Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A FRACTIONATION OF ACID-SOLUBLE NON-EXCHANGEABLE POTASSIUM IN SOME NEW ZEALAND SOILS INTO AVAILABLE AND NON-AVAILABLE FORMS

Owen Fillbridge Haylock
1956
A FRACTIONATION OF ACID-SOLUBLE NON-EXCHANGEABLE K(P=ASISUM IN SOME NEW ZEALAND SOILS INTO AVAILABLE AND NON-AVAILABLE FORMS

A Thesis Presented

for the

Doctor of Philosophy

University of New Zealand

April 1986

Owen Fillbridge Haylock
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST of TABLES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST of FIGURES</td>
<td></td>
</tr>
</tbody>
</table>

INTRODUCTION
- Available Potassium: Page 1.
 - Total Potassium Determination: Page 10.
 - Plant Growth: Page 10.
- Potassium Release and Fixation on Storage and on Drying: Page 14.
- Variation in Acid Concentration: Page 19.
- Ratio of Soil to Acid and Time of Heating: Page 19.
- Size of Soil Sample: Page 19.
- Multiple Extractions: Page 20.
- Electrodialysis: Page 22.
- Potassium Status of New Zealand Soils: Page 23.

EXPERIMENTAL SECTION

<table>
<thead>
<tr>
<th>MATERIALS AND METHODS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of Soils: Page 24.</td>
<td></td>
</tr>
<tr>
<td>Preparation of Laboratory Samples: Page 27.</td>
<td></td>
</tr>
<tr>
<td>Determination of Physical Properties of Soils: Page 27.</td>
<td></td>
</tr>
</tbody>
</table>
 - Moisture Content of Air Dry Samples: Page 27. |
 - Loss of Ignition at 800°C: Page 27. |
 - Mechanical Analysis: Page 27. |
 - Deferation: Page 27. |
 - Specific Gravity Separation: Page 30. |
| Reagents: Page 31. |
 - Flame Photometry: Page 35. |
Construction of Flame Photometer: 35.
Atomizer and Flame Unit: 36.
Photometer: 36.
Calibration of Flame Photometer: 37.

Methods Used for the Estimation of Potassium: 39.

Plant Tissue: 39.
Soil Extracts: 39.
 Normal Ammonium Acetate: 39.
 Normal Nitric Acid and Other Acid Extracts: 40.

Methods used for Extracting and Fractionating
 Soil Potassium: 41.
 Exchangeable Potassium: 41.
 Potassium Extractable by Strong Acids: 41.
 Batch Extraction: 41.
 Leaching with Acid: 42.

RESULTS AND DISCUSSION

Uptake of Potassium by Italian Ryegrass: 40.
Growth in Pot: 30.
Exchangeable Potassium Levels: 33.

Nitric Acid Extractions: 39.
Continuous Leaching with Hot Nitric Acid: 60.
Batch Extraction with Nitric Acid: 65.
Discussion of Form of Extraction Graphs: 67.
"Step" Potassium and "Constant Rate" Potassium: 68.
Potassium Soluble in Nitric Acid from Clays, Silts and Sands: 69.
Integration of Potassium Solubility Data for Texture Separates: 75.
Potassium Soluble in NH₄OHg from Soil Minerals: 73.
The Effect of Cations on the Amount of Potassium Extracted: 84.
Potassium Fixation: 90.
Potassium Release on Wetting and Drying at 105°C: 92.
The Effect of Cropping on Acid Soluble Potassium: 83.
Classification of Soils into Potassium Responsive and Non-responsive Groups: 97.

GENERAL DISCUSSION: 103.

SUMMARY: 110.

