Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ELECTROLYTE SYSTEMS RELATING TO MILK

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University.

KEVIN NEIL PEARCE

June, 1972
A pH titration method using a glass electrode/saturated calomel electrode cell has been applied to the determination of acidity and stability constants in dilute aqueous solutions at 25°C. Two computer programs in FORTRAN have been written and used to calculate the constants from the titration data.

Acidity constants for the homologous series of aliphatic dicarboxylic acids (succinic acid to sebacic acid inclusive) have been determined. Acidity constants for tricarballylic, citric and a number of other carboxylic acids have also been determined and the values obtained are in good agreement with values reported by other workers. A new set of micro acidity constants, differing from those reported by other workers, has been obtained for citric acid from a pH titration study of various methyl esters of citric acid. The stability constants for the magnesium and calcium complexes of citric acid have been redetermined.

The method of calculating acidity constants from substituent effects has been refined to distinguish between macro and micro acidity constants and has been used with some success in the prediction of both micro and macro acidity constants. Good values have been obtained for the first and second but not the third acidity constants for citric acid using this technique. An analogous method for calculating stability constants from substituent effects has been tested and found promising but its application is
hampered by the lack of suitable experimental data.

The thermodynamic basis of the cation exchange resin method of determining cation activities in solution has been described and a new method of resin calibration using two parameter equations developed. The ion exchange resin method has been applied to studies of the seasonal variation of milk composition and to brief studies of the effects of milk pH adjustment, the factors affecting the renneting time of milk and the determination of cation activities in non bovine milks.

Some of the problems associated with calculating cation activities in milk have been briefly discussed. In a preliminary study of synthetic whey, comparisons have been made between cation activities determined experimentally and those calculated from a knowledge of composition and of the relevant acidity and stability constants.
ACKNOWLEDGEMENTS

I am indebted to the following:

Dr L.K. Creamer, New Zealand Dairy Research Institute,
for guidance and continuing interest.
Dr R.D. Reeves, for supervision.
Professor G.N. Malcolm, for supervision.
Dr R.C. Lawrence, New Zealand Dairy Research Institute,
for helpful comments.
Professor W.A.E. McBryde, University of Waterloo, Ontario,
for helpful discussions and for arranging the
computer processing of data.
New Zealand Dairy Research Institute for employment and
the use of facilities during the course of the work.
TABLE OF CONTENTS

CHAPTER 1. GENERAL INTRODUCTION
1.1 A Description of Milk and Some of its Properties.
1.2 An Introduction to the Present Work.

PART I. ACIDITY AND STABILITY CONSTANTS

CHAPTER 2. INTRODUCTION
2.1 Definitions.
2.2 A Brief Survey of Methods Available for Determining Acidity and Stability Constants.
2.3 The Micro Acidity Constants for Citric Acid.
2.4 Structural Formulae of Acids Related to Citric Acid.

CHAPTER 3. THEORY AND COMPUTER PROGRAMS
3.1 Derivation of General Formulae.
3.2 The Method of Least Squares.
3.3 Computer Programs.

CHAPTER 4. EXPERIMENTAL
4.1 Description of Apparatus.
4.2 Reagents.
4.3 Experimental Procedure.

CHAPTER 5. RESULTS
5.1 The ωDicarboxylic Acids.
5.2 Acidity Constants for Various Carboxylic Acids.
5.3 Acidity Constants for Citric Acid.
5.4 Acidity Constants for the Methyl Citrates.
5.5 Stability Constants for Various Citrate Complexes.
CHAPTER 6. DISCUSSION

6.1 Error.
6.2 Interaction Between the Supporting Electrolyte and the Acid Anion.
6.3 The Hydrogen Ion Activity Coefficient.
6.4 Calculation of Acidity Constants from the Substituent Effect.
6.5 Micro Acidity Constants for Citric Acid.
6.6 Calculation of Stability Constants from Substituent Effects.

