Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Quantifying and Valuing the Ecosystem Services of Pastoral Soils under a Dairy Use

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Ecological Economics

at

Massey University, Palmerston North, New Zealand

Estelle Jeanne DOMINATI

2011
Abstract

The full range of ecosystem services provided by soils are rarely recognised or understood, nor is the link between soil natural capital and these services. Understanding these concepts is more important than ever to meet the food and fibre demands of a growing global population, while ensuring the sustainability of the finite resource that is soil. The objective of the thesis was to develop a framework to describe the natural capital and ecosystem services of pastoral soils, and to apply it to quantify and value soil ecosystem services under a dairy use in New Zealand.

A new conceptual framework was developed from current scientific understanding of land classification, soil formation, soil processes and ecosystem services concepts. The framework links soil formation, maintenance and degradation processes to soil natural capital stocks, and provides a basis for exploring the influence of drivers like climate and land use on soil natural capital stocks and the flow of ecosystem services. The soil services identified included provision of food, support to human infrastructure and animals, flood mitigation, filtering of nutrients and contaminants, detoxification and recycling of wastes, carbon storage and greenhouse gases regulation, and pest and disease populations regulation. Based on the conceptual framework, new methodology was developed to quantify and model each provisioning and regulating service from soils. Proxies based on soil properties and a process-based model were used to explore the impacts of soil type (Horotiu silt loam and Te Kowhai silt loam) and dairy management practices on soil properties and processes behind each service at the farm scale. Neoclassical economic valuation techniques were then used to value soil ecosystem services for the case study examples.

Under a dairy operation, the total value of soil ecosystem services was $15,777/ha/yr for a Horotiu silt loam. Regulating services ($11,445/ha/yr) had a greater value than provisioning services ($4,322/ha/yr). The ecosystem services from a Te Kowhai silt loam were less valuable, $11,687/ha/yr. The difference in value between soils reflects differences in their physical structure and associated hydraulic properties, the natural capital stocks behind many services. Valuing some services (e.g. filtering of P) was challenging since some services cannot be substituted by artificial inputs or manufactured capital.

This new approach provides for the first time land managers and policy makers with the ability to compare the total utility of soils, not just their productivity and versatility for different land uses. It also provides a powerful practical tool for evaluating the environmental impact of farm management practices, resource management options and policy alternatives at the regional and national levels, by enabling direct linkages between the economy and the environment. This study allows the value of soil to be benchmarked against commonly used indicators of economic performance such as GDP at the national level and net profits at the farm scale. The case study examples showed that the value of ‘un-priced’ soil ecosystem services to be significantly higher than net profit of dairy farms.
Acknowledgements

Firstly, I would like to dedicate this work to my dad, Jacques Raymond Dominati (1947-2005), the first and real doctor of the family. He passed away before I even started my Ph.D., but I know he would have enjoyed this work very much, passionate by gardening and the outdoors as he was. I miss him every day.

A great thank you to each and every one of all the many people who have supported me throughout my Ph.D. First, I would like to thank my partner, Mike Cook, for his tremendous patience, kindness, love, and endless support. He has kept me sane through the whole process, and was always available to listen to my “PhD ranting”. I owe him more than I can tell.

I am particularly grateful to my supervisor, Dr. Alec Mackay, for the countless hours spent with me, his constant encouragements, and his much appreciated and contagious enthusiasm and energy. Twice, he gave me the opportunity to come to New Zealand and work on captivating projects, and for that I will be forever indebted to him.

A very special thank you to Dr. Steve Green, for his patience with “frog girl”, the endless hours of modelling, and his great contribution to this work. It wouldn’t have been possible without him. I also want to thank Professor Murray Patterson for his supervision, advice and great insight.

To my dear family, thank you for always being there for me, even from the other side of the world. Thank you to my mum, Sylviane, for her love, and always wanting the best for us. To my little brother, Emmanuel, who managed to become a doctor before me. He’s always been the crafty one. To my aunt Maryse and my uncle Max for their support. And to all the rest of you, dearest to my heart.

I am indebted to a number of people who have been a great help, passing on knowledge, especially Dr. Brent Clothier, Dr. Kevin Tate, Dr. Surinder Saggar, and many unnamed others at Landcare Research, Plant and Food Research and AgResearch. It’s been great to work with you all these past four years.

I would also like to thank my wonderful friends, in New Zealand and in France, especially Julie Piazza and Elsje Van der Merwe: thank you for all the girly chats and the much needed laughter. But also Aurelie, Liat, Amelie, Anne-Gaelle, Elodie, Emilie, Cyriele, Natalie, “the girls” back home, and all the others, you know who you are!

