Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
TOWER FERMENTATION OF WHEY PERMEATE
AND
SUCROSE-ENRICHED WHEY PERMEATE TO ETHANOL

A thesis presented in partial fulfilment
of the requirements for
the Degree of Doctor of Philosophy
in Biotechnology
at Massey University

CHATURONG BOONTANJAI
1983
ABSTRACT

Tower fermentation of sulphuric acid whey permeate using Kluyveromyces marxianus Y42 has been investigated. The tower fermenter used was 0.025 m in diameter and 2.69 m high. The straight section of the tower was 2.37 m. The total tower volume was 2.9 litres and the separator section made up 1.6 litres of the total volume. The operating temperature was 30°C. The optimum medium feed rate was observed at a superficial liquid velocity of 0.24 mm/s. It was found that a tower height of only 0.82 m was required, excluding the separator section, and the corresponding residence time was 1 hour. An exit ethanol concentration of 16 g/l was produced at a productivity of 16 g/lh from 45 g/l lactose in the whey permeate feed (94% utilization). This was an ethanol yield of 71% on lactose utilized. If the separator section were considered, the ethanol productivity was 5 g/lh and the exit ethanol concentration was 19 g/l, while the overall retention time was 3.7 hours. The cell concentration inside the tower varied between 10 and 100 g/l dried weight (54 and 350 g/l wet weight) being greatest at the bottom of the tower.

K. marxianus was found to be inhibited by a high level of ethanol in the growth medium and unable to ferment completely a high concentration of lactose when tested in 10 litre-scale-batch fermentation. Further tests in the presence of sucrose and lactose found that this yeast exhibited diauxic behaviour by utilizing sucrose before lactose. This behaviour generally resulted in incomplete lactose utilization in the tower. In the screening for a flocculent lactose-fermenting yeast, the yeast strain K. marxianus was found to be the only flocculent yeast, but it was only moderately flocculent. Further investigation found that it had good flocculence when grown in media which support good growth, and poor flocculence when grown in acidic media and in media which do not support good growth. A subculture of this yeast strain showed moderate flocculence when grown in whey permeate.

Tower fermentation of whey permeate enriched with molasses by mixed culture of Saccharomyces cerevisiae CFCC39 and K. marxianus Y42 was found to be difficult. The difficulty arose because of incomplete lactose utilization even at a very low feed rate (up to 0.14 mm/s) and incompatible flocculation properties of the two yeast species employed. Blockage of the separator and gas slug formation were caused by the very flocculent yeast mass of S. cerevisiae CFCC39. This caused
K. marxianus to be slowly washed out of the tower fermenter. Sucrose was completely utilized at the bottom of the tower fermenter, while lactose utilization was slow and incomplete. The incomplete lactose utilization has been attributed to the diauxic behaviour of K. marxianus, ethanol inhibition and molasses inhibition (probably due to its reaction with whey permeate during autoclaving).

Results of tower fermentation of cane molasses have also been given for characterization of the tower fermenter used.

Experiments to isolate an ethanol tolerant K. marxianus using a serial subculture in a medium containing increasing ethanol concentrations were performed. The isolate obtained could tolerate up to 50 g/l ethanol. It could ferment lactose in whey permeate to produce ethanol at a faster rate than the parent strain and other lactose-fermenting yeast tested. The isolate was found to be stable. It was not used in the tower fermenter as it was non-flocculent.

An attempt was made to isolate a sucrose-negative K. marxianus. This was only partially successful. The mutant did not grow on sucrose agar but reverted to the wild type when grown in liquid medium containing both sucrose and lactose.

An experiment to isolate a diauxie-negative K. marxianus strain using D-glucosamine as a glucose analogue was also described. This was unsuccessful because K. marxianus was able to grow on lactose in presence of the analogue.
TO MY KIWI AND THAI PARENTS
ACKNOWLEDGEMENT

During the course of his attempt to complete this study, the author owed gratitude to many people and wishes to thank the following:

Professor R.L. Earle and Dr. Mary D. Earle for the kindness and help given to him and to the development of Food Technology and Biotechnology studies in Thailand and in particular at Khonkaen University.

The DSIR for providing financial support during part of this study.

His supervisors Drs. Vidar Friis Larsen and John D. Brooks for their guidance and advice.

Dr. Ian S. Maddox for his able guidance, advice and forever readiness to help and answer the many questions from the author on general industrial microbiology.

Dr. Graham J. Manderson for his forever readiness to give help and advice on yeast morphology and behaviour, and photomicroscopy.

Dr. Noel W. Dunn of the School of Biological Science, University of New South Wales, Sydney, Australia, for his guidance, advice and planning of the experiments on the culture improvement of *Kluuyveromyces marxiatus*.

