Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
LIPI D BIOSYNTHESIS IN ISOLATED CHLOROPLASTS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University

Joseph William Adair McKee

1979
Two notable features of previous work on lipid biosynthesis by isolated chloroplasts have been: (a) The inability of chloroplasts to incorporate more than small amounts of acetate into the main constituent fatty acids of the chloroplast lipids, namely linoleic (18:2) and linolenic (18:3) acids. (b) The poor incorporation of fatty acids synthesized into galactolipids, which are the main chloroplast lipids. Both of these aspects of lipid biosynthesis were investigated using chloroplasts isolated from spinach, maize and sweetcorn. Initial attempts to improve the synthesis of polyunsaturated fatty acids from \([1-^{14}C] \) acetate were not successful. Consequently the main object of the investigation was directed towards increasing the incorporation of long chain fatty acids into galactolipids in the hope that increased galactolipid synthesis might also lead to increased desaturation of oleate to linoleate and linolenate.

Factors affecting the rates of acetate incorporation into lipids by spinach, maize and sweetcorn chloroplasts were investigated. Optimum concentrations of acetate, ATP and CoA were found to be about 0.5mM-acetate (spinach somewhat higher at 0.75mM-acetate), 0.5mM-ATP and 0.25mM-CoA under the incubation conditions used in the present study. Acetate concentration had a major effect on the rate of incorporation; optimisation of ATP and CoA concentrations gave only small enhancements of acetate incorporation. The effect of divalent cations was also investigated for spinach chloroplasts. Optimum \(Mg^{++} \) was 3.0mM; addition of 1mM-Mn\(^{++}\) in the presence of 1mM-Mg\(^{++}\) gave a comparable stimulation of acetate incorporation. Acetate incorporation by spinach chloroplasts was also enhanced by the addition of Triton X-100, sn-glycerol-3-phosphate and UDP-galactose.

Maximum incorporation rates obtained for maize and sweetcorn chloroplasts were 20-30nmol of acetate/mg chlorophyll/h which are up to 10-fold higher than previously reported rates for maize. Rates of up to 500nmol of acetate/mg chlorophyll/h were obtained for spinach chloroplasts which compare favourably with the rates obtained by other workers using chloroplasts isolated from younger leaf tissue.

Oleic and palmitic acids with small amounts of stearic
acid were the main fatty acids synthesized from acetate by isolated chloroplasts from all three sources. Little synthesis of linoleic and linolenic acids was achieved and changes in acetate, ATP and CoA concentrations had no significant effect on the synthesis of polyunsaturated fatty acids from acetate. Triton X-100 and divalent metal ion concentrations also had little effect on the synthesis of polyunsaturated fatty acids by spinach chloroplasts.

The synthesis of diglycerides (DG) by isolated chloroplasts from spinach, maize and sweetcorn was enhanced by the addition of sn-glycerol-3-phosphate (G-3-P). Synthesis of monogalactosyldiglyceride (MGDG) was enhanced by the addition of UDP-galactose particularly if G-3-P was also present. Triton X-100 greatly enhanced the synthesis of DG and also (in the presence of UDP-galactose) MGDG by spinach chloroplasts. Spinach chloroplasts gave higher rates of DG and MGDG synthesis than either maize or sweetcorn chloroplasts.

The synthesis of MGDG from DG by spinach chloroplasts was investigated by double-labelling experiments, using \([1(3)\text{-}^{3}H]\) sn-glycerol-3-phosphate and \([1-^{14}C]\) acetate, fatty acid analysis and positional distribution of the incorporated fatty acids. The synthesis of MGDG was shown to occur without prior modification of the fatty acid composition of the DG.

