THE FIBRILLAR ORGANIZATION OF COLLAGEN
IN CONNECTIVE TISSUE

A thesis presented in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy in Biophysics at
Massey University

ALAN SMITHSON CRAIG
1984
DEDICATION

This thesis is dedicated to my wife - Wendy
and our children
Michael, Kim, Kirsten and Hadley.
ABSTRACT

Although certain aspects of connective tissue structure have been studied in considerable detail, comparatively little effort has been devoted to studying one of the largest structural units present in most tissues - the collagen fibril. In this thesis electron microscope observations have been made on the transverse dimensions of fibrils from tissues as diverse as cornea, skin and tendon. Collagen fibril diameter distributions have been measured for such tissues from a wide range of animals - predominantly mammals, but also fish, amphibians, reptiles and birds - at varying stages of development. These data have allowed the growth of collagen fibrils to be studied quantitatively and their size distributions to be related to their mechanical attributes. Diseased tissues or tissues containing anomalous fibril diameter distributions have also been studied and, where possible, the data have been related to the altered mechanical properties of the tissue and to its mode of growth and development. In a coordinated study with other research workers, the content of the individual glycosaminoglycans in a tissue have been shown to be related to the mass-average diameters of the collagen fibrils in those tissues. These results provide a basis for understanding the feedback mechanism by which fibril size distributions may be modified in line with changing mechanical needs and indicate the fundamental steps in the growth and development of fibrils.

In addition to these studies, two other specific problems were addressed. In the first, the ultrastructure of a specialized connective tissue - the cornea - was studied in detail. By maintaining precise experimental protocols and measurement procedures it was shown, contrary to the previous data of others, that the
collagen fibrils in mammals, birds, reptiles, amphibians and cartilaginous fish were similar to one another but significantly different to the corneal stromal fibrils of the bony fish. Further studies, which indicated that the fibrils were constant in diameter across the width of the stroma, clarified previous results which had indicated a gradual change in diameter with varying depth in the stroma. An age-related study of fibril diameters in the cornea was also undertaken. The second problem investigated was the degree of shrinkage introduced during the preparative procedures for electron microscopy. In collaborative studies with others, X-ray and electron microscope observations were made on the same tissue in hydrated and dehydrated states respectively. Analyses of these data indicated that significant lateral shrinkage does indeed occur in fibrils from foetal or immature tissues as well as in mature tissues containing only small diameter fibrils. Throughout the thesis possible sources of artefact introduced by the technique of electron microscopy have been considered and the data interpreted conservatively.
ACKNOWLEDGEMENTS

Many people have helped me in a variety of ways to get this thesis into its present form.

In my earlier years at DSIR Keith Williamson introduced me to, and gave me sound guidance in, the principles and techniques of electron microscopy. Subsequently my Director, Ray Bailey, gave me the encouragement and provided the impetus for me to embark on this present course of study.

Throughout this thesis the experimental results obtained by electron microscopy have, where possible, been related to biochemical and X-ray diffraction data kindly made available to me by Barbara Brodsky, Eric Eikenberry, Michael Flint, Gerry Gillard and Isabel Williams. Gary Thomas and Bob Fletcher supplied me with histogram plotting and population deconvolution programs and together provided me with oft-needed statistical advice. Doug Hopcroft has been responsible for the excellent maintenance of the electron microscopes and Ray Bennett printed the micrographs. I was assisted by many friends in typing the manuscript but it was June Tipoki who bore the lion's share of this chore.

Finally, and of greatest importance to me, my research colleague and supervisor, David Parry, not only instigated this project but displayed an un-ending enthusiasm for it. I am indebted to his necessary and continual encouragement throughout my writing-up.

To all of these people, and to many others whom I have personally acknowledged, I sincerely thank you for your support.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Chapter 1: The Collagenous Component of Connective Tissues

1.1 Introduction | 1 |
1.2 The Structural Hierarchy of Collagen | |
 1.2.1 The collagen molecule | 2 |
 1.2.2 The collagen fibril | 8 |
1.3 The Nature of Collagenous Tissues | |
 1.3.1 The cellular components | 11 |
 1.3.2 The fibrous components | 14 |
1.4 Scope and Aims of This Thesis | 18 |

Chapter 2: Materials and Methods

2.1 Instrumental Method | 21 |
2.2 Collection of Specimens | 30 |
2.3 Preparative Procedures | 33 |
2.4 Sectioning and Staining Techniques | 34 |
2.5 Photomicrography and Mensuration Methods | 35 |
2.6 Analytical Methods | 37 |