Assoc. Professor Anthony M. MacQuillan of the Dept. of Microbiology, University of Maryland, College Park, Maryland, USA, for providing two lactose fermenting yeast cultures in which one of them was flocculent. Thus, enabling the completion of this study, and for his advice on *Kluuyveromyces* species mutation.

Dr. Marion Ewen of the Dairy Research Institute (DRI), Palmerston North, for her various help and advice, particularly for providing references on whey technology, giving some first hand knowledge on tower fermentation and reading the manuscript.

Dr. Roy J. Thornton of the Dept. of Microbiology, Massey University, for giving consultation and advice on yeast mutation.

The staff of DRI, Palmerston North. The Whey product Section: Messrs. Peter Hobman, Mike O'Connell and John Bligh for their assistance in providing the whey permeate. The DRI library staff for their able assistance in particular Lorraine Tremain.

The technical and secretarial staff of the Faculty of Technology: John Alger, Paul Shaw, Derek Couling, Mike Stevens, Robyn Calder, Mark Lubbers, Astrid Ndzinge, Melvin Smith, Terry Gracie, Margaret Bewley,
Raewyn Cheer, Beverly Hawthorn and Carol Clouston for their able assistance.

The staff of Massey University Library in particular the Serials and Interloan Departments.

Claire Mudford for her assistance during the experiments on tower fermentation, and thesis preparation.

The boiler house staff for their cooperation in providing the steam outside office hours.

Bruce Walker for his assistance in the transportation of whey permeate.

His fellow students: Tom Clark, Sheelagh Wilkinson, Moazzem Hozzain, Tipavana Ngarmsak, Pisanu Vichiensanth, Tony Retter, Richard Gapes, John Mawson, Warren Hollaway, Wong Tze Sen and Pamela Palfreyman. Many thanks for their helpful and encouraging words, advice and sharing sadness during bad times.

Many thanks to the many friends in the Faculty of Technology who have provided a very friendly atmosphere to work in.

Brian Wilkinson, Dick Poll, Mr. & Mrs Meredith and their respective families for their kindness and encouraging words and for offering the warmth of their homes.

Mrs. Bunnak Wickham and (Aunty) Bertha Zurcher for finding and letting a comfortable accommodation.

Sarah Sant for proof reading part of the final manuscript.

The Computer Centre staff for their cooperation and assistance in the preparation of the manuscript.

Vivienne Mair and Joane Charles for typing part of the manuscript.

Mr. A. Eustace, Sunanta Juntakul and Priscilla Burton for their kind assistance during photocopying.

Christine Samaniego and Linda Poll for their assistance in the preparation of the manuscript for binding.

Finally, his Kiwi parents (Mr. & Mrs. Moxon) and their family for all the love, kindness, warmth, care, encouragement and help that they have given which could not be expressed in a few words. Without their assistance the completion of this study would have been extremely difficult.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

1 WHEY, ITS UTILIZATION AND DISPOSAL

1.1 Introduction

1.2 Types of whey

1.3 Whey composition

1.4 Whey production

1.5 Whey utilization and disposal

1.5.1 Whey disposal

1.5.2 Protein production

1.5.3 Lactose production

1.5.4 Fermentation of whey

(a) Beverage production

(b) Lactic acid production

(c) Citric acid production

(d) Acetic acid fermentation

(e) Microbial protein production

(f) Butanol production

(g) Production of other fermentation products

(h) Ethanol production

1.6 Summary

2 LITERATURE REVIEW

2.1 Introduction to ethanol fermentation

2.1.1 General biochemistry

2.1.2 General microbiology

2.2 Ethanol fermentation of whey

2.2.1 Microorganisms

2.2.2 Metabolism of lactose to ethanol by yeast

2.2.3 Yeast environmental considerations
(a) Substrate utilization
Concentrated whey 16
(b) Ethanol production 17
(c) Ethanol inhibition 19
(d) Aeration 20
(e) Nutrient requirements 20
(f) Temperature 20
(g) pH 21

2.3 Ethanol fermentation processes 21
2.3.1 Alternative processes to batch fermentation 21
 (a) Continuous stirred tank fermentation 21
 (b) Vacuum fermentation 21
 (c) Rapid batch fermentation 23
 (d) Fermentation by immobilized cells 23
 (e) Tower fermentation 24
2.3.2 Industrial and pilot plant processes used for the production of ethanol from whey 25

