- Participant 9

This could be addressed by making a column expand on hover or simply clicking on
it.

“Use of Lock, Semaphores etc.” - Participant 16

It would be useful to handle other concurrency primitives that are part of Java.

CHAPTER 5. EVALUATION 106

5.5.3 Major Dislikes/ Needed Features

“A method of highlighting changes to a selected variable or variables.” -
Participant 7

Adding some type of visualization of state is one of the most important things that
was left out of the implementation. Also, the lack of a method to highlight concurrency
errors is a crucial inadequacy of the software.

“Debugger integration, step through a program.” - Participant 17

A common demand was to integrate Beat with the debugger to allow stepping
through the program e.g. “Debugger Mode”. This was a good point and one we will
expand on in the Future Work section of our Conclusion.

“having the line of code twice is a little confusing.” - Participant 17

Due to the fact that method calls can sometimes span large amounts of time due
to calling other methods, threads sleeping or threads waiting we included the text of
the method calls after the return from the called method. This was intended to help
the user follow what was happening, however it seems to just generate confusion, so it
will be removed in future versions. Some other type of indication of a returning method
could possibly be developed.

“Visualization: too much information present.” - Participant 17

“filters for content, being able to restrict the visualization.” - Participant 17

The implementation of the interactive features mentioned in Section 3.10 would help
solve this problem.

5.6 Observations of Participants

We made a few general notes about test participants during the testing. One thing we
noted was that to understand the visualizations produced you already had to have a
good understanding of concurrent programming. Participants, even ones who we knew
had recently completed a course on concurrent programming, had difficulty identifying
a deadlock and often needed additional guidance when solving the problems given.

Another important thing was that participants were often confused about the colour-
ing of the thread lines - that they were coloured to differentiate them and that the colour

CHAPTER 5. EVALUATION 107

has no meaning beyond the need to differentiate the threads. In future versions of the
software it may be useful to allow users to select what colour they want for a thread
or rather than using colour to differentiate threads use some other mechanism (maybe
just names or icons) to avoid confusion. As mentioned in the discussion about saUML,
colour could be used for another purpose such as to show thread state.

5.7 Evaluation Limitations

There were a number of problems, technical, procedural and structural with our testing.
The first technical limitation was that the built-in synchronized locks of Java are

non-interruptible. This meant that when a deadlock occurs the only thing that can be
done is to kill the program, which given the implementation of data collection meant
that all the data up to the deadlock was lost. Because it was too late to fix this in
the implementation code, a test for the deadlock was added to make sure that when a
deadlock occurred the trace data was recorded automatically.

Another limitation to our design was that it lacked good support for identifying
which object instance was being locked in synchronized blocks (not synchronized meth-
ods). To fix this, additional method calls to the lock object were added before the lock
was acquired to try to indicate the order of locking to the participant in the test. In
hindsight our deadlock example could have been better designed to take into account
the limitations outlined above, in future we will create a better deadlock test.

There were also several problems with how the test was run. The first was that
parts of the deadlock code were very confusing so they were changed after the first few
participants to ensure that it was clear how the program worked. Earlier participants
had been given more help by the test supervisor to help them understand the problem,
less help was given after the changes.

Second was that the timing of the participants was to the nearest minute, which
didn’t give as much timing detail as we would have liked.

Chapter 6

Conclusion

6.1 Conclusion

We introduced our thesis by noting the great shift away from uniprocessor architectures
towards multicore systems. This change has led to a great deal of effort being expended
attempting to make programming these new systems easier for developers. To address
this challenge visualization tools have been created, although they have only had limited
success in the market. In contrast we noted that music notation and music software
have had tremendous success in the market, in many cases entirely displacing older
manual methods. This interested us because of several similarities between the two, most
importantly that both dealt with time and that both used a timeline-based approach for
visualization.

This led us to ask the following questions:

Is there something about existing visualizations that make them unsuitable
for the task of programming and debugging concurrent programs?

What is it about music notation and music recording software designs which
make them effective?

Can we draw any conclusions from existing visualizations, music notation
and music editing software and apply the lessons learned from them to the
design of a visualization based concurrent debugger?

Will the resulting design be effective for the task of debugging concurrent
programs?