PART II CATION ACTIVITIES IN MILK, MILK PRODUCTS AND OTHER FLUIDS

CHAPTER 7. INTRODUCTION

CHAPTER 8. THEORY AND APPLICATION OF THE ION EXCHANGE RESIN METHOD FOR DETERMINING CATION ACTIVITIES

8.2 Application.

CHAPTER 10. EXPERIMENTAL.

10.1 Description of Apparatus.
10.2 Reagents.
10.3 Procedures.

CHAPTER 11. RESULTS

11.1 The Effect of Temperature on Resin Calibration.
11.2 The Effect of Resin Bead Size.
11.3 Elution Kinetics.
11.4 Calibration of the Ion Exchange Resin.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>(Continued)</td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td>Cation Activities in Bovine Raw Skim Milk</td>
<td>122</td>
</tr>
<tr>
<td>11.6</td>
<td>The Variation of Cation Activities in Milk with Temperature.</td>
<td>126</td>
</tr>
<tr>
<td>11.7</td>
<td>Milk pH and Calcium Ion Activity.</td>
<td>129</td>
</tr>
<tr>
<td>11.8</td>
<td>Renneting Time and Calcium Ion Activity.</td>
<td>129</td>
</tr>
<tr>
<td>11.9</td>
<td>Cation Activities in Goat, Cow and Sheep Milks.</td>
<td>131</td>
</tr>
<tr>
<td>12</td>
<td>DISCUSSION</td>
<td>136</td>
</tr>
<tr>
<td>12.1</td>
<td>Functional Relationships and Regressions Between Equilibrium Solution Cation Activities and Resin Composition.</td>
<td>136</td>
</tr>
<tr>
<td>12.2</td>
<td>Limitations of the Cation Exchange Resin Method of Determining Cation Activities.</td>
<td>139</td>
</tr>
<tr>
<td>12.3</td>
<td>Precision and Accuracy of the Cation Exchange Resin Method for Determining Cation Activities.</td>
<td>142</td>
</tr>
<tr>
<td>PART III</td>
<td>PREDICTION OF CATION ACTIVITIES IN WHEY AND SYNTHETIC WHEY</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>THEORETICAL PREDICTION AND EXPERIMENTAL DETERMINATION OF CATION ACTIVITIES IN SYNTHETIC WHEY</td>
<td>146</td>
</tr>
<tr>
<td>13.1</td>
<td>Skim Milk as an Equilibrium System.</td>
<td>146</td>
</tr>
<tr>
<td>13.2</td>
<td>Calculation of Cation Activities in Synthetic Whey.</td>
<td>151</td>
</tr>
<tr>
<td>13.3</td>
<td>Experimental Determination of Cation Activities in Synthetic Whey.</td>
<td>151</td>
</tr>
<tr>
<td>14</td>
<td>SUMMARY AND GENERAL CONCLUSIONS.</td>
<td>159</td>
</tr>
<tr>
<td>14.1</td>
<td>Summary.</td>
<td>159</td>
</tr>
<tr>
<td>14.2</td>
<td>Suggestions for Further Work.</td>
<td>160</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>Volume of the Micelle Phase of Milk.</td>
<td>164</td>
</tr>
</tbody>
</table>
APPENDIX II. The Kinetics of Methyl Citrate Saponification. 168