2.4 Ethanol production by tower fermentation 26
2.4.1 History of tower fermentation 26
2.4.2 The characteristics and operation of the tower fermenter 26
 (a) Organisms for tower fermentation 28
 (b) The effect of tower height 28
 (c) Residence times in tower fermentation 29
 (d) The effect of original wort specific gravity on limiting volumetric efficiency 30
 (e) Aeration 31
2.4.3 Applications of tower fermentation 31
2.4.4 Industrial ethanol tower fermentation 31
 (a) Laboratory scale investigations 31
 (b) Media used and the effect of sugar concentration 32
 (c) Fermentation temperature 33
 (d) Operating pH 34
 (e) Conclusions 34

2.5 Flocculation of yeasts 35
2.5.1 Flocculent yeast classification 35
 (a) Non-flocculent 35
 (b) Flocculent-physically limited 35
 (c) Flocculent-fermentation limited 35
2.5.2 Quantitative measurement of yeast flocculation
(a) Burn's method as modified by Helm et al
(b) Burn's method as modified by Stewart
(c) Sharp's method
(d) Spectrophotometric method

2.5.3 Factors influencing yeast flocculence
2.5.3.1 Inherited flocculent properties in yeast
(a) Flocculent genes
(b) The yeast cell wall
(c) Comparison of the cell walls of flocculent and non-flocculent yeasts
(d) Chemical effects on the disulphide bridge
(e) The fimbria of yeast cell wall
(f) The cell wall ionic charge

2.5.3.2 Environmental effect on yeast flocculation
(a) Flocculation aids
(b) Mechanism of ionic induced flocculation
(c) Deflocculating agents
(d) Growth media
(e) Temperature
(f) pH
(g) Coagulation
(h) Agitation

2.6 Mixed culture and mixed substrate fermentation

2.7 Conclusions

3 MATERIALS AND METHODS
3.1 Materials
3.1.1 Chemicals
3.1.2 Gases
3.1.3 Media
(a) Whey permeate
(b) Molasses
(c) Tower fermentation start up media
(d) Tower fermentation media
(e) Culture preservation media
(f) Flocculation test media
(g) Basic nutrient base
(h) Whey broth and agar
(i) Lactose agar
(j) Sucrose broth and agar
(k) Total cell plate count agar
(l) pH adjustment of media
3.1.4 Organisms

3.2 Equipment

3.2.1 Tower fermenter
(a) The separator
(b) Temperature control
(c) Tower and medium aeration
(d) Air supply and filter
(e) Medium pump

3.2.2 10 litres batch fermenter

3.2.3 UV lamp

3.2.4 Replica plating

3.2.5 Glassware

3.3 Sterilization

3.3.1 Media and glassware

3.3.2 Tower fermenter

3.4 Analytical methods

3.4.1 Lactose

3.4.2 Sucrose

3.4.3 Ethanol

3.4.4 Cell concentration
(a) Cell dried weight and wet weight
(b) Plate count
(c) Haemacytometer count

3.4.5 Yeast flocculence
(a) Flocculation scale method
(b) Sharp's modified Burn's number

3.4.6 pH

3.4.7 Specific gravity

3.5 Culture preservation and maintenance

3.6 Inoculum preparation

3.7 Fermentation conditions

3.8 Tower fermentation

3.8.1 Start up
(a) Initial start up
(b) Subsequent start up
3.8.2 Sampling procedure
3.8.3 Continuous operation
3.9 Flocculation tests
3.10 Culture improvements
 3.10.1 Isolation of ethanol tolerant *K. marxianus* using ethanol gradient agar
 3.10.2 An attempt to isolate sucrose negative *K. marxianus* strains
 (a) Determination of optimum irradiation time
 (b) Replica plating and isolation
3.11 Calculation methods
 3.11.1 Tower fermentation
 3.11.2 Batch fermentation

4 TOWER FERMENTATION OF WHEY PERMEATE
4.1 The relationship between tower height and various fermentation parameters
 4.1.1 Lactose concentration and utilization
 4.1.2 Volumetric rate of lactose utilization
 4.1.3 Specific rate of lactose utilization
 4.1.4 Ethanol concentration
 4.1.5 Ethanol yield
 4.1.6 Volumetric rate of ethanol production
 4.1.7 Specific rate of ethanol production
 4.1.8 Cell concentration
 4.1.9 Medium pH
4.2 The effect of the residence time on various fermentation parameters
 4.2.1 Lactose concentration
 4.2.2 Ethanol concentration
 4.2.3 The rates of lactose utilization and ethanol production
4.3 The effect of superficial liquid velocity on various fermentation parameters
 4.3.1 Lactose concentration
 4.3.2 Ethanol concentration
 4.3.3 Rates of lactose utilization and ethanol production
 4.3.4 Cell concentration
4.3.5 Specific growth rate