Our investigation of existing literature highlighted the problems for programmers

108

CHAPTER 6. CONCLUSION 109

that arise from concurrency and some of the existing non-visual solutions to these prob-
lems. A review of existing visualization and software visualization showed a field heavily
focused on performance debugging and not the kind of error debugging that we would
argue is a much more common task for programmers. The central insight that we drew
when comparing software visualizations and music notation and technology was that
existing software visualizations lacked a single highly integrated view of the data and
instead relied on multiple separate subviews.

We feel our investigation of existing systems has answered our first two thesis ques-
tions, though we would note that without a full study comparing our software with one
of the “non-integrated” pieces of software mentioned in the literature it is hard to give a
definitive answer to whether this is because of the lack of integration between different
kinds of data in the software.

In addition, it should be said that there are numerous reasons why visual debugging
tools could have failed to have achieved wide use that have nothing inherently to do with
the technology. This can include the fact that there is a wide gulf between the products
of the academic world and the details and finesse needed for success in the market. More
provocatively, it could be argued that there hasn’t been enough of a pressing need in
an economic sense to require tools like this, despite the fact that multiple cores have
become a lot more common.

Applying the insights gained from studying existing systems to the design of a piece of
software produced the design for Beat, which attempts to integrate the various different
pieces of data that make up an executing concurrent program. In particular, this included
low level data to assist programs debugging for error correction purposes.

This effectively answers our third thesis question, since our design combines the
lessons we have learned from all the different systems we have investigated.

Implementing Beat was complex at times, as we had to evaluate a number of tech-
nologies and approaches, many of which seemed promising but ended up being dead
ends in terms of our goals. We ended up with a system that used the Java language
as its target, with the visualization being integrated in to the Eclipse environment. In-
strumenting the source code was performed using part of the Java Development Tools
library and using HTML to display the generated data.

Unfortunately,we didn’t get to completely finish implementing our design, in partic-
ular the state tracing that would have been helpful for users during our testing.

The evaluation of our software suffered from a number of flaws, including some
technical problems and problems with the way the test was run. Perhaps the greatest flaw
was that we were testing software design for experienced operators in a test that was too

CHAPTER 6. CONCLUSION 110

short. This possibly makes our timing data less useful since it doesn’t reflect a realistic
usage scenario. Ultimately, the most useful part of our evaluation was the comments
by users, which confirmed much of what we thought was right with our software and
also what was wrong with it. Some future directions in testing will be discussed in the
Future Work section below.

Overall, we feel we have struck on a new approach and that we are just at the
beginning of investigating the ideas present in this thesis, however our present work
gives us cause for optimism about the future direction of the work.

6.2 Future Work

Not surprisingly our work left us with more questions than answers and many ideas
about possible directions with regards to the software. We will start by addressing some
better methods of testing Beat, then some of the basic core and UI improvements that
need to be made to complete Beat as designed and then address some possibilities for
making Beat more useful.

6.2.1 Testing

There were two different future directions we considered for improving the testing of
Beat. The first was a longer term study where participants would use the software
several times over a period of time, with each time being longer than the 20 minutes or
so we had for testing participants. This would be a more realistic test of Beat since Beat
is designed for experienced operators who have been given more than a brief introduction
and a short amount of time to become accustomed to the software.

Second it would be interesting to answer the question of whether an integrated data
approach was better than a non-integrated data approach. This would require a compar-
ative study comparing our system to an existing ”non-integrationist” system to answer
this question.

6.2.2 Core Improvements

The most basic improvement is the addition of data gathering of state information which
will allow the visualization of state information.

Currently Beat is deeply tied to the Java language, a possible future direction is to
create a framework to enable other languages to be easily integrated into the software.
There would be a number of challenges with this, for example how would we visualize

CHAPTER 6. CONCLUSION 111

languages that aren’t object orientated such as C or Haskell? Another challenge would
be languages that don’t use shared memory and locks for concurrent communication
such as Erlang.

Completion of gathering context switch information is important to complete Beat
as it was designed. An open challenge is whether this could be done on Windows. While
there are tools similar to DTrace on Linux we are not aware of any directly comparable
tools for Windows. For tracing to work on Windows we would have to have a way
of tracing the kernel scheduler, which might be difficult without documentation of the
kernel scheduling functions or access to the source code.

We haven’t fully tested Beat in the context of multicore and multiprocessor systems,
more work needs to be done especially with machines with large numbers of chips, cores
and large numbers of threads.