BIBLIOGRAPHY: 115.
Table

1. Potassium Deficiency Symptoms in Plants
2. Summary of Some Published Results of Potassium Uptake by Plants
3. Physical Properties of Soils Used for Growing
4. Mineralogical Distribution in the Soils Used for Growing
5. Photometer Readings for Standard Ionic Solutions
6. Efficiency of Boiling Water as an Extractant for Trace Potassium
7. Exchangeable Potassium Extracted by Different Reagents
8. Uptake of Potassium and Yield of Dry Matter from Pot Trials
9. Cumulative Uptake of Potassium and Yields of Dry Matter from Pot Trials
10. Uptake of Potassium and Yield of Dry Matter from Pot Trials
11. Cumulative Uptake of Potassium and Yields of Dry Matter from Pot Trials
12. Initial Seeding Rates, i.e. Rates of Seeding
13. Exchangeable Potassium in Pot Soils
14. Cumulative Uptake of Potassium from Pot Trials
15. Uptake of Potassium from Non-exchangeable Sources
16. Effect of Time of Heating on Potassium Soluble in H₂SO₄
17. Effect of Acid Concentration on Potassium Soluble in H₂SO₄
18. Potassium Soluble in H₂SO₄
19. Potassium Soluble in H₂SO₄, from Coarse Sands
20. Potassium Soluble in H₂SO₄, from Fine Sands
21. Potassium Soluble in H₂SO₄, from Silts
22. Potassium Soluble in H₂SO₄, from Clays
23. Summary of "Step" Potassium and "Constant Rate" Potassium for Soils and Their Texture Separates
24. Weighted Contributions of the Textho Separates to the "Step" Potassium and to the "Constant Rate" Potassium of Whole Soils
25. Summary of Proportions of "Step" Potassium and of "Constant Rate" Potassium derived from Clays
26. Chemical Analysis of Middlehurst Silt Loam before and After Decomposed
27. Potassium Soluble in H₂SO₄, from Texture Separates from Middlehurst Silt Loam
28. Effect of Deferration of Fine Sands on Potassium Soluble in H₂SO₄
29. Potassium Soluble in H₂SO₄, from Typical Minerals
30. Summary of "Step" Potassium and "Constant Rate" Potassium for Typical Minerals
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32. Potassium Soluble in $\frac{1}{2}$ HNO$_3$ from Fine Sand Separates of Known Specific Gravity</td>
<td>32.</td>
</tr>
<tr>
<td>32. Key to Mineral Memo Abbreviations</td>
<td>33.</td>
</tr>
<tr>
<td>35. Effects of Arsenic Ion and of Potassium Ion on Potassium Soluble in $\frac{1}{2}$ HNO$_3$</td>
<td>35.</td>
</tr>
<tr>
<td>34. Effect of Added Potassium or Arsenic Ion on Potassium Soluble in $\frac{1}{2}$ HNO$_3$</td>
<td>34.</td>
</tr>
<tr>
<td>35. Effect of Non-removal of Exchangeable Potassium on First $\frac{1}{2}$ HNO$_3$ Extraction</td>
<td>35.</td>
</tr>
<tr>
<td>36. Effect of Sodium, Calcium and Barium on Potassium Soluble in $\frac{1}{2}$ HNO$_3$</td>
<td>36.</td>
</tr>
<tr>
<td>37. Effect of Extraction on Potassium Soluble in $\frac{1}{2}$ HNO$_3$ from Texture Separates and Some Minerals</td>
<td>37.</td>
</tr>
<tr>
<td>38. Effect of Adding IO$_3^-$ as $\frac{1}{4}$ of Arsenic Ion to Extracting Acid</td>
<td>38.</td>
</tr>
<tr>
<td>40. Potassium Soluble in $\frac{1}{2}$ HNO$_3$ Following Fixation of Potassium</td>
<td>90.</td>
</tr>
<tr>
<td>41. Non-exchangeable Potassium Released on Wetting and Drying at 105°C</td>
<td>91.</td>
</tr>
<tr>
<td>42. Potassium Soluble in $\frac{1}{2}$ HNO$_3$ from Pot Soil Samples, Soil to Acid Ratio 1:1 $\frac{1}{2}$</td>
<td>92.</td>
</tr>
<tr>
<td>43. Potassium Soluble in $\frac{1}{2}$ HNO$_3$ from Pot Soil Samples, Soil to Acid Ratio 1:1 100</td>
<td>93.</td>
</tr>
<tr>
<td>44. Relationship between "Step" Potassium and Non-exchangeable Potassium Taken up by Ryegrass</td>
<td>94.</td>
</tr>
<tr>
<td>45. Mechanical Analysis, Before and After Cropping</td>
<td>95.</td>
</tr>
<tr>
<td>46. Potassium Extracted by $\frac{1}{2}$ HNO$_3$ from Texture Fractions, Before and After Cropping</td>
<td>96.</td>
</tr>
<tr>
<td>47. Mechanical Analysis of Defermented Middlehurst Silt Loam</td>
<td>97.</td>
</tr>
<tr>
<td>48. Potassium Extracted by $\frac{1}{2}$ HNO$_3$ from Defermented Texture Fractions of Middlehurst Silt Loam Before and After Cropping</td>
<td>98.</td>
</tr>
<tr>
<td>49. Normal Nitric Acid Soluble Potassium from Soils of Known Potassium Response</td>
<td>99.</td>
</tr>
<tr>
<td>51. Relationship between Genetic Classification, "Step" Potassium and Potassium Fixing Power</td>
<td>106.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Fig. Page
1. Genetic Soil Map of New Zealand showing Potassium deficient areas and sampling sites. 3.
2. Weathering of Primary Rock-forming minerals, according to Fieldes and Swindale. 5.
4. Diagram of Poka Weathering Sequence according to Jackson et al. 9.
5. Reliability of Exchangeable Potassium as an index to Potassium Removal by Crop. 13.
7. Photograph of Flame Photometer. 34.
8. Diagram of Optical Train of Flame Photometer. 36.
11. Loss of Potassium on Ignition at Temperatures from 4000° to 7000°. 40.
12. Diagram of Leaching Apparatus. 45.
13. Relationship between Uptake of Non-exchangeable Potassium and Initial Exchangeable Potassium. 55.
15. Extraction of Potassium from Whole Soils by Leaching with Nitric Acid. 62.
16. Extraction of Potassium from Fine Sand Fractions by Leaching with Nitric Acid. 64.
17. Potassium Soluble in Normal Nitric Acid in Repeated Extractions. 69.
18. Relationship between "Step" Potassium, "Constant Rate" Potassium and Potassium Response. 100.