Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Systematics and Biogeography of the New Zealand Sub-Family Crambinae (Lepidoptera: Pyralidae)

Volume I - text.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D) in Zoology at Massey University, Palmerston North, New Zealand.

David Edward Gaskin

1968
The status of the Sub-family Crambinae is examined in relation to other taxonomic units of the Super-family Pyraloidea. Relationships within the Sub-family have been studied using Hennig's system of phylogenetic analysis of apomorphic characters.

On the basis of a study of 37 revised world genera containing some 800 species, the Crambinae are divided into four tribes; the Crambini, with two sub-tribes, Crambina, with greatest development in the Palaearctic, and the Corynophorina which are Australasian; the Acigonini centred in the Ethiopian-Oriental regions, but with one genus strongly developed in South America; the Chiloini with moderate development in the Old World tropics but dominant in Australian grasslands; and the Diptychophorini which have a largely pan-tropical distribution.

The New Zealand cramble fauna has been completely revised. It consists of 80 known species: 48 of these are placed in Orocrambus Purdie, including the following new species: Orocrambus philpotti, O.jansoni, O.lewisi, O.ordishii and O.lindsayi. Twenty-five specific names are synonymised. A new genus Maoricrumbus, is erected to contain a single species oncobolus Meyrick. Angustalius Marion and Kupea Philpott have one each. These 3 genera are all Crambina. Two species of Corynophorina are present, both placed in the genus Tawhitia Philpott. Eighteen species of Pareromene of the tribe Diptychophorini, are re-described, including one new species Pareromene gurri.
The Acigonini are not represented in New Zealand. The Chiloini are weakly represented by *Tauroscopa* Meyrick and *Gadira* Walker with 3 species each, and a new genus *Faragadira* which contains one species. Two species of *Protyparcha* Meyrick are confined to Campbell Island and the Auckland Islands in the subantarctic.

Phylogenetic analysis of these genera shows the following: Maoricrambus is a segregate of *Orocrambus*, as is probably *Kupea*. *Orocrambus, Angustalius* and *Pareromene* show clear affinities with Palaearctic groups, and presumably reached New Zealand via the Melanesian Arc. New Zealand *Pareromene* also have sister species in New Guinea. *Angustalius* may have been accidentally introduced. The affinities of *Faragadira* and *Protyparcha* are not known. *Tawhitia, Tauroscopa* and *Gadira* all show sister-species or sister-genus relationships with Australian groups, and are assumed to have become assembled in New Zealand by aerial dispersal across the Tasman Sea.

Biogeographical literature relating to dispersal of taxa to New Zealand is reviewed, and major biotic routes beyond the Australasian Region are briefly discussed. It is stressed that the New Zealand crambine fauna shows no indication of trans-Antarctic relationships. The time of arrival of *Orocrambus* in New Zealand is postulated as the Eocene, that of *Pareromene* as the Middle Miocene.

Crambine distributions within New Zealand are reviewed; 15 species have distributions correlating with Pleistocene biotic refuge regions postulated by phytogeographers. The age of *Orocrambus* species is briefly considered. It
is suggested on evidence of relict distribution patterns and the semi-apterous adaptations found in most of the species with these distributions that some peri-glacial region survival has occurred.

Success of Orocrambus in radiating into the New Zealand alpine sector in the late Pleistocene is attributed to pre-existing adaptation to conditions of physiological drought, possibly developed in savanna-arid conditions in the earlier Tertiary, reinforced by selection for advantageous morphological adaptations during the early Pleistocene cool-climate conditions.
ACKNOWLEDGEMENTS

The field and laboratory studies in this work were supported by a research grant from the University Grants Committee of New Zealand between 1966 and 1968.

I am very grateful to my supervisors Mr J.S. Dugdale of the Entomology Division of DSIR Nelson, and Mr L. Gurr, Reader in Zoology at Massey University, for all their valuable advice and criticism during the course of this study, and for their detailed commentary on the manuscript.

Special thanks are due to Miss Doreen Scott and her assistants of the Massey University Photographic Unit, whose prodigious efforts brought much of Volume II into being.

Help by overseas experts in acknowledged on p.3 together with a list of abbreviations used to denote the collections from which material was obtained.

Loan and gift material came also from many sources within New Zealand, and I would like specially to thank: Mr. R.G. Ordish of the Entomology Department, Dominion Museum, Wellington; Mr K.A.J. Wise of the Auckland Museum and Institute; Mr J. Penniket of the Entomology Department, Canterbury Museum; Mr E.S. Gourlay of the Entomology Division, DSIR Nelson; Mrs Margaret McPherson of the Department of Agricultural Zoology, Lincoln College, Canterbury; Mr G.A. Nelson of the Division of Horticulture, New Zealand Department of Agriculture; and a number of Agricultural Sub-station superintendents, notably Mr W.R. Lobb of Winchmore, Canterbury.
Assistance on collecting expeditions was most welcome, and came from Dr K. Fox of Manaia, Mr D. J. Greenwood of the Zoology Department, Canterbury University, and from Mr P. J. Wigley of the Department of Zoology, Massey University.