6.2.3 UI improvements

The completion of the design and implementation for visualizing state changes is prob-
ably the most important thing that needs to be implemented or improved. The second
most important thing is the addition of some mechanism of filtering the results, such
as hiding threads or object instances, specific methods and maybe state information for
specific objects. Another solution to the problem of too much information would be the
implementation of a zoomable interface, as mentioned in the design section

An interesting idea that we considered and which came up in our evaluation was
the creation of an automatic system to order the columns in an intuitive manner. We
developed a solution to this problem by trying to save the order of columns between
executions so that the user would be presented with the same layout they had before,
but we were unable to complete this.

One design aspect that wasn’t considered was how to highlight concurrency errors
that occur during and execution. This would require some improvements in the core
software to help analyze the stream of events to find these errors.

HTML has served well as a mechanism for prototyping our design, however to achieve
integration with the debugger will probably require us to rewrite the visualization using
the SWT graphics library.

Another part of the UI that needs writing is a GUI to select classes and parts of
classes such as method calls and variables, this ties in with the tools to filter output as
well.

CHAPTER 6. CONCLUSION 112

6.2.4 Debugger and Static Analysis

Adding debugging functionality to Beat or integration with an existing debugger is
probably the most likely future direction of Beat. This could be done by simply using
the existing debugging system of languages like Java or potentially a much deeper set of
additions or modifications to the Java Debugging system. This seems to be an under-
investigated area, with most frameworks being either for debugging or for tracing alone
and not a combined or integrated approach.

As we mentioned, work has been done on using visualization to display possible
interleavings of a concurrent program using information drawn from an analysis of the
program. Beat would be excellent at displaying these interleavings and would be well
suited to integration with these tools.

6.2.5 Education

We considered the use of Beat as part of a course on concurrency. Beat may be useful
in this capacity, but more investigation of the needs of students learning concurrency
needs to be done and testing of the software in an educational environment.

6.2.6 Visual Language

Developing a visual editing language based on the visualization principles underlying
Beat is an interesting possibility. This would involve using the position of blocks of code
to represent when events could occur in time. Unlike many other visual languages this
would be implemented as an extension to an existing language rather than an entirely
new language of the box and wires type.

This would be a completely new direction requiring a considerable amount of research
and development to see whether it is feasible.

Appendix A

Questionnaire

Beat Evaluation Questionnaire
Q1. Have you have taken 159.355 Concurrent Systems or another concurrency related

paper? Yes / No
Q2. How would you rate your level of experience with concurrency and knowledge

of concurrency issues such as race conditions and deadlocks? Low 1 2 3 4 5 High
Q3. How much experience do you feel you have with using the Eclipse IDE? Low 1

2 3 4 5 High
Q4. Which task was easier? Race / Deadlock / About the same
Q5. Did Beat help you solve the task that you used it for? Yes / No
Q6. Do you think Beat would have been useful for solving the other task? Yes / No
Q7. Was the software user interface responsive enough? Yes / No
Q8. Were the visualizations produced easy to relate to the source code of the example

program? Yes / No
Q9. Did the layout of the visualization and the use of colour and space make it clear

how the program was working? Yes / No
Q10. Do you feel that the inclusion of source code in the diagram helped you to

relate to how the test program was executing to your source code? Yes / No
Q11. Please comment on any things you liked about the software.
Q12. Please comment on anything you disliked about the software.
Q13. Do you have any recommendations for future changes?
Thank you for your participation.

113

Appendix B

Evaluation Source Code

B.1 Source Code for Deadlock Task

B.2 Source Code for Race Condition Task

114

APPENDIX B. EVALUATION SOURCE CODE 115

package evaluation;

import beat.collector.BeatTrace;

@BeatTrace
public class Main {

public static int number_of_runs = 10;

public static void main(String[] args) {
new Main().init();

}

public void init(){
Printer firstPrinter = new Printer("Printer 1");
Printer secondPrinter = new Printer("Printer 2");

PrinterThread1 pt1 = new PrinterThread1(firstPrinter,
secondPrinter);

PrinterThread2 pt2 = new PrinterThread2(firstPrinter,
secondPrinter);

pt1.otherThread = pt2;
pt2.otherThread = pt1;

Thread printerThread1 = new Thread(pt1,
"PrinterThread1");

Thread printerThread2 = new Thread(pt2,
"PrinterThread2");

printerThread1.start();
printerThread2.start();

}
}

Listing 16: Contains main method of deadlock test.