It was evident from the incorporation of oleate and palmitate into DG (and subsequently into MGDG) and from the positional distribution of these two fatty acids that a specific acylation of G-3-P occurred synthesizing mainly 1-oleoyl, 2-palmitoyl-sn-glycerol. The effects of altering the proportions of oleate and palmitate synthesized on the relative amounts of these fatty acids incorporated into DG (and MGDG) were investigated. The results suggested that palmitate was incorporated into position 2 first followed by oleate into position 1. If there was more palmitate than oleate synthesized some palmitate could be also incorporated into position 1.

The rates of DG synthesis calculated from \([1(3)\text{-}^{3}H]\) sn-glycerol-3-phosphate incorporation were considerably greater than those calculated from \([1-^{14}C]\) acetate incorporation indicating that a considerable dilution of the label from \([1-^{14}C]\) acetate had occurred and that a major proportion of the fatty acid carbon had come from an alternative source.
Bicarbonate, present in the reaction medium, was found to be utilized by spinach chloroplasts for the synthesis of fatty acids and lipids. Thus bicarbonate was probably the alternative source of fatty acid carbon. The fatty acids and lipids synthesized by spinach chloroplasts from exogenous acetate and bicarbonate were very similar.

Although high rates of DG and MGD synthesis have been achieved in the course of the present study by the addition of appropriate metabolites, stimulation of synthesis of these lipids did not alter the rates of synthesis of linoleic and linolenic acids from acetate. Other attempts to increase polyunsaturated fatty acid synthesis from acetate by isolated chloroplasts were also unsuccessful. The use of chloroplasts isolated from developing maize leaf sections had little effect on the rates of linoleic and linolenic acids synthesized from acetate. The addition of a 100,000 X g particulate preparation from leaf homogenate to isolated maize and spinach chloroplasts though stimulating overall incorporation of acetate, gave only minor increases in the proportion of linoleic and linolenic acids synthesized. The stimulation of phosphatidylcholine synthesis by the particulate fraction, in the presence of isolated chloroplasts, failed to result in any dramatic increases in the proportions of polyunsaturated fatty acids synthesized.

These findings are discussed in relation to the current understanding of fatty acid and lipid synthesis and recent in vivo and in vitro studies of plant lipid synthesis.
ACKNOWLEDGEMENTS

I wish to express my appreciation to my supervisor, Dr. J. C. Hawke, for his advice and encouragement during this study. I am also indebted to Dr. G. G. Pritchard for his supervision and encouragement during the absence of Dr. Hawke.

I would like to thank Drs. I. Warington and A. Hardacre, of the Plant Physiology Department of the DSIR, for the use of the climate control rooms for the growing of the maize and sweetcorn plants used in this study; Mr. D. Hopcroft, of the DSIR, for the electron microscopy work and Dr. R. L. Prestidge for the help in the preparation of E. coli acyl carrier protein.

In preparation of the thesis, thanks are due to Mrs. J. Trow for the preparation of the figures.

Finally, I am grateful to my parents for their support and encouragement.
To my Parents
TABLE OF CONTENTS

Chapter 1. INTRODUCTION

1.1 General Introduction 1
1.2 Fatty Acid Biosynthesis 3
1.2.(a) De novo Biosynthesis 3
1.2.(b) The Source of Acetyl-Coenzyme A in Plant Leaves 5
1.2.(c) The Effect of Light on Fatty Acid Biosynthesis 7
1.2.(d) Elongation of Palmitate by Chloroplasts 8
1.3 The Biosynthesis of Unsaturated Fatty Acids 9
1.3.(a) Biosynthesis of Oleic Acid 10
1.3.(b) The Biosynthesis of Linoleic and Linolenic Acids 11
1.3.(c) Substrates for Desaturation of Oleate and Linoleate 14
1.4 Diglyceride and Monogalactosyldiglyceride Biosynthesis 18
1.4.1 Diglyceride Biosynthesis 18
1.4.2 Monogalactosyldiglyceride Biosynthesis 20
1.4.2.1 Substrate Specificity of the Galactosyl-transferase 22