Last but not least, I would like to thank AgResearch for their financial support, as a member of the sustainable land use research initiative (SLURI), a formal collaboration between three Crown Research Institutes.
Table of Contents

Abstract iii
Acknowledgements iv
List of Figures xii
List of Tables xvii
Acronyms and Symbols xx

Chapter One Introduction

1.1 New Zealand - A land based economy 1
1.2 Soils - An undervalued and threatened resource 2
1.3 Tools to achieve sustainability 4
1.4 A new framework for soil natural capital and ecosystem services 5
1.5 Research aims and objectives 6
 1.5.1 Overall Aim 6
 1.5.2 Specific Objectives 6
 1.5.3 Methodological Approach 6
1.6 Thesis organisation and outline 7

PART ONE CONCEPTUAL AND QUANTIFICATION FRAMEWORK 11

Chapter Two Overall Framework for Classifying and Quantifying the Natural Capital and Ecosystem Services of Soils 13

2.1 Context and terminology 13
2.2 Existing classification schemes for ecosystem services 16
 2.2.1 General ecosystem services frameworks 16
 2.2.2 Soil ecosystem services frameworks 21
2.3 Proposed framework for soil natural capital and ecosystem services 25
 2.3.1 Soil natural capital 25
 2.3.2 Soil natural capital formation, maintenance and degradation 30
 2.3.2.1 Soil natural capital formation and maintenance: Supporting processes 30
 2.3.2.2 Soil natural capital degradation: Degradation processes 32
 2.3.3 External drivers 33
 2.3.4 Provisioning, regulating and cultural ecosystem services from soils 34
 2.3.5 Human needs fulfilled by soil ecosystem services 37
2.4 Conclusion 38
Chapter Three Detailed Framework for Cultural and Provisioning Services provided by Soils

3.1 Cultural services

3.2 The provision of food, wood and fibre

3.2.1 Soil properties and supporting processes involved in the provision of food

3.2.1.1 Role of soil structure: the provision of support to plants

3.2.1.2 Role of available water capacity: the provision of water to plants

3.2.1.3 Role of soil fertility: the provision of nutrients to plants

3.2.2 Degradation processes and drivers impacting on the provision of food

3.2.2.1 Degradation processes affecting the provision of food

3.2.2.2 External drivers affecting plant growth

3.2.3 Quantifying plant growth and the provision of food from soil natural capital stocks

3.3 Provision of support for human infrastructure and animals

3.3.1 Soil properties and supporting processes involved in the provision of support to human infrastructure and animals

3.3.2 Degradation processes and drivers impacting on the provision of support

3.3.3 Quantifying the provision of support for human infrastructure and animals

3.4 Provision of raw materials

3.5 Summary of the quantification of soil provisioning services

Chapter Four Detailed Framework for Regulating Services provided by Soils

4.1 Flood mitigation

4.1.1 Soil properties and supporting processes contributing to the provision of flood mitigation

4.1.2 Degradation processes and drivers influencing flood mitigation

4.1.3 Quantification of flood mitigation

4.1.3.1 Previous attempts to quantify flood mitigation

4.1.3.2 Parameters chosen to quantify flood mitigation

4.2 Filtering of nutrients and contaminants

4.2.1 Soil properties and supporting processes contributing to the filtering of nutrients and contaminants

4.2.2 Degradation processes and drivers influencing the filtering of nutrients and contaminants

4.2.3 Quantifying the filtering of nutrients and contaminants

4.2.3.1 Previous attempts to quantify the filtering of nutrients and contaminants
4.2.3.2 Parameters chosen to quantify the filtering of nutrients and contaminants 98

4.3 Detoxification and decomposition of wastes 101

4.3.1 Soil properties and supporting processes contributing to detoxification and the decomposition of wastes 104

4.3.2 Degradation processes and drivers influencing the detoxification and decomposition of wastes 108

4.3.3 Quantifying detoxification and the recycling of wastes 112

4.3.3.1 Previous attempts to quantify detoxification and the recycling of wastes 112

4.3.3.2 Parameters chosen to quantify detoxification and the recycling of wastes 112

4.4 Carbon storage and greenhouse gases regulation 113

4.4.1 Soil properties and supporting processes contributing to carbon storage and greenhouse gases regulation 114

4.4.1.1 Carbon stocks and carbon flows 116

4.4.1.2 Greenhouse gases regulation from soil 126

4.4.2 Degradation processes and drivers influencing carbon storage and greenhouse gases regulation 130

4.4.2.1 Degradation processes 130

4.4.2.2 External drivers 131

4.4.3 Quantifying carbon storage and greenhouse gases regulation 132

4.4.3.1 Previous attempts to quantify carbon storage and greenhouse gases regulation 132

4.4.3.2 Parameters chosen to quantify carbon storage and greenhouse gases regulation 133

4.5 Biological regulation of pest and disease populations 136

4.5.1 Soil properties and supporting processes contributing to the regulation of pest and disease populations 143

4.5.1.1 Regulation of population dynamics of soil biota 143

4.5.1.2 Regulation of animal pests and diseases 145

4.5.1.3 Regulation of plant pests 147

4.5.2 Degradation processes and drivers influencing the regulation of pests and diseases 150

4.5.3 Quantifying the regulation of pest and disease populations 151

4.5.3.1 Previous attempts to quantify the regulation of pest and disease populations 151

4.5.3.2 Parameters chosen to quantify the regulation of pest and disease populations 152

4.6 Summary of the quantification of soil regulating services 153

PART TWO CAPACITY BUILDING 157

Chapter Five Methodology for the Dynamic Modelling of Soil Ecosystem Services 159