APPENDIX B. EVALUATION SOURCE CODE 116

package evaluation;

import beat.collector.BeatTrace;

@BeatTrace
public class Printer {

private String name;

public Printer(String name) {
this.name = name;

}

void print(int value){
System.out.println("Thread: " +

Thread.currentThread().getName() +
" " + name + ": " + value);

}

void acquired(){
System.out.println(name + " acquired by " +

Thread.currentThread().getName());
}

}

Listing 17: Printer object for deadlock test.

APPENDIX B. EVALUATION SOURCE CODE 117

package evaluation;
import java.util.Random;
import beat.collector.BeatTrace;

// a printer thread that requires two printer

// objects to be locked simultaneously to print

@BeatTrace
public class PrinterThread1 implements Runnable {

// printer objects

Printer firstPrinter;
Printer secondPrinter;

// these are to check for deadlocks - see below

public PrinterThread2 otherThread;
public boolean holdsOther = false;

public PrinterThread1(Printer printer1, Printer printer2) {
this.firstPrinter = printer1;
this.secondPrinter = printer2;

}

Random rand = new Random();

public void run() {
for(int i = 0; i < Main.number_of_runs; i++){

synchronized(firstPrinter){
holdsOther = true;

firstPrinter.acquired();

try {
if(rand.nextBoolean()){
Thread.currentThread().

sleep(rand.nextInt(5));
}

} catch (InterruptedException e) {
e.printStackTrace();

}

checkDeadlocked();

Listing 18: First printer thread for deadlock test part 1.

APPENDIX B. EVALUATION SOURCE CODE 118

synchronized(secondPrinter){
secondPrinter.acquired();
firstPrinter.print(i);
secondPrinter.print(i);

}

holdsOther = false;
}

}
}

/**

* Check for deadlocks - we need to do this because of

* some limitations in how synchronized is implemented

* in the Java Virtual Machine - ask Paul for details.

*

* (This will be fixed in future versions)

*/

private void checkDeadlocked() {
if(otherThread.holdsOther){

System.out.println("Deadlock in thread " +
Thread.currentThread().getName());

throw new ThreadDeath();
}

}
}

Listing 19: First printer thread for deadlock test part 2.

APPENDIX B. EVALUATION SOURCE CODE 119

package evaluation;
import java.util.Random;
import beat.collector.BeatTrace;

// a printer thread that requires two printer

// objects to be locked simultaneously to print

@BeatTrace
public class PrinterThread2 implements Runnable {

// printer objects

Printer firstPrinter;
Printer secondPrinter;

// these are to check for deadlocks - see below

public PrinterThread1 otherThread;
public boolean holdsOther = false;

public PrinterThread2(Printer printer1, Printer printer2) {
this.firstPrinter = printer1;
this.secondPrinter = printer2;

}

Random rand = new Random();

public void run() {
for(int i = 0; i < Main.number_of_runs; i++){

synchronized(secondPrinter){
holdsOther = true;

secondPrinter.acquired();

try {
if(rand.nextBoolean()){
Thread.currentThread().
sleep(rand.nextInt(5));
}

} catch (InterruptedException e) {
e.printStackTrace();

}

Listing 20: Second printer thread for deadlock test part 1.

APPENDIX B. EVALUATION SOURCE CODE 120

checkDeadlocked();

synchronized(firstPrinter){
firstPrinter.acquired();
firstPrinter.print(i);
secondPrinter.print(i);

}

holdsOther = false;
}

}
}

/**

* Check for deadlocks - we need to do this because of

* some limitations in how synchronized is implemented

* in the Java Virtual Machine - ask Paul for details.

*

* (This will be fixed in future versions)

*/

private void checkDeadlocked() {
if(otherThread.holdsOther){

System.out.println("Deadlock in thread " +
Thread.currentThread().getName());

throw new ThreadDeath();
}

}
}

Listing 21: Second printer thread for deadlock test part 2.

APPENDIX B. EVALUATION SOURCE CODE 121

package evaluation;

import beat.collector.BeatTrace;

// @BeatTrace tells Beat to trace this class

@BeatTrace
public class Main {

public static int number_of_runs = 10;

public static void main(String[] args) {
new Main().init();

}

public void init(){
Shared shared = new Shared();

Thread printerThread1 = new Thread(
new PrinterThread(shared), "PrinterThread1");

Thread printerThread2 = new Thread(
new PrinterThread(shared), "PrinterThread2");

printerThread1.start();
printerThread2.start();

}
}

Listing 22: Contains main method of race condition test.

