A STUDY OF MOUSE BLOOD PROTEINS IN THE INBRED STRAINS 101/FaMac, NZB/B1 AND NZY/B1.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University.

DAVID FRANCIS NEWSTEAD

1970
ACKNOWLEDGEMENTS

I wish to express my gratitude and thanks to the following:

Prof. D.S. Flux, for his guidance and encouragement throughout this project,

Dr. P.H.M. Cockrem, for his guidance, and advice on, and assistance with experimental design and analysis of results,

Prof. R.E. Macfard, for his advice, especially on statistical analysis,

Drs. A.A. Wilec, K.M. Moniarty, Prof. M.C. Lancaster,
Drs. W. E. G. Charleston, J.W. Liddelton, E. Moustapha,
and Mr. S.C. Couchman, for their advice and for helpful discussions,

my wife, Leslie, for technical and clerical assistance and for the preparation of diagrams,

Mr. J.S. Crasby, for assistance, helpful suggestions and photography,

Miss D.J. Scott and Mr. C.M. Rofe, for reproduction of photographs, and Miss L. Waern-Bugge, for development of autoradiographs,

the staff of the Small Animal Research Unit, for their help and co-operation,

the library staff, for their much appreciated efficiency,

the Palmerston North Medical Research Foundation, for a financial grant for the purchase of materials and equipment.

I am also indebted to the Palmerston North Medical Research Foundation and the University Grants Committee, for financial support throughout the course of this study.
TABLE OF CONTENTS

Acknowledgements .. ii
List of Tables .. vi
List of Figures .. vii
Abbreviations .. viii

ABSTRACT

Nomenclature .. 1

INTRODUCTION

REVIEW

Blood Proteins of Mice ... 6
Autoimmunity in NZB/B1 and Related Mice 24

EXPERIMENTAL

Mice and their Maintenance .. 31
Blood Sampling and Serum Preparation 32
Methods of Serum Analysis .. 33

EXPERIMENTAL A: Identification and Characterization of Components of Mouse Serum

A1 Identification in Terms of Standard Nomenclature 39
A2 Investigation of Identities between IE and DE Components and their Occurrence in GF Fractions 40
A3 Estimation of Molecular Weights of Components by GF 46

EXPERIMENTAL B: Comparison of Mice of the Strains 101, NZB and NZV at Different Ages 52

Experimental Mice and Their Grouping 54
B1	Comparison of Sera from Young Mice of All Three Strains by GF	56
B2	Comparison of Sera from Mice Over One Year Old of the Three Strains by GF	60
B3	Comparison of Sera from Individual NZB Mice of Two Age Groups by GF	61
B4	Comparison of Sera from Mice of the Three Strains at Different Ages by DB and GF	64
B5	Comparison of Sera from Mice of the Three Strains in Two Successive Weeks by DB	67
B6	Comparison of Haematocrit Values of Mice of the Three Strains at Different Ages	69

Typing for Genetic Variants of Transferrin and Haemoglobin

Investigation of Methods

RESULTS

Investigation of Methods

RESULTS A: Identification and Characterization of Components

A1 Identification in Terms of Standard Nomenclature

A2 Investigation of Identities between DB and DB Components and Their Occurrence in GF Fractions