4.4 Tower fermenter performance

4.4.1 Optimum superficial liquid velocity

4.4.2 Residence time and tower height

4.4.3 Sugar utilization

4.4.4 Yield of ethanol

4.5 Optimum conditions for the tower fermentation of whey permeate

4.5.1 Comparison with other tower fermentation investigations

4.5.2 Comparison with batch fermentation of whey

4.6 Continuous operation and difficulties

4.6.1 Organism

4.6.2 Continuous operation monitoring curves

4.6.3 Contamination

4.6.4 Feed lactose concentration

4.7 Conclusions

4.8 Summary

5 TOWER FERMENTATION OF WHEY PERMEATE ENRICHED WITH MOLASSES

5.1 The relationship between tower height and various fermentation parameters

5.1.1 Sugar concentrations and utilizations

(a) Sucrose

(b) Lactose

(c) Total sugar

5.1.2 Volumetric rates of sugar utilization

(a) Sucrose

(b) Lactose

(c) Total sugar

5.1.3 Specific rates of sugar utilization

(a) Sucrose

(b) Lactose

(c) Total sugar

5.1.4 Ethanol concentration

5.1.5 Ethanol yield

5.1.6 Volumetric rate of ethanol production

5.1.7 Specific rate of ethanol production

5.1.8 Cell concentration
6 FLOCCULATION TESTS

6.1 Introduction

6.2 Test media

6.2.1 Glossary of abbreviations used in the flocculation tests

6.3 Flocculation test results

6.3.1 Modified Burn's number and flocculation testing methods used

(a) Flocculation test media

(b) Technique for the determination of modified Burn's number

(c) Alternative technique

(d) Flocculent scale method

6.3.2 Flocculating ability of some lactose-fermenting yeasts strains

6.3.3 Observation of flocculence during shakeflask fermentation

(a) KM Y42

(b) KM Y42 (TS)

(c) S. cerevisiae FT146 (SC146)

(d) S. cerevisiae CFCC39(CCC39)

(e) SC 146 + KM Y42
(f) CC 39 + KM Y42

6.3.4 Flocculation of KM Y42 grown in whey permeate with no additive

6.3.5 The effect of the initial medium pH on flocculation of KM Y42 grown in whey permeate

6.3.6 The effect of membrane filtration on flocculation of KM Y42 grown in whey permeate with additives

6.3.7 Flocculation of KM Y42 grown in whey permeate supplemented with organic nutrients

6.3.8 Flocculation of KM Y42 grown in whey permeate supplemented with inorganic nutrients

6.3.9 Flocculation of KM Y42 grown in media supplemented with flocculation aids

6.3.10 Flocculation of KM Y42 grown in double sugar substrates

6.3.11 Flocculation of KM Y42 in different media

6.3.12 Flocculation of KM Y42 grown as mixed culture with CC 39 or SC 146 in mixed substrate

6.3.13 Flocculation of strains CC 39 and SC 146

6.3.14 Flocculation curves

6.4 Discussion

6.4.1 Flocculation of K. marxianus Y42

(a) Initial investigation

(b) Membrane filtration

(c) The additions of yeast and malt extract broths to whey permeate

(d) The addition of peptone, urea and diammonium hydrogen phosphate

(e) Lactose, glucose or maltose as a carbon source

(f) Enriched whey permeate

(g) The addition of flocculation aids to the growth media

(h) Medium pH

(i) Subculture of KM Y42

6.4.2 Flocculation of CC39 and SC146 grown as pure or mixed cultures with KM Y42

(a) SC 146

(b) CC 39

(c) The effect of the inoculum-growth medium
6.5 Conclusions
6.6 Summary

7 MEDIUM OPTIMIZATION AND CULTURE IMPROVEMENT

7.1 Introduction
7.2 Medium optimization
7.3 Isolation of an ethanol tolerant *K. marxianus*
 4.3.1 Preliminary batch fermentations
 (a) Whey permeate containing 40 g/l lactose
 (b) Whey permeate containing 100 g/l lactose
 (c) Whey permeate enriched with molasses
 7.3.2 Selection of ethanol tolerating isolate
 7.3.3 The stability of ethanol-tolerant isolate
 KM 10D10
 7.3.4 Fermentation comparison of some lactose fermenting yeasts
 7.3.5 10 l batch fermentations of ethanol-tolerant isolate
 (a) Whey permeate containing 100 g/l lactose
 (b) Whey permeate enriched with molasses
 7.3.6 Conclusions

7.4 An attempt to isolate diauxie-negative *K. marxianus* strains
 7.4.1 Introduction
 7.4.2 Isolation experiment
 (a) First attempt
 (b) Second attempt
 (c) Fermentation test
 7.4.3 The effect of D-glucosamine on growth of *K. marxianus*
 7.4.4 Conclusions