Chapter 2. AIMS OF THE PRESENT STUDY 24

Chapter 3. MATERIALS AND METHODS 25

3.1 Materials 25
3.1.(a) Reagents 25
3.1.(b) Plant Materials 25
3.2 Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1. (a) Preparation of E. coli Acyl Carrier Protein</td>
<td>26</td>
</tr>
<tr>
<td>3.2.1. (b) Preparation of $[1(3)^{-3}\text{H}]_{\text{sn}}$-glycerol-3-phosphate</td>
<td>26</td>
</tr>
<tr>
<td>3.2.2 Isolation of Chloroplasts</td>
<td>27</td>
</tr>
<tr>
<td>3.2.2. (a) Method 1</td>
<td>27</td>
</tr>
<tr>
<td>3.2.2. (b) Method 2</td>
<td>28</td>
</tr>
<tr>
<td>3.2.3 Preparation of the Non-chloroplastic Particulate Fraction from Leaf Homogenate</td>
<td>28</td>
</tr>
<tr>
<td>3.2.4 Preparation of Maize Leaf Sections</td>
<td>28</td>
</tr>
<tr>
<td>3.2.5 Microscopy of Chloroplasts</td>
<td>29</td>
</tr>
<tr>
<td>3.2.5. (a) Phase-contrast Microscopy</td>
<td>29</td>
</tr>
<tr>
<td>3.2.5. (b) Electron Microscopy</td>
<td>29</td>
</tr>
<tr>
<td>3.2.6 Incubation of Chloroplasts with Substrates</td>
<td>33</td>
</tr>
<tr>
<td>3.2.6. (a) Incubation Medium A</td>
<td>33</td>
</tr>
<tr>
<td>3.2.6. (b) Incubation Medium B</td>
<td>33</td>
</tr>
<tr>
<td>3.2.6. (c) Incubation Conditions</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Analytical Methods</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Chlorophyll Determination</td>
<td>33</td>
</tr>
<tr>
<td>3.3.2 Lipid Extraction and Thin-Layer Chromatography</td>
<td>34</td>
</tr>
<tr>
<td>3.3.3 Gas-Liquid Chromatography of Methyl Esters of Fatty Acids</td>
<td>35</td>
</tr>
<tr>
<td>3.3.3. (a) Preparation of Methyl Esters of Fatty Acids</td>
<td>35</td>
</tr>
<tr>
<td>3.3.3. (b) Gas-Liquid Chromatography</td>
<td>37</td>
</tr>
</tbody>
</table>
3.3.3 (c) Collection of Radioactive Effluent 37

3.3.4 Measurement of Radioactivity 38

3.3.5 The Determination of the Positional Distribution of Radioactive Fatty Acids in MGDG and DG Synthesized by Spinach Chloroplasts 38

Chapter 4. RESULTS 40

4.1 The Incorporation of \([1-^{14}C]\)acetate into Total Lipid and Constituent Fatty Acids by Isolated Chloroplasts 40

4.1.1 A Comparison of Chloroplast Isolation Methods and Incubation Conditions on \([1-^{14}C]\)acetate Incorporation into Lipid 40

4.1.2 The Effect of ATP and CoA Concentration on \([1-^{14}C]\)acetate Incorporation into Lipid and Constituent Fatty Acids by Isolated Chloroplasts 41

4.1.3 The Effect of Acetate Concentration on the Incorporation of \([1-^{14}C]\)acetate into Lipid and Constituent Fatty Acids by Isolated Chloroplasts 43

4.1.4 Rates of \([1-^{14}C]\)acetate Incorporation into Lipid and Constituent Fatty Acids by Isolated Chloroplasts 49

4.2 Attempts to Improve Polyunsaturated Fatty Acid Biosynthesis by Isolated Chloroplasts 53

4.2.1 The Influence of Chloroplast Development on \([1-^{14}C]\)acetate Incorporation into Lipid and Constituent Fatty Acids 53