5.1 Context of the study 159

5.1.1 A dairy farm in the Waikato 163
5.1.2 Soils chosen for the study
 5.1.2.1 Typic Orthic Allophanic Soil
 5.1.2.2 Typic Orthic Gley Soil
5.2 Modelling soil ecosystem services
 5.2.1 The SPASMO model
 5.2.2 History and functioning of the SPASMO model
 5.2.3 Model inputs
5.3 Additions made to the model
 5.3.1 Pasture utilisation
 5.3.2 Impacts of cattle treading on soil structure
 5.3.2.1 Macropore loss function
 5.3.2.2 Macroporosity recovery after treading
 5.3.2.3 Effects of cattle treading on runoff
 5.3.3 Impacts of treading on pasture growth
 5.3.3.1 Loss of pasture growth potential
 5.3.3.2 Relative treading damage on pasture
 5.3.3.3 Recovery of pasture growth potential after a grazing event
 5.3.4 Rotation and stocking rate
 5.3.5 Use of a standoff-pad
 5.3.6 Calculation of P runoff
 5.3.7 Simulation of extreme N and P losses
5.4 Summary of modelling

Chapter Six Methods for the Economic Valuation of the Environment
and Soil Ecosystem Services

6.1 Different theories for valuing soil ecosystem services
 6.1.1 Value and Neoclassical Economics
 6.1.1.1 Neoclassical Economics, theory of value and price
 6.1.1.2 Rationale for neoclassical economic valuation
 6.1.1.3 Problems with neoclassical economic valuation
 6.1.2 Value and Ecological Economics
 6.1.2.1 EMERGY analysis and ecological pricing
 6.1.2.2 Ecological and contributory values
 6.1.2.3 Multicriteria methods and value pluralism
 6.1.3 Intrinsic value

6.2 Neoclassical economic valuation methods
 6.2.1 Criteria for evaluating neoclassical valuation methods
 6.2.2 Techniques using revealed preferences
 6.2.2.1 Market prices
 6.2.2.2 Productivity change approach
 6.2.2.3 Averting behaviour and defensive expenditure
 6.2.2.4 Replacement cost approach
 6.2.2.5 Provision cost approach
 6.2.2.6 Hedonic pricing method
 6.2.2.7 Travel Cost method
 6.2.3 Techniques using stated preferences
 6.2.3.1 Contingent valuation method
6.2.3.2 Random utility theory and choice modelling 230
6.2.3.3 Group valuation 235
6.2.4 Benefit transfer 237
6.2.5 Final evaluation of neoclassical economic valuation methods 239
6.3 Conclusion on valuation 243

PART THREE EMPIRICAL RESULTS FOR DAIRY FARM SOILS 245

Chapter Seven Quantification and Economic Valuation of Soil Ecosystem Services 247

7.1 Description of the typical dairy farm and base case scenario 247
7.2 General methodology 248
7.3 Provision of food, wood and fibre (S1) 251
 7.3.1 Quantification of the provision of food 251
 7.3.2 Economic valuation of the provision of food 254
 7.3.2.1 Value of the food quantity (S1a) 254
 7.3.2.2 Value of the food quality (S1b) 256
7.4 Provision of support for human infrastructure and animals (S2) 257
 7.4.1 Provision of support for human infrastructure (S2a) 257
 7.4.1.1 Quantification of the provision of support for infrastructure 257
 7.4.1.2 Economic valuation of the provision of support for infrastructure 258
 7.4.2 Provision of support for animals (S2b) 261
 7.4.2.1 Quantification of the provision of support for animals 261
 7.4.2.2 Economic valuation of the provision of support for animals 262
7.5 Provision of raw materials 265
7.6 Flood mitigation (S3) 266
 7.6.1 Quantification of flood mitigation 266
 7.6.2 Economic valuation of flood mitigation 267
7.7 Filtering of nutrients and contaminants (S4) 269
 7.7.1 Quantification of the filtering of nutrients 269
 7.7.1.1 Quantification of the filtering of N 270
 7.7.1.2 Quantification of the filtering of P 271
 7.7.2 Economic valuation of the filtering of nutrients 273
 7.7.2.1 Valuation of the filtering of N (S4a) 273
 7.7.2.2 Valuation of the filtering of P (S4b) 276
 7.7.3 Quantification of the filtering of contaminants 278
 7.7.4 Valuation of the filtering of contaminants (S4c) 280
7.8 Detoxification and recycling of wastes (S5) 282
 7.8.1 Quantification of the recycling of wastes 282
 7.8.2 Valuation of the recycling of wastes 283
7.9 Carbon storage and greenhouse gases regulation (S6) 285
 7.9.1 Quantification of carbon storage and GHGs regulation 285
 7.9.2 Valuation of carbon storage and GHGs regulation 294
Chapter Eight Impact of Soil Type on the Provision of Soil Ecosystem Services