7.5 A mutation attempt to isolate sucrose negative *K. marxianus*
 7.5.1 Introduction
 7.5.2 First mutation attempt
 (a) Fermentation of whey permeate by mutant FSN 1 & 2
(b) Fermentation of mixed substrate of lactose and sucrose by mutants FSN 1 and 2
(c) Fermentation comparison of mutants FSN 1 and 2 with parent strain
7.5.3 Second mutation experiment
(a) Isolation of mutant
(b) Culture improvement of mutant FSN3
7.5.4 Conclusions
7.6 Summary
8 FINAL DISCUSSION AND CONCLUSIONS
REFERENCES
APPENDICES
A. FEED MEDIUM PUMP CAPACITY AND SAMPLING DATA SHEETS
B. EXPERIMENTAL DATA
B.1 Factorial experiment
B.2 Batch fermentation of whey permeate by K. marxianus Y42
B.3 Tower fermentation of whey permeate
B.4 Tower fermentation of whey permeate enriched with molasses
B.5 Tower fermentation of molasses
C. TOWER FERMENTATION OF MOLASSES
C.1 The relationship between tower height and various fermentation parameters
C.1.1 Sucrose and ethanol concentrations
C.1.2 Rates of sucrose utilization and ethanol production
(a) Volumetric rates
(b) Specific rates
C.1.3 Ethanol yield
C.1.4 Cell concentration
C.1.5 Medium pH
C.2 The effect of the residence time on various fermentation parameters
C.2.1 Sucrose and ethanol concentration
C.2.2 Rates of sucrose utilization and ethanol production
C.3 The effect of the superficial liquid velocity on various fermentation parameters
C.3.1 Sucrose and ethanol concentration 252
C.3.2 Rates of sucrose utilization and ethanol production 254
 (a) Volumetric rates 254
 (b) Specific rates 254
C.3.3 Cell concentration 257
C.3.4 Specific growth rate 259
C.4 Tower performance 259
C.5 Conclusions and summary 261
D. FLOCCULATION TEST. OBSERVATIONS AND DATA 262
D.1 Observations of flocculent behaviour during fermentation 262
 D.1.1 K. marxianus Y42 262
 D.1.2 K. marxianus Y42 (TS) 264
 D.1.3 S. cerevisiae FT 146 265
 D.1.4 S. cerevisiae CFCC 39 265
D.2 Flocculation test data 266
E. ESTIMATION OF UNCERTAINTIES 272
E.1 Sugar concentrations 272
E.2 Ethanol concentration 273
E.3 Ethanol yield 273
E.4 Rate of sugar utilization 274
 E.4.1 Volumetric rate 274
 E.4.2 Specific rate 274
E.5 Rates of ethanol production 275
 E.5.1 Volumetric rate 275
 E.5.2 Specific rate 275
E.6 Cell concentration 276
 E.6.1 Haemacytometer cell count 276
 E.6.2 Plate count 276
 E.6.3 Cell dried weight and centrifuged wet weight 276
 E.6.4 Estimation of the cell dried weight of
 K. marxianus Y42 from cell plate count number 277
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure number</th>
<th>Title</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Milk utilization</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Typical annual whey production</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Summary of processes for whey utilization and disposal</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>EMP pathway</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of the APV tower fermenter</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Progressive reduction of wort gravity in a tower fermenter</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>The relationship between wort specific gravity and apparent</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>fermentation time</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>The effect of original wort specific gravity on limiting</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>volumetric efficiency</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>The effect of fermentable sugars concentration on dilution rate</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>and productivity</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Determination of modified Burn's number</td>
<td>36</td>
</tr>
<tr>
<td>2.8</td>
<td>$\mu - S$ relationship of two organisms</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Tower fermenter set up</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagram of the tower fermenter</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram of the separator and draught tube</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Water heating and air filtration systems</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Batch fermenter (10 litres working volume)</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Replication equipment</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>Subculturing steps used in the isolation of ethanol tolerating</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>K. marxianus</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Survival of cells irradiated with UV light</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Lactose concentration vs tower height</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Volumetric rate of lactose utilization vs mean tower height</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Specific rate of lactose utilization vs mean tower height</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Ethanol concentration vs tower height</td>