A3 Estimation of Molecular Weights by GF

RESULTS B: Comparison of Mice of the Strains 101, NZB and NZY at Different Ages

B1 Comparison of Sera from Young Mice of the Three Strains by GF

B2 Comparison of Sera from Mice Over One Year Old of the Three Strains by GF

B3 Comparison of Sera from Individual NZB Mice of Two Age Groups by GF

Page iv
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4</td>
<td>Comparison of Sera from Mice of the Three Strains at Different Ages by DB and GF</td>
<td>131</td>
</tr>
<tr>
<td>B5</td>
<td>Comparison of Sera from Mice of the Three Strains in Two Successive Weeks by DB</td>
<td>140</td>
</tr>
<tr>
<td>B6</td>
<td>Comparison of Haematocrit Values of Mice of the Three Strains at Different Ages</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Genetic Variants of Transferrin and Haemoglobin</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Summary of Results</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>DISCUSSION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion of Methods</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Methods of Serum Analysis</td>
<td>164</td>
</tr>
<tr>
<td>II</td>
<td>Effects of Anaesthetic</td>
<td>168</td>
</tr>
<tr>
<td>III</td>
<td>Statistical Analysis</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Discussion of Results</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Gel Filtration Analysis</td>
<td>171</td>
</tr>
<tr>
<td>II</td>
<td>Individual Protein Components (DB)</td>
<td>173</td>
</tr>
<tr>
<td>III</td>
<td>Effects on the Overall Serum Protein Pattern</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>CONCLUSION</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td>217</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Details of Experiment B1</td>
<td>55</td>
</tr>
<tr>
<td>2. Composition of the Age-Groups in Experiment B2</td>
<td>59</td>
</tr>
<tr>
<td>3. Sex - Strain - Age Sub-Group Numbers for Experiment B4</td>
<td>63</td>
</tr>
<tr>
<td>4. Comparison of Serum and Plasma Showing the Occurrence of DE Components Affected by the Different Treatments and Mouse Types</td>
<td>80</td>
</tr>
<tr>
<td>5. Effects of Anaesthetic</td>
<td>87</td>
</tr>
<tr>
<td>6. Optical Densities of DE Components for Repeat Samples from the Same Mice</td>
<td>88</td>
</tr>
<tr>
<td>7. Incidence of 59Fe Label on DE Components</td>
<td>106</td>
</tr>
<tr>
<td>8. Positions of DE and IE Components in the GF Pattern, their Identities and Estimated Molecular Weights</td>
<td>110</td>
</tr>
<tr>
<td>9. Peak Heights for Fractions in GF Elution Patterns of Young Mice, Experiment B1</td>
<td>123</td>
</tr>
<tr>
<td>10. Strain Means and Age Means for GF Fractions, Experiment B4</td>
<td>122</td>
</tr>
<tr>
<td>11. Estimates of Parameters for Serum Components of 101, NZB and NZY mice at 4 ages, Male, Experiment B4</td>
<td>137</td>
</tr>
<tr>
<td>12. Estimates of Parameters for Serum Components of 101, NZB and NZY mice at 4 ages, Female, Experiment B4</td>
<td>138</td>
</tr>
<tr>
<td>13. Significant Sex Effects, Experiment B4</td>
<td>139</td>
</tr>
<tr>
<td>14. Effects of Strain, Age and Sex, and Week, Experiment B5</td>
<td>142</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>DE and IE Patterns of Mouse Serum Showing the Nomenclature, and Identification of Components</td>
</tr>
<tr>
<td>2</td>
<td>DE Patterns of Serum, Fresh and Frozen</td>
</tr>
<tr>
<td>3</td>
<td>Photoelectric Densitometer Tracing of DE Pattern</td>
</tr>
<tr>
<td>4</td>
<td>Relationships Between Protein Concentrations and Optical Densities from Densitometry of DE Patterns</td>
</tr>
<tr>
<td>5</td>
<td>DE and IE Patterns Stained for Peroxidase activity</td>
</tr>
<tr>
<td>6</td>
<td>DE and IE Patterns Stained for Oxidase activity</td>
</tr>
<tr>
<td>7</td>
<td>Location of 59Fe Label in DE Patterns</td>
</tr>
<tr>
<td>8</td>
<td>Autoradiographs of IE Patterns Showing Location of 59Fe Label</td>
</tr>
<tr>
<td>9</td>
<td>DE Patterns of GF Fractions Shown Against the GF Pattern</td>
</tr>
<tr>
<td>10</td>
<td>Showing Two Samples Run Side by Side in the Same DE Gel</td>
</tr>
<tr>
<td>11</td>
<td>Immunodiffusion Patterns Showing Relationships Among DE Components</td>
</tr>
<tr>
<td>12</td>
<td>Immunodiffusion Patterns Showing Identity Between DE Fractions and Mouse β-Globulin</td>
</tr>
<tr>
<td>13</td>
<td>Immunodiffusion Patterns Showing Relationships Between the Main DE and IE Components</td>
</tr>
<tr>
<td>14</td>
<td>Comparison of the GF Patterns of Sera from 101, NZB and NZY Mice</td>
</tr>
<tr>
<td>15</td>
<td>Diagrams Summarizing the Strain and Age Effects on the GF Components GF1 and GF2</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>A/S</td>
<td>antiserum</td>
</tr>
<tr>
<td>BCG</td>
<td>bovine γ-globulin</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>De (D.E.)</td>
<td>disc electrophoresis (page 35)</td>
</tr>
<tr>
<td>df (d.f., D.F.)</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>F</td>
<td>variance ratio</td>
</tr>
<tr>
<td>GF (G.F.)</td>
<td>gel filtration (page 34)</td>
</tr>
<tr>
<td>GFA, GFG, GFM</td>
<td>gel filtration fractions (pages 3 and 112)</td>
</tr>
<tr>
<td>IIE (I.I.)</td>
<td>immuno electrophoresis (page 37)</td>
</tr>
<tr>
<td>M2 (M.S.)</td>
<td>mean square</td>
</tr>
<tr>
<td>Mw</td>
<td>molecular weight</td>
</tr>
<tr>
<td>m/μ</td>
<td>millimicron (light wavelength)</td>
</tr>
<tr>
<td>OD (O.D.)</td>
<td>optical density</td>
</tr>
<tr>
<td>p</td>
<td>probability of obtaining the same or a greater F or t due to chance in the absence of an effect</td>
</tr>
<tr>
<td>PAS</td>
<td>periodic acid Schiff</td>
</tr>
<tr>
<td>PCV</td>
<td>packed cell volume (ρ)</td>
</tr>
<tr>
<td>P.N.M.R.F.</td>
<td>Palmerston North Medical Research Foundation</td>
</tr>
<tr>
<td>PPD</td>
<td>para-phenylenediamine</td>
</tr>
<tr>
<td>S.A.R.U.</td>
<td>Massey University Small Animal Research Unit</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation (estimate of σ)</td>
</tr>
<tr>
<td>t</td>
<td>Student’s t</td>
</tr>
<tr>
<td>μ</td>
<td>ionic strength</td>
</tr>
<tr>
<td>μg, μl</td>
<td>microgramme, microlitre</td>
</tr>
<tr>
<td>σ²</td>
<td>variance</td>
</tr>
</tbody>
</table>
ABSTRACT