8.1 Effect of soil type on the provision of soil services
8.2 Soil services quantification and valuation
 8.2.1 Provision of food quantity
 8.2.2 Provision of food quality
 8.2.3 Provision of support for human infrastructure
 8.2.4 Provision of support to animals
 8.2.5 Provision of raw materials
 8.2.6 Flood mitigation
 8.2.7 Filtering of N
 8.2.8 Filtering of P
 8.2.9 Filtering of contaminants
 8.2.10 Recycling of wastes
 8.2.11 Carbon flows
 8.2.12 Nitrous oxide regulation
 8.2.13 Methane oxidation
 8.2.14 Regulation of pest and disease populations

8.3 Overview of the influence of soil type on the provision of soil services

Chapter Nine Impact of Dairy Cow stocking rates and the Use of a Standoff Pad on the Provision of Soil Ecosystem Services

9.1 Twelve scenarios to investigate farm management
9.2 Soil services quantification and valuation
 9.2.1 Provision of food quantity
 9.2.2 Provision of food quality
 9.2.3 Provision of support for human infrastructure
 9.2.4 Provision of support to animals
 9.2.5 Provision of raw materials
 9.2.6 Flood mitigation
 9.2.7 Filtering of N
 9.2.8 Filtering of P
 9.2.9 Filtering of contaminants
 9.2.10 Recycling of wastes
 9.2.11 Carbon flows
 9.2.12 Nitrous oxide regulation
 9.2.13 Methane oxidation
 9.2.14 Regulation of pest and disease populations

9.3 Overview of the influence of farm management on the provision of soil services
Chapter Ten Thesis Summary and Conclusions 349

10.1 Thesis contributions 349
 10.1.1 Theoretical contributions 349
 10.1.2 Methodological contributions 351
 10.1.3 Knowledge contributions 352

10.2 Limitations of the study 354
 10.2.1 Of the quantification 354
 10.2.2 Of the economic valuation 357
 10.2.3 Of the framework and the whole exercise 359

10.3 Future research 359
 10.3.1 Immediate future of this work 359
 10.3.2 Applications of a soil services framework for land management around the world 360
 10.3.3 Applications of a soil services framework for land management in New Zealand 361
 10.3.3.1 Natural capital based land management 361
 10.3.3.2 Improving soil quality indicators 362
 10.3.3.3 Informing the debate on land use and land use change 362
 10.3.3.4 Investing in ecological infrastructure 363

List of PhD Outputs 365

References 367

APPENDICES 389

Appendix A Examples of SPASMO Input Files 391

Appendix B P sorption Function for P Leaching 395

Appendix C Examples of SPASMO Outputs 398

Appendix D Determination of Sustainable Yield 401

Appendix E Multiplier Effect for the Waikato economy 403

Appendix F Data and Methods for the Economic Valuation of Soil Services 404
 F.1 Annualisation of capital costs 404
 F.2 Standoff pad costs 405
 F.3 Effluent system costs 408
 F.4 Mitigation functions 411
 F.4.1 N mitigation function 411
 F.4.2 P mitigation function 414
 F.5 Constructed wetlands costs 415
List of Figures