Chapter 3: The Cornea

3.1 Introduction | 39 |
3.2 Results and Discussion | 47 |
CHAPTER 4: EXPERIMENTAL OBSERVATIONS ON THE GROWTH AND
DEVELOPMENT OF COLLAGEN FIBRILS

4.1 INTRODUCTION

4.2 TENDONS AND LIGAMENTS
 4.2.1 Avian Metatarsal Tendon
 4.2.2 Mammalian Tendons and Ligaments

4.3 SKINS

4.4 OTHER TISSUES

CHAPTER 5: COLLAGEN FIBRIL ASSEMBLY DISORDERS

5.1 INTRODUCTION

5.2 FIBRILLAR MALFORMATIONS
 5.2.1 Heritable Disorders
 5.2.2 Naturally Occurring Malformations

5.3 CHANGING FIBRIL DIAMETER DISTRIBUTIONS
 5.3.1 Induced Disorders
 5.3.2 Acquired Disorders

5.4 CONCLUSIONS

CHAPTER 6: INTERPRETATION AND SIGNIFICANCE OF COLLAGEN FIBRIL
DIAMETER DISTRIBUTION DATA

6.1 CONSIDERATIONS OF THE LIMITATIONS IMPOSED BY ELECTRON
MICROSCOPY

6.2 ANALYSIS OF THE DIAMETER DISTRIBUTIONS THAT ARE SHARP
AND UNIMODAL

6.3 ANALYSIS OF DIAMETER DISTRIBUTIONS THAT ARE
HETEROGENEOUS

6.4 ANALYSIS OF BROAD DISTRIBUTIONS OF COLLAGEN FIBRIL
DIAMETER

6.5 CORRELATION BETWEEN ELECTRON MICROSCOPE AND X-RAY DATA

6.6 CONCLUSIONS

(vii)
CHAPTER 7: THE GROWTH AND DEVELOPMENT OF CONNECTIVE TISSUES
AND THE RELATIONSHIP BETWEEN COLLAGEN FIBRIL DIAMETER
DISTRIBUTIONS AND MECHANICAL PROPERTIES

7.1 INTRODUCTION 149

7.2 CORRELATIONS BETWEEN COLLAGEN FIBRIL DIAMETER
DISTRIBUTIONS AND TISSUE ATTRIBUTES

7.2.1 Foetal Development 152
7.2.2 Modes of Collagen Fibril Development for
Altricial and Precocious Animals 155
7.2.3 Post-natal Development 157
7.2.4 Form of the Collagen Fibril Diameter Distribution
at Maturity 159
7.2.5 Form of the Collagen Fibril Diameter Distribution
at Senescence 164
7.2.6 Correlation Between Mass-average Diameter and
Ultimate Tensile Strength 164
7.2.7 Form of the Diameter Distribution and the
Mechanical Properties of the Tissue 165

CHAPTER 8: THE RELATIONSHIP BETWEEN GLYCOSAMINOGLYCAN
COMPOSITION AND COLLAGEN FIBRIL DIAMETERS: A POSSIBLE
MECHANISM FOR FIBRILLOGENESIS

8.1 INTRODUCTION 170

8.2 DO GLYCOSAMINOGLYCANS MEDIATE CONTROL?

8.2.1 Previous Concepts 172
8.2.2 Observations 176
8.2.3 Hypothesis 184

8.3 CONCLUSIONS 190

CHAPTER 9: SUMMARY 195
APPENDICES

APPENDIX 1: GENETICALLY DISTINCT COLLAGEN TYPES AND THEIR DISTRIBUTION IN THE BODY TISSUES 200

APPENDIX 2: DIMENSIONS OF THE PARAMETERS OF PROPOSED COLLAGEN SUB-FIBRILLAR ASSEMBLIES 201

APPENDIX 3: SOURCE OF CORNEAS FOR COMPARATIVE STUDY AND STATE OF PRESERVATION PRIOR TO PREPARATION FOR ELECTRON MICROSCOPY 202

APPENDIX 4: PROCESSED MATERIAL SUPPLIED BY OTHER RESEARCH WORKERS 203

APPENDIX 5: BACTERIAL COLLAGENASE TREATED FLEXOR TENDONS FROM HORSE. EXPERIMENTAL PROTOCOL, CLINICAL AND POST-MORTEM OBSERVATIONS. 203a