The serum protein patterns of mice of the inbred strains 101/FaTac, NZB/Bi and NZY/bi were compared by gel filtration chromatography and disc electrophoresis in polyacrylamide gel. The gel filtration and disc-electrophoretic patterns were correlated with each other and with the immunoelectrophoretic pattern. Components of the disc-electrophoretic pattern conclusively identified were albumin, immunoglobulin IgG, haemoglobin, the sex-dependent prealbumin, three components of transferrin, ceruloplasmin, \(\alpha \)-macroglobulin and the sex-dependent \(\alpha \)-globulin. Immunoglobulin IgG and haptoglobin were identified less conclusively. Estimates of the molecular weights of most components of the disc-electrophoretic pattern were made by gel filtration.

Quantitative comparisons were made for each gel filtration fraction and disc-electrophoretic component measured, according to linear models incorporating parameters due to sex, strain, age and interaction effects. NZB mice were found to have higher levels of immunoglobulins than 101 and NZY mice after the age of three to four months. The apparently high activity of the immune system of NZB mice is discussed briefly in relation to autoimmunity.

Sex effects on the levels of several components were observed and were particularly marked for an \(\alpha \)-globulin, for one of the transferrin components resolved by disc electrophor-
esis and for prealbumin. All three were about 1.5 times higher in males than in females. Strain-within-sex effects for the latter three components were indicated by lower levels in NZB males than in 101 and NZY males.

Over all strains, while one transferrin component was higher in males than in females, the most prominent transferrin component was at slightly lower levels in males than in females. The possibility that the different transferrin components have different functions is discussed briefly.

Sex differences were observed in the residual variances, after fitting sex, strain and age effects, of 17 out of 49 disc-electrophoretic components; the variances for males were higher than for females for all 17 components.

Differences in the levels of several components were observed between samples taken from the same mice a week apart. The between-week variations in albumin and transferrin were opposite to the between-week variations in most of the other components.

The three inbred strains were typed for transferrin and haemoglobin phenotypes. All three strains had the slower, TrfB, transferrin; 101 and NZB mice had diffuse, D, type haemoglobin and NZY mice had single, S, type haemoglobin.