Much initial encouragement came from Dr W. C. Clark, Reader in Zoology, University of Canterbury. Very valuable assistance in deciphering handwriting of early New Zealand entomologists on specimen labels was given by Dr P. M. Johns, Lecturer in Zoology, University of Canterbury.

All the taxonomic typing was done by Mrs Christine Gradolf of 72 Brandon Street, Featherston.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>5</td>
</tr>
<tr>
<td>Considerations on genitalia terminology and function</td>
<td>11</td>
</tr>
<tr>
<td>The Status of the Crambinae</td>
<td>21</td>
</tr>
<tr>
<td>Sub-Family Crambinae</td>
<td>28</td>
</tr>
<tr>
<td>Relationships within the Crambinae</td>
<td>30</td>
</tr>
<tr>
<td>Tribe Crambini</td>
<td>32</td>
</tr>
<tr>
<td>Tribe Diptychophorini</td>
<td>35</td>
</tr>
<tr>
<td>Tribe Chiloini</td>
<td>37</td>
</tr>
<tr>
<td>Tribe Acigonini</td>
<td>43</td>
</tr>
<tr>
<td>Characters of immature stages</td>
<td>45</td>
</tr>
<tr>
<td>Conclusions</td>
<td>52</td>
</tr>
<tr>
<td>Key to mainland genera of New Zealand Crambinae</td>
<td>55</td>
</tr>
<tr>
<td>Tribe Crambini: diagnosis</td>
<td>57</td>
</tr>
<tr>
<td>Key to Sub-tribes</td>
<td>59</td>
</tr>
<tr>
<td>Sub-tribe Crambina</td>
<td>59</td>
</tr>
<tr>
<td>Genus Orocrambus Purdie: Diagnosis; Systematic revision</td>
<td>59</td>
</tr>
<tr>
<td>Species Groups</td>
<td>64</td>
</tr>
<tr>
<td>Systematic key to Groups</td>
<td>66</td>
</tr>
<tr>
<td>Synonymic list of species</td>
<td>68</td>
</tr>
<tr>
<td>Synonymies</td>
<td>71</td>
</tr>
<tr>
<td>Key to external characters</td>
<td>73</td>
</tr>
<tr>
<td>Key to female genitalia</td>
<td>80</td>
</tr>
<tr>
<td>Species Group 1</td>
<td>85</td>
</tr>
</tbody>
</table>
Species Group 2 ----------------- p. 89
Species Group 3 ----------------- p. 126
Species Group 4 ----------------- p. 146
Species Group 5 ----------------- p. 151
Genus Maoricrambus gen.nov. Diagnosis p. 218
Genus Angustalius Marion: Diagnosis-- p. 220
Genus Kupea Philpott: Diagnosis------ p. 222
Sub-tribe Corynophorina------------------- p. 224
Genus Tawhitia Philpott: Diagnosis-- p. 224
Genus Corynophora Berg: Diagnosis--- p. 231
Tribe Diptychophorini: diagnosis------------ p. 234
Genus Pareromene Osthelder: Diagnosis p. 235
 Systematic revision---------------- p. 235
Species Groups ----------------------- p. 235
Synonymic list of species---------- p. 238
Key to species groups by genitalia p. 242
Key to female genitalia of New
 Zealand species ------------------ p. 244
Species Group 1 ---------------------- p. 246
Species Group 2 ---------------------- p. 248
Species Group 3 ---------------------- p. 250
Species Group 4 ---------------------- p. 250
Species Group 5 ---------------------- p. 261
Species Group 9b --------------------- p. 286
Tribe Acigonini: diagnosis ------------ p. 289
Tribe Chiloini: diagnosis ----------- p. 291
Genus Tauroscopa Meyrick: Diagnosis-- p. 292
 Key to New Zealand species------- p. 293
Species Group 1 ----------------- p. 294
Species Group 2 ----------------- p. 297
Species Group 3 ----------------- p. 299
Genus Hednota Meyrick: Diagnosis---- p. 304
Genus Gadira Walker: Diagnosis----- p. 307
Systematic list of species -------- p. 311
Key to New Zealand species ------ p. 312
Species Group 1 ----------------- p. 313
Species Group 2 ----------------- p. 316
Species Group 3 ----------------- p. 322
Species Group 4 ----------------- p. 326
Genus Paragadira gen.nov.: Diagnosis- p. 331
Genus Protyparcha Meyrick: Diagnosis- p. 334

Western Pacific Biogeography, with Special
Reference to New Zealand --------------------------- p. 338

Geographical Distribution of the Crambinae:
Origins of the New Zealand Crambine Fauna ---- p. 361
Arrival of crambine taxa in
New Zealand ------------------------------------- p. 370
Comments on major biotic migration
routes beyond the Australasian Region p. 377

Distribution of Crambinae within New Zealand-- p. 379
Summary of New Zealand distributions- p. 379
Reliability of apparent patterns----- p. 382
The Quaternary in New Zealand ------ p. 384
Effects of Pleistocene Climates on
the New Zealand fauna, flora ------------ p. 387
The problem of speciation -------- p. 393
Conclusions ---------------------------- p. 399

Bibliography ----------------------------- p. 400

Appendix: catalogue of genitalial mounts ----- p. 421