APPENDIX III. Symbols and Units. 171

REFERENCES 172

TABLES
1.1 The Composition of Typical Bovine Skim Milk. 2
1.2 Approximate Composition of the Serum and Micelle Phases of Typical Bovine Skim Milk at 20°C. 4
4.1 Approximate Yields of Methyl Citrates Produced by Saponification. 37
5.1 Thermodynamic and Concentration Acidity Constants for the \(\omega \) Dicarboxylic Acids. 41
5.2 Acidity Constants for Various Carboxylic Acids. 44
5.3 Acidity Constants and Standard Deviations for Citric Acid as a Function of Acid Concentration in 0.1 mmol/l KCl Solution. 46
5.4 Concentration Acidity Constants for Citric Acid at \(I = 0.1 \). 47
5.5 Acidity Constants for the Methyl Citrates. 48
5.6 A Summary of Values Reported for the Stability Constants of Citric Acid/Calcium Complexes. 50
5.7 Metal Ion Concentrations Calculated from Constants Given by Campi et al., for Citric Acid. 53
5.8 Stability Constants for Citric Acid/Calcium Complexes. 54
5.9 Variation with Ionic Strength of the Stability Constants for Citric Acid/Calcium Complexes. 56
5.10 A Summary of Values Reported for the Stability Constants for Citric Acid/Magnesium Complexes. 58
TABLES (Continued)

5.11 Stability Constants for Citric Acid/Magnesium Complexes. 59
5.12 Stability Constants for Various Complexes. 60
6.0 pH to pC_H Corrections. 69
6.1 Illustrations of the Method of Calculating the Effects of Substituents on Acid Strengths. 73
6.2 Acid Strengthening Effect of Substituents for Aliphatic Carboxylic Acids in Aqueous Solution. 73
6.3 Calculation of the Micro Acidity Constants for Citric Acid. 75
6.4 Calculation of Macro Acidity Constants for Citric Acid from Calculated Micro Acidity Constants. 76
6.5 Calculated pK's for Several Acids. 77
6.6 A Comparison of Calculated and Experimental Acidity Constants for Citric Acid. 82
6.7 Comparison of Calculated and Experimental pK's for the Mono Methyl Citrates. 82
6.8 Complex Strengthening Effect of Substituents. 85
6.9 Calculation of Stability Constants for Various Citrate Complexes. 86
6.10 A Comparison of Calculated and Experimental Log Stability Constants. 88

10.1 Analysis Methods. 111
11.1 Flame Photometry Results from the Calibration of IR-120 Resin at 12°C. 117
11.2 Calibration Data for Amberlite IR-120 at 12°C. 118
11.3 Calibration Data for Amberlite IR-120 at 23°C. 120
11.4 Amberlite IR-120 Resin Calibration Parameters. 121
TABLES (Continued)

11.5 Duolite C-20 Resin Calibration Parameters. Calculated from the Data of Van Kreveld and Van Minnen (1955). 121
11.6 Cation Activities in Raw Bovine Milk. 127
11.7 Effects of Additives on Skim Milk. 134
11.8 Cation Concentrations and Activities in Various Milks. 134
13.1 Experimental Results for Synthetic Whey. 152
13.2 Calculated Results for Synthetic Whey. 157
AII.1 Reaction Rate Constants for the Saponification of the Methyl Esters of Citric Acid. 170
FIGURES

2.1 The Complete Dissociation Scheme for Citric Acid. 15

3.1 Simplified Flow Chart for Computer Program to Calculate Acidity Constants from pH Titration Data. 29

3.2 Simplified Flow Chart for Computer Program to Calculate Stability Constants of Metal Ion Complexes from pH Titration Data. 30

11.1 Effect of Temperature on Resin Composition. 113

11.2 Resin Bead Fractionation Scheme Using Standard Sieves. 114

11.3 Variation of Column Effluent Concentration with Total Volume of Effluent. 116

11.4 Seasonal Variation of Sodium and Potassium Concentrations and pH. 123

11.5 Seasonal Variation of Magnesium and Calcium Ion Concentrations and Activities. 124

11.6 Cation Activities in Milk with Adjusted pH's. 130

11.7 Variation of the Rennet Coagulation Time of Milk with Calcium Ion Activity. 132

11.8 Variation of Rennet Coagulation Time of Milk with pH. 133

13.1 Comparison of Calculated and Experimental Data for Synthetic Whey. 154

13.2 pH Titration Curves for Synthetic Whey and Skim Milk. 155

AI.1 Volume Fraction of the Micelle Phase of Milk. 166

AII.1 Saponification Scheme for the Methyl Citrates. 168