4.2.2 The Effect of a Non-chloroplast Particulate Fraction on the Incorporation of \([1-^{14}C]\)acetate into Lipid and
Constituent Fatty Acids by Isolated Maize Chloroplasts

4.2.3 The Effect of sn-glycerol-3-phosphate and UDP-galactose on the Incorporation of \([1-{\text{14}}C] \) acetate into Lipids and Constituent Fatty Acids by Chloroplasts

4.2.3.1 Influence of sn-glycerol-3-phosphate and UDP-galactose Concentrations

4.2.3.2 Incorporation Rates of \([1-{\text{14}}C] \) acetate in the Presence of sn-glycerol-3-phosphate and UDP-galactose

4.2.3.2.(a) Rates of Acetate Incorporation into Lipid

4.2.3.2.(b) Influence of sn-glycerol-3-phosphate and UDP-galactose on the Lipids Synthesized by Chloroplasts

4.2.3.2.(c) Influence of sn-glycerol-3-phosphate and UDP-galactose on the Fatty Acids Synthesized by Chloroplasts

4.3 Diglyceride and Monogalactosyldiglyceride Biosynthesis by Spinach Chloroplasts

4.3.1 The Influence of sn-glycerol-3-phosphate and UDP-galactose on the Incorporation of Fatty Acids into Diglycerides and Monogalactosyldiglycerides

4.3.2 The Influence of Triton X-100 Concentration on the Incorporation of \([1-{\text{14}}C] \) acetate into Lipid

4.3.3 The Effect of Triton X-100 on the Rates of \([1-{\text{14}}C] \) acetate Incorporation into Lipids and Constituent Fatty Acids
4.3.3.(a) The Incorporation of $[1-^{14}C]$acetate into Lipids

4.3.3.(b) The Incorporation of $[1-^{14}C]$acetate into Oleic and Palmitic Acids

4.3.3.(c) The Incorporation of Oleate and Palmitate into Lipids

4.3.4 The Effect of UDP-galactose on the Rates of $[1-^{14}C]$acetate Incorporation into Lipids and Constituent Fatty Acids

4.3.4.(a) The Incorporation of $[1-^{14}C]$acetate into Lipids

4.3.4.(b) The Incorporation of $[1-^{14}C]$acetate into Oleic and Palmitic Acids

4.3.4.(c) The Incorporation of Oleate and Palmitate into Lipids

4.3.5 The Conversion of Diglycerides to Monogalactosyldiglycerides by Spinach Chloroplasts

4.3.5.(a) The Stimulation of Monogalactosyldiglyceride Biosynthesis by the Addition of UDP-galactose

4.3.5.(b) The Incorporation of $[1(3)-^{3}H]$sn-glycerol-3-phosphate and $[1-^{14}C]$acetate into Lipids by Spinach Chloroplasts

4.3.5.(c) Rates of Incorporation of $[1(3)-^{3}H]$sn-glycerol-3-phosphate and $[1-^{14}C]$acetate into Lipids by Spinach Chloroplasts

4.3.5.(d) The Effect of UDP-galactose on the Incorporation of Oleate and Palmitate into Diglycerides and Monogalactosyldiglycerides by Spinach Chloroplasts
Chapter 5.

DISCUSSION

5.1

The Rates of Diglyceride and Monogalactosyl-
diglyceride Biosynthesis by Isolated Chloroplasts

5.1.1

(a) Effect of sn-glycerol-3-phosphate
5.1.1.1.(b) Effect of Triton X-100

5.1.1.1.(c) Comparison of the Rates of Diglyceride Synthesis Calculated from $[3H]$sn-glycerol-3-phosphate and $[1^{14}C]$acetate Incorporation