APPENDIX B. EVALUATION SOURCE CODE 122

package evaluation;

import beat.collector.BeatTrace;

@BeatTrace
public class PrinterThread implements Runnable {

Shared shared;

public PrinterThread(Shared shared) {
this.shared = shared;

}

public void run() {
for(int i = 0; i < Main.number_of_runs; i++){

int value = shared.updateValue();

System.out.println(Thread.currentThread().
getName() + " value: " + value);

}
}

}

Listing 23: Printer thread for race condition test.

APPENDIX B. EVALUATION SOURCE CODE 123

package evaluation;

import java.util.Random;

import beat.collector.BeatTrace;

// Shared object

@BeatTrace
public class Shared {

private int value = 0;

Random random = new Random();

public int updateValue() {
int temp = value;

// pretend to perform complex processing -

// (really just waste time to cause race conditions)

try {
Thread.currentThread().sleep(5);

} catch (InterruptedException e) {
e.printStackTrace();

}

value = temp += 1;

return value;
}

}

Listing 24: Shared object for race condition test.

Appendix C

Result Tables

C.1 Timing and Experience Results

Participant Group Q1 Q2 Q3 Q4 Deadlock

time

Race

time

0 1 Yes 3 3 Same 10 2
7 1 No N/A N/A N/A N/A N/A
11 1 Yes 3 4 Race 10 N/A
15 1 No 2 3 Same 8 3
18 1 Yes 2 4 Race 10 2
16 2 Yes 2 3 Deadlock 6 10
1 2 Yes 3 5 Race 10 8
12 2 Yes 4 4 Deadlock 1 7
8 2 Yes 4 3 Deadlock 2 8
4 2 Yes 2 2 Deadlock 4 7
2 3 Yes 4 5 Deadlock 5 6
5 3 Yes 3 4 Race 2 5
9 3 Yes 3 3 Same 4 7
13 3 Yes 4 4 Same 2 1
17 3 Yes 5 5 Race 2 1
3 4 Yes 4 4 Race 11 1
6 4 Yes 3 3 Race 4 1
10 4 Yes 4 5 Race 6 1
14 4 Yes 4 4 Race 1 5

124

APPENDIX C. RESULT TABLES 125

19 4 Yes 4 5 Race 7 1

C.2 UI Questions

Participant Group Q5 Q6 Q7 Q8 Q9 Q10

0 1 Yes Yes Yes No No Yes
7 1 N/A N/A Yes Yes Yes Yes
11 1 Yes Yes Yes Yes Yes Yes
15 1 Yes Yes Yes Yes Yes Yes
18 1 No Yes Yes Yes Yes Yes
16 2 Yes Yes Yes Yes Yes Yes
1 2 Yes Yes Yes Yes Yes Yes
12 2 Yes Yes Yes Yes Yes Yes
8 2 No Yes No Yes No Yes
4 2 No N/A Yes No Yes N/A
2 3 Yes Yes Yes Yes Yes Yes
5 3 Yes Yes Yes Yes Yes Yes
9 3 Yes Yes Yes Yes No Yes
13 3 Yes Yes Yes Yes Yes Yes
17 3 Yes Yes Yes Yes Yes Yes
3 4 Yes Yes Yes Yes Yes Yes
6 4 Yes Yes Yes Yes Yes Yes
10 4 Yes Yes Yes Yes Yes Yes
14 4 Yes Yes Yes Yes Yes Yes
19 4 No Yes Yes Yes Yes Yes

C.3 Comments

Participant Question Comment

0 Q11 It showed a trace of the threads & what is happening
to them

0 Q12 It needs to much screen space & requires me to scroll
horizontally which I don’t like

0 Q13 Don’t output code directly but instead display click-
able icons which expand to show code.

APPENDIX C. RESULT TABLES 126

1 Q11 It was great and easy to use. I did really like it
as it gives me a better visualization of how threads
working.

1 Q12
1 Q13 If we can get the snapshot of screen before and after

fixe a bug to see how it effects on visualization (for
comparison)

2 Q5 If I knew hot to use beat, needs a user manual
2 Q8 Should have read source code first, ordering of

columns is important.
2 Q11 Good colours and layout
2 Q12 needs a comprehensive user manual and training to

use
2 Q13 order the columns in a more intuitive manner
2 Q10 I always read the source code, it is how one normally

debugs.