Figure 1-1 North Island land uses 1
Figure 1-2 Relationships between thesis chapters 9
Figure 2-1 Illustration of the use of the key terms employed in this thesis 14
Figure 2-2 Framework for the provision of ecosystem services from soil natural capital 26
Figure 2-3 Simplified relationships between some soil components (hexagons) and properties (rectangles) 28
Figure 3-1 Detail of the conceptual framework applied to the provision of food, wood and fibre 43
Figure 3-2 Drivers and soil properties influencing the provision of food, wood and fibre 45
Figure 3-3 North Island cobalt deficient soils 52
Figure 3-4 Body width of soil fauna 56
Figure 3-5 Earthworm functional groups 57
Figure 3-6 Food-web of selected soil faunal groups 59
Figure 3-7 Relative pasture yield as a function of Olsen P for two different soil orders 68
Figure 3-8 Detail of the conceptual framework applied to the provision of support 71
Figure 3-9 Drivers and soil properties influencing the provision of support for human infrastructure and animals 72
Figure 3-10 Relationship between soil water content and bulk density for different soils 74
Figure 3-11 The Atterberg consistency limits (schematic) 74
Figure 3-12 Methods of measuring soil strength 75
Figure 3-13 Detail of the conceptual framework applied to the provision of raw materials 78
Figure 4-1 Detail of the conceptual framework applied to flood mitigation 84
Figure 4-2 Drivers and soil properties influencing flood mitigation 87
Figure 4-3 Detail of the conceptual framework applied to the filtering of nutrients and contaminants 91
Figure 4-4 Drivers and soil properties influencing the filtering of nutrients 92
Figure 4-5 Quantification of the filtering of nutrients 100
Figure 4-6 Total number of cows in New Zealand and herd size since 1975 102
Figure 4-7 Detail of the conceptual framework applied to detoxification and the decomposition of wastes 104
Figure 4-8 Drivers and soil properties influencing detoxification and the recycling of wastes 106
Figure 4-9 Detail of the conceptual framework applied to carbon storage and greenhouse gases regulation 114
Figure 4-10 Drivers and soil properties influencing carbon storage and greenhouse gases regulation 115
Figure 4-11 Organic carbon as percentage of soil mass in different New Zealand soil orders 116
Figure 4-12 Soil carbon cycle 120
Figure 4-13 The major flows of C through plants and animals in grazed pastures 125
Figure 4-14 Typical life cycle of most internal parasites 139
Figure 4-15 Detail of the conceptual framework applied to the regulation of pest and disease populations 142
Figure 4-16 Hypothetical model of the effects of management intensity on the diversity of soil fauna in agricultural grasslands 144
Figure 4-17 Drivers and soil properties influencing the regulation of pest and disease populations 149
Figure 5-1 Total number of cows in New Zealand and herd size since 1975 160
Figure 5-2 New Zealand dairy cattle breeds 160
Figure 5-3 Regional distribution of dairy cattle (2008/09) 161
Figure 5-4 High class soils in New Zealand 162
Figure 5-5 Distribution of soil orders in the North Island of New Zealand 164
Figure 5-6 Different steps of the modelling process 167
Figure 5-7 Grass utilised and buried according to the volumetric soil water content 175
Figure 5-8 Relationship between soil consistency and gravimetric water content 178
Figure 5-9 Data used to build the macropore loss function 180
Figure 5-10 Function calculating the macropore loss after a treading event as a function of soil water content 182
Figure 5-11 Macropore loss (%): data versus simulated model outputs 183
Figure 5-12 Example of model output: Macroporosity recovery after a treading event that decreased macroporosity from 12% to 4% 185
Figure 5-13 Decision tool to determine the loss in pasture yield potential from stocking rate (SR) and grazing time (GT) for a range of soil orders 188
Figure 5-14 Loss of pasture growth potential depending on treading intensity (TI): data and model fit 189
Figure 5-15 Actual loss of pasture growth function 190
Figure 5-16 Actual loss of pasture growth (ALp) and recovery depending on the number of days after treading 191
Figure 5-17 Relationship between daily rainfall amount (mm) and rainfall erosivity 194
Figure 6-1 Conventional supply and demand curves for a typical marketed good or service 199
Figure 6-2 Supply and demand curves for ecosystem services 200
Figure 6-3 Total economic value 201
Figure 7-1 Modelled pasture yield for the typical dairy farm on a Horotiu silty loam 251
Figure 7-2 Pasture utilisation (grass eaten / total yield) (%) 252
Figure 7-3 Relative pasture yield as a function of Olsen P for an Allophanic Soil 253
Figure 7-4 Annual pasture yield (kgDM/ha/yr) from natural capital (NC) and added capital 254
Figure 7-5 Economic value ($/ha/yr) of the provision of food from natural Capital (NC) 255
Figure 7-6 Definition of the value of the provision of support for human infrastructure 258
Figure 7-7 Percentage of days between May and October when SWC<(FC+Sat)/2 for the base case scenario 262
Figure 7-8 Maintenance cost of a standoff pad ($/ha/yr) depending of the number of days in use and stocking rate
263

Figure 7-9 Total cost of a standoff pad and value of the provision of support to animals depending on the number of days when SWC>(FC+Sat)/2 between May and October (schematic)
264

Figure 7-10 Runoff (mm/ha/year) outputs from SPASMO for the base case scenario
266

Figure 7-11 Relationship between rainfall, runoff and the flood mitigation service
267

Figure 7-12 Maximum annual amount (mm) of water stored by the soil (rainfall - runoff) for seven consecutive days
268

Figure 7-13 Max N loss and modelled N loss outputs from SPASMO over 35 years
270

Figure 7-14 Amount of N filtered (kgN/ha/yr)
271

Figure 7-15 Max P loss (P drainage) modelled with SPASMO
272

Figure 7-16 P runoff outputs from SPASMO over 35 years
273

Figure 7-17 Method for the valuation of the filtering of nutrients
274

Figure 7-18 Mitigation function for N leaching for a Horotiu silt loam
276

Figure 7-19 Mitigation function for P losses for a Horotiu silt loam
277

Figure 7-20 Yearly rainfall and runoff (mm/ha) within five days after a grazing event
279

Figure 7-21 Maximum amount (mm/ha) of filtered water (FCt) for each year
280

Figure 7-22 Percentage of dung deposited in restricting conditions over 35 years
283

Figure 7-23 Net variations of C stocks for 1m depth over 35 years
285

Figure 7-24 IPCC methodology to calculate N₂O emissions from grazed pastures
288

Figure 7-25 Annual-measured, model-predicted and IPCC-calculated N₂O emissions from two ungrazed and dairy grazed sites
291