5.1.1.2 Monogalactosyldiglyceride Biosynthesis

5.1.2 The Specific Acylation of sn-glycerol-3-phosphate by Isolated Spinach Chloroplasts

5.1.3 The Utilization of Diglycerides for Monogalactosyldiglyceride Biosynthesis

5.1.4 The Incorporation of $[14C]$bicarbonate into Lipids and Constituent Fatty Acids

5.1.5 Model of Lipid Biosynthesis in Isolated Spinach Chloroplasts and Its Relevance to In Vivo Biosynthesis

5.2 Factors Affecting the Rate of Acetate Incorporation into Lipids by Isolated Chloroplasts

5.2.(a) Structural Integrity of the Chloroplasts

5.2.(b) Composition of the Incubation Medium

5.3 The Biosynthesis of Polyunsaturated Fatty Acids by Isolated Chloroplasts

5.3.1 Effect of Cofactors

5.3.2 Effect of Chloroplast Maturity

5.3.3 Effect of Addition of a Non-chloroplastic Particulate Fraction

5.3.4 Effect of Stimulating Acyl Lipid Synthesis

5.4 Summary and Suggestions for Further Study

BIBLIOGRAPHY
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A comparison of chloroplast isolation methods and incubation conditions on ([1-^{14}C]) acetate incorporation into lipids</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>The effect of acetate concentration on the incorporation of ([1-^{14}C]) acetate into fatty acids by isolated chloroplasts</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>The incorporation of ([1-^{14}C]) acetate into lipids and fatty acids by isolated chloroplasts from maize leaf sections</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>The effect of sn-glycerol-3-phosphate and UDP-galactose on the rates of ([1-^{14}C]) acetate incorporation into lipids by isolated chloroplasts</td>
<td>67-69</td>
</tr>
<tr>
<td>5</td>
<td>The effect of sn-glycerol-3-phosphate and UDP-galactose on the oleate:palmitate ratio of lipids synthesized by spinach chloroplasts</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>The effect of Triton X-100 on the oleate:palmitate ratio of total lipids, diglycerides and free fatty acids synthesized from ([1-^{14}C]) acetate by spinach chloroplasts</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>The effect of UDP-galactose on the oleate:palmitate ratio of total lipids, monogalactosyldiglycerides, diglycerides and free fatty acids synthesized from ([1-^{14}C]) acetate by spinach chloroplasts</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>The influence of sn-glycerol-3-phosphate concentration on the incorporation of ([1-^{14}C]) acetate and ([1(3)^{3}H]) sn-glycerol-3-phosphate into lipids by spinach chloroplasts</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>Rates of ([1-^{14}C]) acetate and ([1(3)^{3}H]) sn-glycerol-3-phosphate into lipids by spinach chloroplasts</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>The distribution of radioactivity in the constituent fatty acids of diglycerides and in</td>
<td>100</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>116</td>
<td></td>
</tr>
</tbody>
</table>

the monoglycerides obtained from these
diglycerides by hydrolysis with pancreatic lipase

The distribution of radioactivity in the
constituent fatty acids of monogalactosyl-
diglycerides and in the monogalactosyl-
monoglycerides obtained from monogalactosyl-
diglycerides by hydrolysis with pancreatic lipase

The incorporation of $[^{14}C]$bicarbonate into lipids by spinach chloroplasts

The effect of CDP-choline on the incorporation
of $[1-^{14}C]$acetate into lipids by spinach
chloroplasts

The influence of the particulate fraction on
$[1-^{14}C]$acetate incorporation into lipids
and constituent fatty acids by isolated
spinach chloroplasts
LIST OF FIGURES

Figure 1.1 The structures of MGDG and DGDG 2

1.2 The reaction sequence catalyzed by the fatty acid synthetase system of E. coli 4

3.1 The modified two-dimensional thin-layer chromatography of lipids 36

4.1 The effect of ATP concentration on the incorporation of $[1^{-14}C]$acetate into lipid and constituent fatty acids by isolated chloroplasts 44-45

4.2 The effect of Coenzyme A concentration on the incorporation of $[1^{-14}C]$acetate into lipid and constituent fatty acids by isolated chloroplasts 46-47