3 Q11 Having a visual representation of what the threads
are actually doing at different points in time was
good because in your head theoretically it can be
hard to visualize and System.out.println has its lim-
itations.

3 Q12 Nothing comes to mind at this time
3 Q13 Not at this time sorry.

4 Q11 Knowing how the thread worked
4 Q12 Found Beat a little confusing, as there were parts of

code that didn’t seem to link together
4 Q13

5 Q11 It works, thats a bonus
5 Q12 overlapping lines can obscure labels sometimes
5 Q13 Not really.

6 Q11 moving columns. Colour.
6 Q12 can’t always see all code if lines too long.
6 Q13

APPENDIX C. RESULT TABLES 127

7 Q11 It’s clarity (good contrast, soft colouring). The abil-
ity to reasize and reorder the threads. The rubber
banding while modifying. The timeline approach to
visualize the thread that are currently executing and
the transfer of control

7 Q12
7 Q13 A method of disabling a selected thread. A method

of highlighting changes to a selected variable or vari-
ables.

7 Q10 Sufficient context to see whats happening.

8 Q11 Very good at showing the actual run order which can
sometimes can be difficult to comprehend

8 Q12 Hard to resize column was expecting resize cursor,
not the arrow cursor for resize. Hard to pickup cold,
took awhile to understand/process visually.

8 Q13 fix cursor. Need more intro\examples of using the
diagram.

9 Q11 A great tool for demonstrating concurrency. Repre-
sentation is very clear.

9 Q12 Some codes are cut (column width for Threads’ codes
are not wide enough)

9 Q13 Legend for the symbols used in Beat.

10 Q11 Visual representation of threads working in action
10 Q12 No adjustment for columns on the top of the chart
10 Q13 Debbuger Mode

11 Q11 Moveable + resizeable columns
11 Q12 Repeating method names
11 Q13

12 Q11 Reordering cols for a better view. Showing source
execution.

12 Q12 Thread key hides some col info.
12 Q13

13 Q11 Logical program flow, from top to bottom
13 Q12 zzz and x icons are ugly some nice icons perhaps?
13 Q13 variable highlighting.

APPENDIX C. RESULT TABLES 128

13 Q10 Maybe colapsable for larger segments

14 Q11 Logical layout of objects, time, code and process life
14 Q12 Nothing
14 Q13 No

15 Q11 Lanes and colour coding made easy to follow objects
and threads.

15 Q12
15 Q13 Stepping through running code also steps through

visualization.

16 Q11 Really liked inclusion of code in diagram for Beat
16 Q12
16 Q13 Use of Lock, Semaphores etc.

17 Q11 Visualization: Moving of Object instances, being
able to organize the flow. Beat: Transparent inte-
gration through pre-compilation.

17 Q12 Visualization: too much information present. Beat:
lack of debugger integration.

17 Q13 filters for content, being able to restrict the visualiza-
tion. Debugger integration, step through a program.

18 Q11 It looks very useful, would be good to find concur-
rancy bugsin software I already understand.

18 Q12 having the line of code twice is a little confusing.
18 Q13 Mabey using braces instead of the line twice, or some-

thing other than the line repeated.

19 Q11 Displaying the flow of threads, and when threads
are sleeping. Displaying synchronized blocks with
rounded rectangles. Different colours for different
threads.

19 Q12 Difficult to switch back to Java view.

APPENDIX C. RESULT TABLES 129

19 Q13 Link in Java directly e.g. ctrl-click to open method
definitions. Add an overview display. Replace tabs
with shorter whitespace. Allow content resie (font
size). Perhaps different colours for different synchro-
nized objects (not just threads). If hover mouse over
a code block, show the entire code block as an over-
lay.

Bibliography

[1] Eclipse java development tools (jdt) overview. http://www.eclipse.org/jdt/

overview.php, 2010.

[2] Eclipse.org home. http://eclipse.org/, 2010.

[3] Html5 (including next generation additions still in development). http://www.

whatwg.org/specs/web-apps/current-work/, 2010.

[4] java.com: Java + you. http://www.java.com/en/, 2010.

[5] Abhi on java: Java 5 concurrency: Callable and future. http://java-x.blogspot.
com/2006/11/java-5-concurrency-callable-and-future.html, 2011.