Figure 7-26 Max and modelled N₂O emissions calculated from SPASMO
292

Figure 7-27 CH₄ oxidation over 35 years
293

Figure 7-28 Life cycles of porina and grass grub
295

Figure 7-29 Value ($/ha/yr) of the regulation of pest populations by soils
299

Figure 8-1 Modelled pastures yield for the two soils over 35 years
306

Figure 8-2 Value ($/ha/yr) of the provision of food from the two soils over 35 years
307

Figure 8-3 Relationship between yield from natural capital and rainfall for the two soils
307

Figure 8-4 Number of days per year when SWC<(FC+Sat)/2 for the two soils over 35 years
308

Figure 8-5 Value ($/ha/yr) of the provision of support to animals for the two soils over 35 years
309

Figure 8-6 Maximum weekly RF-RO per year (mm/ha/yr) for the two soils over 35 years
310

Figure 8-7 Value ($/ha/yr) of flood mitigation for the two soils over 35 years
310

Figure 8-8 Amount of modelled N (kg N/ha/yr) leached and filtered by the two soils over 35 years
311

Figure 8-9 Value ($/ha/yr) of the filtering of N for the two soils over 35 years
311
Figure 8-10	Relationship between, the modelled N filtered (kg N/ha/yr) and rainfall (mm) for the two soils	312
Figure 8-11	Measures of modelled P runoff and P filtered (kg P/ha/yr) by Horotiu silt loam over 35 years	312
Figure 8-12	Measures of modelled P runoff and P filtered (kg P/ha/yr) by Te Kowhai silt loam over 35 years	313
Figure 8-13	Value ($/ha/yr) of the filtering of P for the two soils over 35 years	314
Figure 8-14	Measure of the maximum 5 days RF-RO per year (mm/ha/yr) for the two soils over 35 years	314
Figure 8-15	Value ($/ha/yr) of the filtering of contaminants for the two soils over 35 years	315
Figure 8-16	Percentage of dung deposited in ideal degradation conditions for the two soils over 35 years	315
Figure 8-17	Value ($/ha/yr) of the recycling of wastes for the two soils over 35 years	316
Figure 8-18	Net C flows (kg C/ha/yr) for the two soils over 35 years	316
Figure 8-19	Value ($/ha/yr) of C flows for the two soils over 35 years	317
Figure 8-20	N₂O emissions (kg N₂O/ha/yr) regulated by the two soils over 35 years	318
Figure 8-21	Value ($/ha/yr) of N₂O regulation for the two soils over 35 years	318
Figure 8-22	Value ($/ha/yr) of methane oxidation for the two soils over 35 years	319
Figure 8-23	Number of favourable days for pest development from October to March for the two soils over 35 years	319
Figure 8-24	Value ($/ha/yr) of the regulation of pest and disease populations for the two soils over 35 years	320
Figure 8-25	Total value ($/ha/yr) of soil services for the two soil types over 35 years	321
Figure 9-1	Average yield (kg DM/ha/yr) from natural capital stocks for all scenarios	324
Figure 9-2	Average percentage of total yield from natural capital for all scenarios	325
Figure 9-3	Value ($/ha/yr) of the provision of food for all scenarios	325
Figure 9-4	Average number of days between May and October when SWC<(FC+Sat)/2 over 35 years for all scenarios	327
Figure 9-5	Value ($/ha/yr) of the provision of support to animals for all scenarios	327
Figure 9-6	Average of modelled annual runoff (mm) over 35 years for all scenarios	328
Figure 9-7	Average annual maximum of 7 days rainfall - runoff (mm/ha) for all scenarios over 35 years	328
Figure 9-8	Value ($/ha/yr) of flood mitigation for all scenarios over 35 years	329
Figure 9-9	Average modelled N filtered (kgN/ha/yr) for all scenarios over 35 years	330
Figure 9-10	Average modelled N leached (kgN/ha/yr) for all scenarios over 35 years	330
Figure 9-11	Value ($/ha/yr) of filtering of N for all scenarios over 35 years	331
Figure 9-12	Average modelled annual P filtered (kg P/ha/yr) for all scenarios over 35 years	
Figure 9-13	Average modelled annual P runoff (kg P/ha/yr) for all scenarios over 35 years	
Figure 9-14	Value ($/ha/yr) of the filtering of P for all scenarios over 35 years	
Figure 9-15	Average annual contaminated runoff (mm) 5 days after a grazing event for all scenarios over 35 years	
Figure 9-16	Average percentage of annual contaminated rainfall 5 days after a grazing event for all scenarios over 35 years	
Figure 9-17	Value ($/ha/yr) of filtering of contaminants for all scenarios over 35 years	
Figure 9-18	Average percentage of dung potentially well decomposed for all scenarios over 35 years	
Figure 9-19	Value ($/ha/yr) of the decomposition of wastes for all scenarios over 35 years	
Figure 9-20	Average net C flows (kg C/ha/yr) for all scenarios over 35 years	
Figure 9-21	Value ($/ha/yr) of net C flows for all scenarios over 35 years	
Figure 9-22	Average N₂O emissions and N₂O mitigated (kg N₂O/ha/yr) for all scenarios over 35 years	
Figure 9-23	Value ($/ha/yr) of N₂O emissions regulation for all scenarios over 35 years	
Figure 9-24	Average CH₄ oxidation (kg CH₄/ha/yr) for all scenarios over 35 years	
Figure 9-25	Value ($/ha/yr) of CH₄ oxidation for all scenarios over 35 years	
Figure 9-26	Average number of favourable days to pasture pest development between October and December for all scenarios over 35 years	
Figure 9-27	Value ($/ha/yr) of the regulation of pest and disease populations for all scenarios over 35 years	
Figure 9-28	Total value ($/ha/yr) of soil services for the twelve scenarios studied over 35 years	
Figure 9-29	Total value ($/ha/yr) of soil services for all scenarios (P<0.05)	
Figure 9-30	Difference in value ($/ha/yr) between scenarios with and without a standoff pad	
Figure B.1	Simple relationship describing P sorption at saturation (Q, mg/kg) as a function of P retention (%)	
Figure B.2	Exponential function between Qmax (P adsorbed at saturation) times d (depth, m) and the fitting parameter b (L/mg) of the Langmuir isotherm	
Figure B.3	Langmuir isotherm for P retention from the A horizon (0-20 cm deep) of the soil profile at Tararua Road, Levin	
Figure D.1	Calibration curves between Olsen P and relative yield for an Allophanic and a Gley Soil	
Figure D.2	Calibration curve for an Allophanic Soil	
Figure D.3	Calibration curve for a Gley Soil	
Figure F.1	N mitigation function for Horotiu and Tekowhai silt loams	
Figure F.2	P mitigation functions for Horotiu and Tekowhai silt loams	
List of Tables