4.3 The effect of acetate concentration on the incorporation of $[1^{-14}C]$acetate into lipid by isolated chloroplasts 48

4.4 Rates of $[1^{-14}C]$acetate incorporation into lipid and constituent fatty acids by isolated chloroplasts from spinach, maize and sweetcorn 51-52

4.5 The effect of the particulate fraction: chloroplast ratio on the incorporation of $[1^{-14}C]$acetate into total lipid and constituent fatty acids by maize chloroplasts 56

4.6 The effect of the particulate fraction on the rates of $[1^{-14}C]$acetate incorporation into total lipid and constituent fatty acids by maize chloroplasts 58-59

4.7 The effect of sn-glycerol-3-phosphate concentration on the incorporation of $[1^{-14}C]$-acetate into lipids by spinach chloroplasts 60

4.8 The effect of sn-glycerol-3-phosphate concentration on the incorporation of $[1^{-14}C]$-acetate into lipids by maize chloroplasts 61
The effect of sn-glycerol-3-phosphate concentration on the incorporation of [1-14C]acetate into lipids by sweetcorn chloroplasts

The effect of UDP-galactose concentration on the incorporation of [1-14C]acetate into lipid in the presence of sn-glycerol-3-phosphate by spinach chloroplasts

The effect of UDP-galactose concentration on the incorporation of [1-14C]acetate into lipid in the presence of sn-glycerol-3-phosphate by maize and sweetcorn chloroplasts

The effect of sn-glycerol-3-phosphate and UDP-galactose on the rates of [1-14C]acetate incorporation into lipid and constituent fatty acids by spinach chloroplasts

The effect of sn-glycerol-3-phosphate and UDP-galactose on the rates of [1-14C]acetate incorporation into lipid and constituent fatty acids by maize chloroplasts

The effect of sn-glycerol-3-phosphate and UDP-galactose on the rates of [1-14C]acetate incorporation into lipid and constituent fatty acids by sweetcorn chloroplasts

The influence of Triton X-100 concentration on the incorporation of [1-14C]acetate into lipids by spinach chloroplasts

The effect of Triton X-100 on the rates of [1-14C]acetate incorporation into lipids and constituent oleic and palmitic acids by spinach chloroplasts

The effect of UDP-galactose on the rates of [1-14C]acetate incorporation into lipids and constituent oleic and palmitic acids by spinach chloroplasts
The stimulation of monogalactosyldiglyceride biosynthesis by the addition of UDP-galactose

Rates of $\left[1-{^{14}}C\right]$acetate and $\left[1\left(1^{-3}H\right)\right]$sn-glycerol-3-phosphate incorporation into monogalactosyldiglyceride, diglyceride and free fatty acids by spinach chloroplasts

The molar ratio of G-3-P:acetate incorporated into monogalactosyldiglyceride and diglyceride by spinach chloroplasts

Stimulation of the rates of $\left[1-{^{14}}C\right]$acetate and $\left[1\left(1^{-3}H\right)\right]$sn-glycerol-3-phosphate incorporation into monogalactosyldiglyceride by UDP-galactose

The molar ratio of G-3-P:acetate incorporated by spinach chloroplasts into monogalactosyldiglyceride following UDP-galactose addition 30 min after commencement of the incubation

The levels of palmitate and oleate in diglycerides and monogalactosyldiglycerides synthesized by spinach chloroplasts in the absence of UDP-galactose and after the addition of UDP-galactose

The major diglyceride and monogalactosyldiglyceride species synthesized by spinach chloroplasts

Incorporation of $\left[14C\right]$bicarbonate into lipid by spinach chloroplasts

The effect of Mg$^{++}$ concentration on $\left[1-{^{14}}C\right]$acetate incorporation into lipids and constituent fatty acids by spinach chloroplasts