REFERENCES 204
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Components of connective tissues in mature animals.</td>
<td>16</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Mean diameters of populations of collagen fibrils from the corneal stromal lamellae of the adult vertebrates studied.</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Mean collagen fibril diameters of the corneal stroma as cited in various works.</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Mean diameters of populations of collagen fibrils from corneal stromal lamellae in developing frog, rat, guinea pig, man and some neonatal mammals.</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Variation of mean collagen fibril diameter with depth below the anterior surface of corneal stroma.</td>
<td>57</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Collagen fibrils of the vertebrate corneal stroma having diameters which are not simple multiples of ~8 nm.</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Mean and mass-average diameters of collagen fibrils in chick metatarsal tendons.</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Resolution of multimodal distributions of collagen fibrils in chick metatarsal tendons.</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Modal centre-to-centre and mean surface separations of collagen fibrils in foetal metatarsal tendons.</td>
<td>69</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Precocious-altricious classification of neonate placental mammals.</td>
<td>73</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Mean and mass-average diameters of collagen fibril diameter distributions of tendons and ligaments in the developing sheep.</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Resolution of sub-populations of collagen fibril diameters in sheep tendons and ligaments; Their</td>
<td></td>
</tr>
</tbody>
</table>
comparision with the sharp unimodal distribution observed.

Table 4.7 Mean and mass-average diameters of collagen fibril diameter distributions of tendons from neonate to adult guinea pigs.

Table 4.8 Mean and mass-average diameters of collagen fibril diameter distributions of flexor tendons in foetal to mature rats.

Table 4.9 Resolution of bimodal distributions of collagen fibril diameters in rat tendons and their comparison to the sharp unimodal distributions observed.

Table 4.10 Mean and mass-average diameters of collagen fibril diameter distributions in skin.

Table 4.11 Mean and mass-average diameters of collagen fibril diameter distributions recorded from some miscellaneous tissues.

Table 5.1 Collagen fibril diameter distribution data from horse superficial digital flexor tendon after treatment with bacterial collagenase.

Table 5.2 Resolution of sub-populations of collagen fibrils in horse superficial digital flexor tendon treated with bacterial collagenase.

Table 6.1 Diameters of collagen fibrils as determined by electron microscope and X-ray diffraction studies.

Table 7.1 Form of the collagen fibril diameter distribution in foetal to senescent tissues.

Table 7.2 Mean and mass-average diameters of collagen fibrils in tendons, ligaments and skins in perinatal animals.

Table 7.3 Birth-mass of animals expressed as percentages of
adult-mass.

Table 7.4 Maximum mass-average diameter of collagen fibrils in adult connective tissues.

Table 8.1 Glycosaminoglycan content and mass-average collagen fibril diameter in skin as a function of age.

Table 8.2 Glycosaminoglycan content and mass-average collagen fibril diameter in tendon as a function of age.
LIST OF FIGURES

Figure 1.1 Space-filling model of the collagen molecule. 3
Figure 1.2 Schematic representation of the procollagen molecule. 5
Figure 1.3 Schematic representation of collagen synthesis and fibrillogenesis. 6
Figure 1.4 Electron micrograph of negatively stained collagen fibrils with a diagram showing that the D-period can be accounted for by a regular staggering of collagen molecules. 10
Figure 1.5 Electron micrograph of transverse sections of the collagen fibrils in foetal rat tail-tendon. 12
Figure 1.6 Electron micrograph of transverse sections of the collagen fibrils in adult rat tail-tendon. 13
Figure 1.7 Electron micrographs of transverse sections of elastic fibres at varying stages of development. 17
Figure 2.1 Cross-sectional drawing of a transmission electron microscope column. 24
Figure 2.2 Simplified ray diagram of a transmission electron microscope. 25
Figure 2.3 Ray diagram illustrating the depth of field in an electromagnetic lens. 29
Figure 3.1 Electron micrographs of transverse sections through (a) the total thickness of the corneal stromata of the snake and (b) a portion of the corneal stromata of the magpie. 41
Figure 3.2 Electron micrographs of transverse and longitudinal sections of sutural fibres in the corneal stromata of the dogfish. 42
Figure 3.3 Electron micrographs of transverse sections of the collagen fibrils from the corneal stroma of (a) bony fish (goldfish) and (b) cartilaginous fish (stingray).

Figure 3.4 Electron micrographs of transverse sections of the collagen fibrils from the corneal stroma of (a) cartilaginous fish (dogfish), (b) amphibian (salamander), (c) reptile (snake), (d) bird (magpie) and (e) mammal (rabbit).

Figure 4.1 Low magnification electron micrograph of the cellular elements and collagen fibrils in an 18 day foetal chick metatarsal tendon.

Figure 4.2 Electron micrographs showing (a) the sharp unimodal distribution of collagen fibril diameters in 14 day foetal chick metatarsal tendon and (b) a collagen fibril diameter distribution which may be resolved into several distinct populations in 18 day foetal chick metatarsal tendon.