Table 2-1 Ecosystem roles mentioned by different classification systems 18
Table 2-2 Soil ecosystem services and agro-ecosystem services classifications and the concordances between them 22
Table 3-1 Classification of pores according to size and function 46
Table 3-2 Some dairy livestock pest and disease and their relation to soils 53
Table 3-3 Summary of soil natural capital stocks behind provisioning services and parameters chosen for the quantification 81
Table 4-1 Soil pores function in relation to their size 85
Table 4-2 Estimated major stores of C on the Earth 113
Table 4-3 Areal extent of major land-cover types in New Zealand in 2000 117
Table 4-4 Soil (0-0.3 m) C stocks for different land uses (1990) 117
Table 4-5 Soil properties in dairy-grazed pasture under three stocking rates on two soil types, Waikato, New Zealand 118
Table 4-6 Change in total C of grazed land for different land categories (tC/ha/yr) for 0-30 cm depth 118
Table 4-7 National values of net ecosystem production by land cover 122
Table 4-8 CH\textsubscript{4} and N\textsubscript{2}O emissions from agriculture, from New Zealand GHGs inventory 127
Table 4-9 Improved pastures soil C values (0-0.3 m) (tC/ha) 133
Table 4-10 Carbon losses rates from pastures 134
Table 4-11 Seasonal methane uptake (sink) from two soil types 135
Table 4-12 Pasture pests and diseases and their relation to soils 137
Table 4-13 Main pasture pests of New Zealand 138
Table 4-14 Some dairy livestock pests and diseases and their relation to soils 141
Table 4-15 Summary of the quantification of soil regulating services 154
Table 4-16 Parameters used to quantify the provision of regulating services from soils 155
Table 5-1 Dairy cattle breeds characteristics (season 2008/2009) 161
Table 5-2 Average dairy farm data (season 2008/2009) 163
Table 5-3 Soil properties (0-10cm) of Horotiu and Te Kowhai 165
Table 5-4 Farm data as inputs to SPASMO 170
Table 5-5 Fertiliser best management practices 170
Table 5-6 Data used for the quantification of each of the parameters chosen 172
Table 5-7 Gravimetric soil moisture (0-10cm) for Horotiu and Te Kowhai 179
Table 5-8 Thresholds of soil sensitivity to treading damage (mm) by gravimetric (GSWC) and volumetric (VSWC) soil water content 181
Table 5-9 References of soil macroporosity recovery 184
Table 5-10 Soil conservation service curve number for a grazed pasture 186
Table 6-1 Links between ecosystem services and the total economic value framework 203
Table 6-2 Valuation techniques classified according to method and market type 213
Table 6-3 Market prices versus criteria for soil valuation 215
Table 6-4 Productivity change approach versus criteria for soil valuation 217
Table 6-5 Defensive expenditures versus criteria for soil valuation 219
Table 6-6	Replacement cost approach versus criteria for soil valuation	221
Table 6-7	Provision cost approach versus criteria for soil valuation	222
Table 6-8	Hedonic pricing versus criteria for soil valuation	225
Table 6-9	Travel cost method versus criteria for soil valuation	227
Table 6-10	Contingent valuation method versus criteria for soil valuation	230
Table 6-11	Choice modelling variants	232
Table 6-12	Level of attribute	232
Table 6-13	Choice modelling versus criteria for soil valuation	234
Table 6-14	Group valuation versus criteria for soil valuation	236
Table 6-15	Types of benefit transfer methods	237
Table 6-16	Summary of valuation techniques versus criteria for soil valuation	240
Table 6-17	Possible valuation techniques considered for the valuation of soil services	242
Table 7-1	Characteristic of the typical dairy farm for the base case scenario	248
Table 7-2	Overview of the proxies and valuation techniques used for each soil service	250
Table 7-3	Costs of prevention of trace-elements deficiencies	256
Table 7-4	Bulk density (g/cm³) of a Horotiu silt loam	258
Table 7-5	Aggregate surface thickness and construction costs by soil type	260
Table 7-6	Mitigation options to reduce N losses and costs for 3 cows/ha	275
Table 7-7	IPCC factors used in this study	287
Table 7-8	Detail of the Calculation of N₂O emissions from soils	290
Table 7-9	Seasonal methane uptake (sink) from two soil types	293
Table 7-10	Ideal conditions for pest development	296
Table 7-11	Number of favorable days for pest development between October and March and infestation levels	296
Table 7-12	Costs of application for the insecticide Diazinon 800 EC ($460.45 for 20L) for a well-established pasture	298
Table 7-13	Different values of soil services for the Horotiu silt loam under a dairy operation, and capital values	302
Table 7-14	Value of some of the infrastructure of a dairy farm	303
Table 8-1	Soil properties (0-10cm) of the Horotiu and Te Kowhai silt loams (New Zealand National Soil Database)	305
Table 8-2	Average direct and indirect emissions of N₂O (kg N₂O/ha/yr) from the two soils over 35 years	317
Table 8-3	Average value ($/ha/yr and % of total value) of soil services for the two soils, under a typical dairy farm operation over 35 years	321
Table 8-4	Comparison of the value (NZ$/ha/yr) of soil services between different studies	322
Table 9-1	Detail of the twelve scenarios studied	324
Table 9-2	Average value ($/ha/yr) over 35 years of each soil service for each scenario	344
Table 9-3	Average value of soil services ($/ha/yr) over 35 years	345
Table 9-4	Contribution (in %) of each service to the total value of soil services	346
Table A.1	Notes on interpreting Virtual Climate Station Data	391
Table A.2	Climate input file for the Ruakura station in the Waikato	392
Table A.3 Soil input file for a Horotiu silt loam 394
Table C.1 Water cycle outputs from SPASMO 399
Table C.2 Macroporosity outputs from SPASMO 400
Table D.1 Calculated minimum relative yield by Olsen P 402
Table F.1 Data on costs of a pad from case studies dairy farms 406
Table F.2 Calculations of wintering pad costs 407
Table F.3 Calculation of the needed volume of an effluent pond 409
Table F.4 Calculations of effluent system costs 410
Table F.5 Mitigation costs to reduce N losses ($/ha/yr) 412
Table F.6 Efficiency of the three combinations of mitigation techniques to reduce N losses 413
Table F.7 Efficiency of a pad to reduce P losses 414
Table F.8 Calculations of the cost of a constructed wetland 416
Acronyms and Symbols