<td>78</td>
</tr>
<tr>
<td>4.5</td>
<td>Ethanol yield vs tower height</td>
<td>79</td>
</tr>
<tr>
<td>4.6</td>
<td>Volumetric rate of ethanol production vs mean tower height</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>Specific rate of ethanol production vs mean tower height</td>
<td>82</td>
</tr>
<tr>
<td>4.8</td>
<td>Specific rate of ethanol production vs ethanol concentration</td>
<td>83</td>
</tr>
<tr>
<td>4.9</td>
<td>Cell concentration vs tower height</td>
<td>84</td>
</tr>
<tr>
<td>4.10</td>
<td>Tower fermenter during whey permeate fermentation</td>
<td>86</td>
</tr>
<tr>
<td>4.11</td>
<td>Medium pH vs tower height</td>
<td>87</td>
</tr>
<tr>
<td>4.12</td>
<td>Lactose concentration vs residence time</td>
<td>89</td>
</tr>
</tbody>
</table>
4.13 Ethanol concentration vs residence time
4.14 Volumetric rate of lactose utilization vs mean residence time
4.15 Volumetric rate of ethanol production vs mean residence time
4.16 Specific rate of lactose utilization vs mean residence time
4.17 Specific rate of ethanol production vs mean residence time
4.18 Lactose concentration vs superficial liquid velocity (V_s)
4.19 Ethanol concentration vs superficial liquid velocity (V_s)
4.20 Volumetric rate of lactose utilization vs V_s
4.21 Specific rate of lactose utilization vs V_s
4.22 Volumetric rate of ethanol production vs V_s
4.23 Volumetric rate of ethanol production vs V_s
4.24 Cell concentration vs V_s
4.25 (a) Tower operation-monitoring curves
(b) Titration curves
4.26 Bacterial contamination
5.1 Sugar concentrations vs tower height
5.2 Volumetric rates of sugar utilization vs mean tower height
5.3 Specific rates of sugar utilization vs mean tower height
5.4 Ethanol concentration vs tower height
5.5 Ethanol yield vs tower height
5.6 Volumetric rate of ethanol production vs mean tower height
5.7 Cell numbers vs tower height
5.8 Cell concentration vs tower height
5.9 Channelling inside the tower
5.10 Medium pH vs tower height
5.11 The effect of mixed culture ratio on floc morphology
6.1 Flocculation of KM Y42 (TS), SC146 and CC39 grown and tested in different media.
7.1 Batch fermentation of whey permeate (40 g/l lactose)
7.2 Batch fermentation of whey permeate (100 g/l lactose)
7.3 Batch fermentation of whey permeate enriched with molasses
7.4 Diauxic behaviour study in the fermentation of whey permeate enriched with molasses
7.5 K. marxianus: total cell number ratio vs fermentation time
7.6 10 litre batch fermentation of whey permeate (100 g/l lactose) by KM10D10
7.7 10 litre batch fermentation of whey permeate enriched with molasses by KM10D10
7.8 Growth of KM10D10 in lactose and glucose agars
7.9 Comparison of growth of possible sucrose negative mutants
7.10 Sequence of isolation of mutants 235C and 256 A
7.11 Sequence of plating and streaking to check stability of mutant 256 A
7.12 Streaking sequence to check stability of 235 C
7.13 First culture improvement sequence of mutant FSN3
7.14 Second culture improvement sequence of mutant FSN3
A.1 Pump capacity curves for 25mm\(\phi\) tower fermenter
B.1 K. marxianus Y42 cell plate count number vs cell dried weight
B.2 Cell centrifuged wet weight vs cell dried weight
C.1 (a) sucrose and (b) ethanol concentrations vs tower height
C.2 Volumetric rates of (a) sucrose utilization and (b) ethanol production vs mean tower height
C.3 Specific rates of (a) sucrose utilization and (b) ethanol production vs mean tower height
C.4 Ethanol yield vs tower height
C.5 Cell concentration vs tower height
C.6 Medium pH vs tower height
C.7 (a) sucrose and (b) ethanol concentrations vs residence time
C.8 Volumetric rates of (a) sucrose utilization and (b) ethanol production vs mean residence time
C.9 Specific rates of (a) sucrose utilization and (b) ethanol production vs mean residence time
C.10 (a) sucrose and (b) ethanol concentrations vs superficial liquid velocity \((V_s)\)
C.11 Volumetric rates of (a) sucrose utilization and (b) ethanol production vs \(V_s\)
C.12 Specific rates of (a) sucrose utilization and (b) ethanol production vs \(V_s\)
C.13 Cell concentration vs \(V_s\)