Figure 4.3 Electron micrographs of bacterially-contaminated 15 day chick metatarsal tendon showing collagen fibrils falling into "close-arrays".

Figure 4.4 Frequency and mass distributions of collagen fibril diameters in sheep flexor tendons.

Figure 4.5 Frequency and mass distributions of collagen fibril diameters in sheep extensor tendons.

Figure 4.6 Frequency and mass distributions of collagen fibril diameters in sheep suspensory ligaments.

Figure 4.7 Frequency and mass distributions of collagen fibril diameters in guinea pig flexor tendons.

Figure 4.8 Frequency and mass distributions of collagen fibril
diameters in guinea pig extensor tendons. 82

Figure 4.9 Frequency and mass distributions of collagen fibril diameters in guinea pig diaphragmatic tendons. 83

Figure 4.10 Frequency and mass distributions of collagen fibril diameters in rat forelimb flexor tendons. 87

Figure 4.11 Frequency and mass distributions of collagen fibril diameters in rat hindlimb flexor tendons. 88

Figure 5.1 Electron micrographs of transverse sections of the collagen fibrils in lamb skin; (a) and (c) are from an animal suffering from dermatosparaxis and (b) is from a control. 97

Figure 5.2 Electron micrograph of transverse sections of the collagen fibrils in dermatosparactic lamb tendon. 97

Figure 5.3 Electron micrographs of transverse sections of the collagen fibrils in (a) normal greyhound dermis (b) dysplastic greyhound-dermis and (c) papillary layer of dysplastic greyhound-dermis. 100

Figure 5.4 Electron micrographs of sections through the dysplastic greyhound-dermis showing (a) abnormal lysosomal activity in a dermal fibrocyte and details of (b) lamellar, (c) fibrinoid, and (d) "electron-dense" lysosomal inclusions. 101

Figure 5.5 Electron micrographs of transverse sections of collagen fibrils from (a) unstretched and (b) stretched Cuvierian tubules of the sea cucumber Holothuria forskali. 104

Figure 5.6 Frequency and mass distributions of collagen fibril diameters in normal rat skin and in healing "longitudinal" and "transverse" wounds. 107
Figure 5.7 Frequency and mass distributions of collagen fibril diameters taken from the right (contralateral) superficial digital flexor tendons of horses whose left superficial flexor tendon had been treated with bacterial collagenase.

Figure 5.8 Frequency and mass distributions of collagen fibril diameters from the superficial digital flexor tendons of horses at various times after treatment with bacterial collagenase.

Figure 5.9 Electron micrographs of transverse sections of the collagen fibrils in (a) normal horse superficial digital flexor tendon, (b) 24 hours after bacterial collagenase treatment and (c) 4 weeks after bacterial collagenase treatment.

Figure 5.10 Frequency and mass distributions of collagen fibril diameters in Dupuytren's contracture and nodules, and in normal palmar fascia.

Figure 6.1 Electron micrographs of (a) overfocus and (b) underfocus Fresnel fringes in a holey plastic support film.

Figure 6.2 (a) Histogram showing all data obtained from sharp unimodal collagen fibril diameter distributions having means in the range 14 - 44 nm. (b) Graph showing relationship between observed collagen fibril diameters and hypothetical sub-fibrillar units.

Figure 6.3 Diagram showing the projected dimensions of a cylindrical fibril lying obliquely in a thin section.

Figure 6.4 Bar diagram showing the spread of recorded diameters from sharp unimodal distributions and the differences
in measurement made by two observers.

Figure 6.5 Electron micrograph of transverse sections of collagen fibrils in the developing lamprey skin. Fibrils are of uniform diameter and appear to have electron translucent "cores".

Figure 6.6 Frequency distributions of collagen fibril diameters in 18 day foetal chick metatarsal tendons as measured by three independent observers.

Figure 7.1 Electron micrographs showing transverse sections of the collagen fibrils from the skins of lamprey, rat and trout.

Figure 7.2 Frequency and mass distributions of collagen fibril diameters in skins from lamprey, rat and trout.

Figure 7.3 Electron micrographs showing the lamellar arrangement of the collagen fibrils in lamprey skin.

Figure 7.4 Graphs of (a) tensile strength and mass-average collagen fibril diameter versus age for rat skin and (b) tensile strength and mass-average collagen fibril diameter versus age for rat-tail tendon.

Figure 8.1 Graphs of tissue percentage contents of hyaluronic acid, chondroitin sulphate and dermatan sulphate versus collagen fibril mass-average diameter.