Acronyms:
ASC: Anion storage capacity
AWC: Available water capacity
BCA: Benefit cost analysis
BD: Bulk density
CEC: Cation exchange capacity
DFE: Dairy farm effluents
DM: Dry matter
DOC: Dissolved organic carbon
DOM: Dissolved organic matter
DON: Dissolved organic nitrogen
DOP: Dissolved organic phosphorus
EDCs: Endocrine-disrupting chemicals
ES: Ecosystem services
FC: Field capacity
GHG: Greenhouse gas
GHGs: Greenhouse gases
GT: Grazing time
HM: Heavy metals
HR: Horotiu silt loam
IPCC: Intergovernmental Panel on Climate Change
K sat: Hydraulic conductivity
MAF: Ministry for agriculture and forestry in New Zealand
MEA: Millennium ecosystem assessment
MfE: Ministry for the environment in New Zealand
Mp: Macroporosity
MS: Milk solids
NC: Natural capital
NZ: New Zealand
OM: Organic matter
PL: Plastic limit
RF: Rainfall
RO: Runoff
Sat: Saturation
SP: Stress point
SPASMO: Soil plant atmosphere model
SR: Stocking rate
SWC: Soil water content
TDF: Typical dairy farm
TEV: Total economic value
TK: Te Kowhai silt loam
WFPS: Water-filled pore space
WP: Wilting point
WTA: Willingness to accept compensation
WTP: Willingness to pay

Symbols:
Ammonia: NH₃
Ammonium: NH₄⁺
Boron: B
Calcium: Ca
Carbon dioxide: CO₂
Carbon: C
Chloride: Cl
Cobalt: Co
Copper: Cu
Hydrogen: H
Iron: Fe
Magnesium: Mg
Manganese: Mn
Methane: CH₄
Molybdenum: Mo
Nitrate: NO₃⁻
Nitrogen: N
Nitrous oxide: N₂O
Oxygen: O₂
Phosphorus: P
Potassium: K
Silicon: Si
Sodium: Na
Sulphur: S
Zinc: Zn