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table number</th>
<th>Table title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical composition of whey</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Composition of deproteinatned whey</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Estimated quantities of whey production</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Whey powder production</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Fermentation of concentrated whey</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Ethanol concentration, productivity, and yield in whey fermentation</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Industrial ethanol tower fermentation studies or processes</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>The effect of sugar concentration on the limiting volumetric efficiency</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>Common terms for microbial interactions</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical composition of sulphuric whey permeate</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Yeast cultures used</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Plating dilutions used to determined optimum UV irradiation time</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Lactose utilization</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean specific growth rate</td>
<td>106</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of optimum superficial liquid velocities</td>
<td>108</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of the effective tower heights and residence time</td>
<td>109</td>
</tr>
<tr>
<td>4.5</td>
<td>Exit conditions at velocity of 0.24 mm/s</td>
<td>111</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of tower fermentation conditions</td>
<td>112</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison with batch fermentation</td>
<td>112</td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage sugar utilization</td>
<td>122</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of lactose utilization</td>
<td>124</td>
</tr>
<tr>
<td>5.3</td>
<td>Specific rate of ethanol production</td>
<td>133</td>
</tr>
<tr>
<td>5.4</td>
<td>The concentrations of (K. \ marxianus) and (S. \ cerevisiae)</td>
<td>136</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison between fermentation of whey permeate enriched with molasses and with sucrose</td>
<td>145</td>
</tr>
<tr>
<td>5.6</td>
<td>Fermentation comparison using different ratios of mixed yeast culture in the inoculum</td>
<td>147</td>
</tr>
<tr>
<td>6.1</td>
<td>Whey permeate as the base medium</td>
<td>153</td>
</tr>
<tr>
<td>6.2</td>
<td>Molasses medium</td>
<td>155</td>
</tr>
<tr>
<td>6.3</td>
<td>Lactose as the sole sugar source</td>
<td>155</td>
</tr>
<tr>
<td>6.4</td>
<td>Maltose as the sole sugar source</td>
<td>155</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.5</td>
<td>Glucose as the sole sugar source</td>
<td>155</td>
</tr>
<tr>
<td>6.6</td>
<td>Prepared media</td>
<td>156</td>
</tr>
<tr>
<td>6.7</td>
<td>Flocculence measurement media</td>
<td>156</td>
</tr>
<tr>
<td>6.8</td>
<td>Flocculating ability of some lactose-fermenting yeasts</td>
<td>159</td>
</tr>
<tr>
<td>6.9</td>
<td>Flocculation of KM Y42 grown in whey permeate with no additives</td>
<td>161</td>
</tr>
<tr>
<td>6.10</td>
<td>Flocculation of KM Y42 grown in whey permeate with additives at pH of 4.6 and 5.0</td>
<td>162</td>
</tr>
<tr>
<td>6.11</td>
<td>Flocculation of KM Y42 grown in whey permeate and additive: with and without membrane filtration</td>
<td>163</td>
</tr>
<tr>
<td>6.12</td>
<td>Flocculation of KM Y42 grown in whey permeate supplemented with organic nutrients</td>
<td>164</td>
</tr>
<tr>
<td>6.13</td>
<td>Flocculation of KM Y42 grown in whey permeate supplemented with inorganic nutrients</td>
<td>164</td>
</tr>
<tr>
<td>6.14</td>
<td>Flocculation of KM Y42 grown in media supplemented with flocculation aids</td>
<td>165</td>
</tr>
<tr>
<td>6.15</td>
<td>Flocculation of KM Y42 grown in double-sugar substrates</td>
<td>166</td>
</tr>
<tr>
<td>6.16</td>
<td>Flocculation of KM Y42 in different media</td>
<td>167</td>
</tr>
<tr>
<td>6.17</td>
<td>Flocculation of KM Y42 grown as mixed culture with S. cerevisiae in mixed substrate</td>
<td>168</td>
</tr>
<tr>
<td>6.18</td>
<td>Flocculation of strains CC39 and SC146</td>
<td>169</td>
</tr>
<tr>
<td>7.1</td>
<td>t-ratio of parameters</td>
<td>177</td>
</tr>
<tr>
<td>7.2</td>
<td>Comparison of fermentation ability of 4 ethanol tolerant isolates of K. marxianus UCD FST 7158</td>
<td>186</td>
</tr>
<tr>
<td>7.3</td>
<td>Test of the stability of KM10D10</td>
<td>187</td>
</tr>
<tr>
<td>7.4</td>
<td>Summary of fermentation comparison of lactose fermenting yeasts</td>
<td>188</td>
</tr>
<tr>
<td>7.5</td>
<td>Comparison of lactose utilization and ethanol production of 10 litre batch fermentation of whey permeate (100 g/l by KM10D10 and parent strain</td>
<td>190</td>
</tr>
<tr>
<td>7.6</td>
<td>Observation of growth of KM10D10 in glucose and lactose agars</td>
<td>194</td>
</tr>
<tr>
<td>7.7</td>
<td>Observation of growth of KM10D10 in glucose and lactose agars (second attempt)</td>
<td>196</td>
</tr>
<tr>
<td>7.8</td>
<td>Fermentation test of isolate obtained from lactose agar containing 10 g/l DGA</td>
<td>197</td>
</tr>
<tr>
<td>7.9</td>
<td>Fermentation of whey permeate by two possible sucrose-negative mutants of KM10D10</td>
<td>201</td>
</tr>
</tbody>
</table>
Table Title