[6] Air protocol at ipulse blog. http://shred444.com/blog/?p=31, 2011.

[7] Antlr parser generator. http://www.antlr.org/, 2011.

[8] Apple - logic studio. http://www.apple.com/logicstudio/, 2011.

[9] aram’s blog blog archive midterm idea - treemap. http://www.aramchang.com/

blog/2008/02/a_to_z/midterm-idea-treemap/, 2011.

[10] The aspectj project. http://www.eclipse.org/aspectj/, 2011.

[11] Debugging with intellitrace. http://msdn.microsoft.com/en-us/library/

dd264915.aspx, 2011.

[12] Design codes: Uml sequence diagram: Interaction fragment (alt,
opt, par, loop, region). http://aviadezra.blogspot.com/2009/06/

uml-fragment-alt-opt-par-loop-region.html, 2011.

[13] Erlang programming language, official website. http://www.erlang.org/, 2011.

130

BIBLIOGRAPHY 131

[14] Intellitrace - debugging applications with intellitrace. http://msdn.microsoft.

com/en-us/magazine/ee336126.aspx, 2011.

[15] Java se - java platform debugger architecture - faqs. http://java.sun.com/

javase/technologies/core/toolsapis/jpda/faqs.jsp, 2011.

[16] Java se - java platform debugger architecture home. http://java.sun.com/

javase/technologies/core/toolsapis/jpda/, 2011.

[17] Jdk 6 java virtual machine tool interface (jvmti). http://download.oracle.com/

javase/6/docs/technotes/guides/jvmti/, 2011.

[18] jquery: The write less, do more, javascript library. http://jquery.com/, 2011.

[19] Nehalem - everything you need to know about intel’s new architecture. http:

//www.anandtech.com/show/2594/6, 2011.

[20] Ni labview - improving the productivity of engineers and scientists. http://www.

ni.com/labview/, 2011.

[21] Ruby programming language. http://www.ruby-lang.org/en/, 2011.

[22] Tracing user processes - dtrace user guide. http://dlc.sun.com/osol/docs/

content/DTRCUG/gcgkk.html, 2011.

[23] Uml 2 communication diagramming guidelines. http://www.agilemodeling.com/
style/collaborationDiagram.htm, 2011.

[24] visualvm: Home. https://visualvm.dev.java.net/, 2011.

[25] Welcome to netbeans. http://netbeans.org/, 2011.

[26] Jim Arlow and Ila Neustadt. Uml and the Unified Process: Practical Object-Oriented
Analysis and Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[27] Cyrille Artho, Klaus Havelund, and Shinichi Honiden. Visualization of concurrent
program executions. In Proceedings of the 31st Annual International Computer
Software and Applications Conference - Volume 02, COMPSAC ’07, pages 541–
546, Washington, DC, USA, 2007. IEEE Computer Society.

BIBLIOGRAPHY 132

[28] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic in-
strumentation of production systems. In Proceedings of the annual conference on
USENIX Annual Technical Conference, ATEC ’04, pages 2–2, Berkeley, CA, USA,
2004. USENIX Association.

[29] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors. Readings in
information visualization: using vision to think. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1999.

[30] S. K. Chang, Margaret M. Burnett, Stefano Levialdi, Kim Marriott, Joseph J.
Pfeiffer, and Steven L. Tanimoto. The future of visual languages. In Proceedings
of the IEEE Symposium on Visual Languages, pages 58–, Washington, DC, USA,
1999. IEEE Computer Society.

[31] Chaomei Chen. Information visualization. Wiley Interdisciplinary Reviews: Com-
putational Statistics, 2, 2010.

[32] Frank Cornelis, Andy Georges, Mark Christiaens, Michiel Ronsse, Tom Ghesquiere,
and Koen De Bosschere. A taxonomy of execution replay systems. In In Proceed-
ings of the International Conference on Advances in Infrastructure for Electronic
Business, Education, Science, Medicine, and Mobile Technologies on the Internet,
2003.

[33] Wim De Pauw and Steve Heisig. Zinsight: a visual and analytic environment for
exploring large event traces. In Proceedings of the 5th international symposium on
Software visualization, SOFTVIS ’10, pages 143–152, New York, NY, USA, 2010.
ACM.

[34] Stephan Diehl. Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[35] Len Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2:17–
23, May 2000.