The effect of Mn$^{++}$ concentration on $\left[1-{^{14}}C\right]$acetate incorporation into lipids and constituent fatty acids by spinach chloroplasts
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
</table>
| 5.1 | The two pathways for the acylation of
 sn-glycerol-3-phosphate | 127 |
| 5.2 | Model of lipid biosynthesis in isolated
 spinach chloroplasts | 134-135 |
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electron micrograph of spinach (Spinacia oleracea) chloroplasts</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Electron micrograph of maize (Zea mays var. Wisconsin 346) chloroplasts</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Electron micrograph of sweetcorn (Zea mays var. Golden Cross Bantam) chloroplasts</td>
<td>32</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

ACP acyl carrier protein
ATP adenosine 5'-triphosphate
A645 absorbance at 645nm
BCCP biotin carboxyl carrier protein
BSA bovine serum albumin
°C degrees Celsius
CDP-choline cytidine 5'-diphosphate choline
Ci Curie
cm centimetre
cm³ cubic centimetre
CoA coenzyme A
DCCD N,N'-dicyclohexylcarbodiimide
DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea
DEGS diethylene glycol succinate
DG diglyceride (or diacylglycerol)
DGDG digalactosyldiglyceride (or digalactosylglycerol)
d.p.m. disintegrations per minute
DTT dithiothreitol
E. coli Escherichia coli
FCCP 4-trifluoromethoxyphenylhydrazone
FFA free fatty acids
ft-candle foot-candle (1 ft-candle = 10.7639 lx)
g gram
g force of gravity
G-3-P sn-glycerol-3-phosphate
g.l.c. gas-liquid chromatography
h hour
i.d. internal diameter
kv kilovolt
l litre
lyso-PA lyso-phosphatidic acid (or monoacyl-sn-glycerol-3-phosphate)
lx lux
M molar
mg milligram
MG monoglyceride (or monoacylglycerol)
MGDG monogalactosyldiglyceride (or monogalactosyl-diacylglycerol)
MGMG monogalactosylmonoglyceride (or monogalactosylmonoacylglycerol)

min minute

mM millimolar

mmol millimole

mol mole

NADH nicotinamide adenine dinucleotide, reduced

NADPH nicotinamide adenine dinucleotide phosphate, reduced

nm nanometre

nmol nanomole

p., pp. page, pages

PA phosphatidic acid

PC phosphatidylcholine

PE phosphatidylethanolamine

PEP phosphoenolpyruvate

PG phosphatidylglycerol

2-PGA 2-phosphoglyceric acid

3-PGA 3-phosphoglyceric acid

POPOP 1,4 bis[2-(5-phenyloxazolyl)]-benzene

PPO 2,5-diphenyloxazole

s second

sn stereospecific numbering

SQDG sulphoquinovosyldiglyceride (or sulphoquinovosydialglycerol)

TG triglyceride (or triacylglycerol)

t.l.c. thin-layer chromatography

Tricine N-Tris(hydroxymethyl) methylglycine

Tris Tris(hydroxymethyl) aminomethane

UDP-galactose uridine 5'-diphosphate D-galactose

(UDP-gal)

UK unknown compound (see Methods, p. 36)

v volume

wt weight

μ micro
NOMENCLATURE

For the specific structural designation of complex lipids containing a glycerol moiety, the nomenclature suggested by the IUPAC-IUB Commission on Biochemical Nomenclature (Eur. J. Biochem. (1967) 2, 127-131) has been followed. However, the trivial names of complex lipids are used when it is more appropriate. Widely used abbreviations, e.g. MGDG for monogalactosyldiglyceride, have also been used for the sake of brevity. These are defined on pp. xxi-xxii.

Fatty acids are designated by the shorthand notation of number of carbon atoms: number of double bonds, e.g. 18:3 refers to linolenic acid.

Other abbreviations and the format for the figures and tables in this thesis followed the guidelines set down by the Biochemical Journal (Biochem. J. (1975) 145, 1-20).