7.10 Fermentation of whey permeate enriched with sucrose by FSN 1 and 2 202
7.11 Fermentation comparison of mutants FSN 1 and 2 with parent strain KM10D10 203
7.12 Fermentation of whey permeate (100 g/l lactose) by mutant FSN 3 (culture no.6) 207
7.13 Fermentation of whey permeate (100 g/l lactose) by mutant FSN 3 (culture no.11) 209

B.1 Variables and their concentrations used at various RUNS 229
B.2 Fermentation results of factorial experiment 229
B.3 Batch fermentation of whey permeate by K. marxianus Y42 230
B.4 A summary of the dimensions of the tower fermenter 231
B.5 Tower fermentation of whey permeate data at various sampling points 232
B.6 Tower fermentation of whey permeate data at various tower sections 233
B.7 Data for tower fermentation of whey permeate enriched with molasses at various sampling points 234
B.8 Data for tower fermentation of whey permeate enriched with molasses at various tower sections 234
B.9 Tower fermentation of molasses data at various sampling points 236
B.10 Tower fermentation of molasses data at various tower sections 237
C.1 Percentage sucrose utilization at various heights 240
C.2 Mean specific growth rate at various superficial liquid velocities 259
C.3 Comparison of tower fermentation of 100 g/l sucrose media 260
LIST OF ABBREVIATIONS

PREFIX
\(\Delta \) change in concentration, g/l or %

SUBSCRIPTS
a average
E effective
i condition at a particular tower height or section
l lactose
o overall
r residence time
s sucrose or superficial
t total sugar
u substrate utilization

NOTATIONS
A aluminium sulphate, \(\text{Al}_2(\text{SO}_4)_3 \)
AFEB attached-film-expanded-bed fermenter
B broth
B 95% confidence interval uncertainty
Ca calcium sulphate, \(\text{CaSO}_4 \)
CB yeast cleaning buffer (\(\text{CaSO}_4 \) wash)
CP \textit{Candida pseudotropicalis}
CC39 \textit{Saccharomyces cerevisiae CFCC39}
CSTR continuous stirred tank reactor
D dilution rate
DGA D-glucosamine
DW cell dried weight, g/l DW
E ethanol concentration, g/l
E' volumetric rate of ethanol production, g/lh
EF extremely flocculent
F membrane filtration (0.45 \(\mu \text{m} \))
FM flocculating medium (acetate buffer)
G glucose
H, \(H_E \) tower height, effective tower height, mm or m
H* average tower height
KL \textit{Kluyveromyces lactis}
KM \textit{Kluyveromyces marxianus}
KMY42 *K. marxianus* Y42

LVE limiting volumetric efficiency

M malt extract broth

M* malt extract broth (Oxoid)

Ma maltose

MBN modified Burn's number

MBN* non-standard modified Burn's number

Me malt extract powder medium

MF moderately flocculent

Mo molasses

Ms malt extract syrup (Maltevo)

P whey permeate

P percentage uncertainty

Pe peptone

P4.6 whey permeate with no pH adjustment

q specific rate of substrate utilization, g/gh

Q volumetric flow rate, ml

r (Linear regression) correlation coefficient

R rough

S substrate concentration, g/l

S' volumetric rate of substrate utilization, g/lh

SC *Saccharomyces cerevisiae*

SC146 *S. cerevisiae* FT146 (AWRI 350)

SGe exit specific gravity

SM spent malt extract broth

Su substrate utilization, %

Tr residence time, h

T* average residence time, h

Tro overall residence time, h

TS subcultured from the tower fermenter

VE effective tower volume, ml

Vi volume of a section of the tower fermenter, ml

Vs superficial liquid velocity, mm/s

VF very flocculent

WF weakly flocculent

X total cell number or cell weight, cell/ml or g/l

Xa average cell concentration, g/l

XKM *K. marxianus* cell number or weight, cell/ml or g/l
Y yield coefficient, yield of ethanol on substrate utilized, %
yeast extract
10 100 g/l whey permeate solution
44,46 ratio of lactose to sucrose of 40:40 g/l and 40:60 g/l
5 pH 5.0

GREEK NOTATIONS
μ specific growth rate, g/gh
ν specific rate of ethanol production, g/gh
ϕ diameter