[36] Paul Gestwicki and Bharat Jayaraman. Methodology and architecture of jive. In
Proceedings of the 2005 ACM symposium on Software visualization, SoftVis ’05,
pages 95–104, New York, NY, USA, 2005. ACM.

[37] Carl Hewitt. Actor model for discretionary, adaptive concurrency. CoRR,
abs/1008.1459, 2010.

BIBLIOGRAPHY 133

[38] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:666–677,
August 1978.

[39] Joel Huselius. Debugging parallel systems: A state of the art report. Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-63/2002-1-SE, Mälardalen University,
September 2002.

[40] Christopher Johnson and Charles Hansen. Visualization Handbook. Academic Press,
Inc., Orlando, FL, USA, 2004.

[41] Edward A. Lee. The problem with threads. Computer, 39:33–42, May 2006.

[42] Gowritharan Maheswara, Jeremy S. Bradbury, and Christopher Collins. Tie: an
interactive visualization of thread interleavings. In Proceedings of the 5th inter-
national symposium on Software visualization, SOFTVIS ’10, pages 215–216, New
York, NY, USA, 2010. ACM.

[43] Mark McGrain. Music Notation (Berklee Guide). Berklee Press, 1990.

[44] Stephan Merz. Model checking: A tutorial overview. In Proceedings of the 4th
Summer School on Modeling and Verification of Parallel Processes, MOVEP ’00,
pages 3–38, London, UK, 2001. Springer-Verlag.

[45] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Madanlal Musuvathi, Shaz
Qadeer, and Thomas Ball. 1 chess: A systematic testing tool for concurrent soft-
ware.

[46] D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The Hard-
ware/software Interface. Morgan Kaufmann, 2005.

[47] Richard Rastall. The Notation of Western Music: an Introduction. J. M. Dent
& Sons London, 1983. Interesting account of the evolution and origin of common
notation starting from neumes, and ending with modern innovations HWN.

[48] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, Cambridge, MA, USA, 2004.

[49] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

BIBLIOGRAPHY 134

[50] N Shavit and D Touitou. Software transactional memory. In Proc. of the 12th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
204–213, 1995.

[51] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages,
pages 336–, Washington, DC, USA, 1996. IEEE Computer Society.

[52] Ben Shneiderman and Benjamin B. Bederson. The Craft of Information Visualiza-
tion: Readings and Reflections. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[53] N. C. Shu. Visual programming languages: A perspective and a dimensional anal-
ysis. Visual Languages, 1986.

[54] John T. Stasko. The parade environment for visualizing parallel program executions:
A progress report. Technical report, 1995.

[55] Scott D. Stoller. Testing concurrent Java programs using randomized scheduling. In
Proc. Second Workshop on Runtime Verification (RV), volume 70(4) of Electronic
Notes in Theoretical Computer Science. Elsevier, July 2002.

[56] CORPORATE SunSoft. Solaris multithreaded programming guide. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1995.

[57] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[58] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2007.

[59] Andrew S. Tanenbaum and James R. Goodman. Structured Computer Organization.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 4th edition, 1998.

[60] James J. Thomas and Kristin A. Cook. A visual analytics agenda. IEEE Comput.
Graph. Appl., 26:10–13, January 2006.

[61] Melanie Tory and Torsten Moller. Rethinking visualization: A high-level taxonomy.
In Proceedings of the IEEE Symposium on Information Visualization, pages 151–
158, Washington, DC, USA, 2004. IEEE Computer Society.

BIBLIOGRAPHY 135

[62] Jonas Trümper, Johannes Bohnet, and Jürgen Döllner. Understanding complex
multithreaded software systems by using trace visualization. In Proceedings of the
5th international symposium on Software visualization, SOFTVIS ’10, pages 133–
142, New York, NY, USA, 2010. ACM.

[63] Edward Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.

[64] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input generation
with java pathfinder. In Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA ’04, pages 97–107, New York,
NY, USA, 2004. ACM.

[65] Shaohua Xie, Eileen Kraemer, R. E. K. Stirewalt, Laura K. Dillon, and Scott D.
Fleming. Assessing the benefits of synchronization-adorned sequence diagrams: two
controlled experiments. In SoftVis ’08: Proceedings of the 4th ACM symposium on
Software visualization, pages 9–18, New York, NY, USA, 2008. ACM.

[66] Qiang A. Zhao and John T. Stasko. Visualizing the execution of threads-based
parallel programs. Technical report, 1995.

