STUDIES ON PARASITIC PROTOZOA
OF THE GENUS SARCOCYSTIS

A thesis presented in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy in Veterinary Science
at Massey University

GEORGE HENRY COLLINS
January 1980
ABSTRACT

Earlier investigations into the biology of *Sarcocystis* are briefly reviewed; information reported since 1972 is reviewed in detail.

The relative efficiency of haemagglutination (HAT, macro and micro systems), complement fixation (CFT, macro and micro systems) and the indirect fluorescent antibody test (IFAT) was studied using macrocysts (*S. gigantia*) from sheep oesophagi as antigen. In the HAT, macro system titres were always higher than micro system titres. Hyperimmunised rabbits had higher titres than hyperimmunised sheep. Fifteen of 24 naturally infected sheep had negative titres. The macro CFT gave comparable results: the micro CFT was affected by persistent anticomplementary factors in sheep serum. The IFAT was both sensitive and repeatable. In all test systems, *Sarcocystis* antibody titres were minimal in infected adult sheep and in pasture-raised lambs. The value of serology in surveys of prevalence and in diagnosis of sarcocystosis is discussed.

Two types of macrocyst were found in skeletal muscle of sheep at slaughter: 'fat' cysts resembled oesophageal cysts (*S. gigantia*) grossly and in ultrastructure of the wall; 'thin' cysts (*S. medusiformis* n. sp.) were narrower and ultrastructurally distinct. The relative prevalences of the three sheep macrocysts were independent.

Fat and thin macrocysts were transmitted to cats and similarly sized sporocysts produced. *S. gigantia* sporocysts failed to infect lambs; reasons for this are discussed.

Survival of *S. gigantia* macrocysts was studied using an oxygen electrode and by cat feeding. Macrocysts were viable after 10 minutes at 52.5°C but not after 20 minutes at 55°C or 10 minutes at
Macrocysts survived 60 days at -14°C, cysts stored at 10°C for 13 days and 4°C for 30 days metabolised vigorously. Sheep meat should be exposed to 60°C for at least 20 minutes to render it non-infective for cats.

Using muscle digestion and histology, *Sarcocystis* spp. were found in (%; number examined): feral goats (28;60), red deer (30;50), wild pig (10;50), norway rat (84;50), mouse (8;50) and rabbit (16;50); none in 62 opossums and 8 wallabies. A goat species was transmitted to dogs (sporocysts 13.6±0.69x9.25±0.55), a rabbit species to cats (sporocysts 12.5±0.31x9.29±0.45) and one in rats to cats (sporocysts 10.59±0.52x7.87±0.41). Appropriate sporocysts failed to infect laboratory rats or rabbits.

A survey showed that feral cats inhabit and breed in a variety of terrains in most parts of New Zealand. The commonest foods eaten were rabbit (22% total reports), opossum (18%), sheep (16.6%) and birds (14.5%).

The development and pathogenesis of a dog-derived species was studied in goats. Doses of 5 x 10⁶ sporocysts caused death at 18 and 19 days after infection; necropsy revealed extensive petechial haemorrhages. Schizonts occupied endothelial cells, especially in renal glomeruli. 6 x 10⁵ sporocysts caused death at 24 and 34 days; lesser doses caused pyrexia, anaemia, anorexia and stunting. Sarcocysts were found in muscle fibres at 34 days, appeared mature at 80 days and were infective for dogs at 129 days. Changes in levels of Hb, PCV, TP, SGOT and *Sarcocystis* antibodies were shown. Four sheep given sporocysts were not infected.

The potential importance of sarcocystosis in animal production and the need for further research is discussed.
Sarcosporidia have been reported in the muscles of a wide variety of hosts, especially farm animals, for more than a century.

In New Zealand, slaughtered adult sheep are frequently seen to be infected with sarcocysts and carcasses have to be detained for trimming or occasionally condemned. The presence of *Sarcocystis* macrocysts in mutton adds several million dollars a year to the operating costs of the meat industry.

It has been shown experimentally that *Sarcocystis* infections in ruminants can cause mild to severe illness, even death, and abortions of pregnant animals. The importance of naturally acquired infection to farm animal production in this country is unknown.

The studies described in this thesis were contemporary with the rapid expansion in knowledge of *Sarcocystis* species after 1972 and the aim of the research was to provide basic information on these parasites in New Zealand.
ACKNOWLEDGEMENTS

This thesis could not have been completed without the help of the following individuals and organisations. I am indebted to:
Drs. W. A. G. Charleston and K. M. Moriarty, my supervisors, for providing advice, constructive criticism and encouragement throughout my studies,
Mr. P. McKenna for his advice and for permission to quote from his unpublished work,
Dr. R. H. Sutton for help with clinical pathology and Mr. G. Petersen for facilitating the meat work studies,
P. Jerram, D. Richardson, M. Southern, B. Wiens, J. Wilson, P. Wylie and others who provided technical expertise and helped maintain experimental animals,
C. Fletcher, R. Hansen and P. Slack for the preparation of histological sections, and A. Craig for electron microscopy,
T. Law and the staff of Massey C.P.U. and Printery for advice and the preparation of certain figures, and Massey S.A.P.U. for providing some of the experimental animals.

My thanks to the management and staff of The Longburn Freezing Works (Borthwicks CWS Ltd.) for the provision of sheep muscle samples and to Consolidated Traders (N.Z.) Ltd., of Rongotea for samples of muscle from deer and wild pigs. Mr. G. Costello of Ashhurst collected rabbit carcases for me and wallaby specimens were supplied by the Department of Zoology, Canterbury University.

Research for this thesis was carried out in the Department of Veterinary Pathology and Public Health, with the permission and
encouragement of Prof. B. W. Manktelow. Generous financial support was provided by the New Zealand Meat Producers Board; I am indebted to Prof. W. J. Pryor for negotiating the grant on my behalf.

Special thanks to my wife Dorothy who typed the thesis and to all my family and friends for their support.
CONTENTS

ABSTRACT ii
PREFACE iv
ACKNOWLEDGEMENTS v
INDEX OF FIGURES xv
INDEX OF TABLES xvii
TERMINOLOGY xix

1. PRELIMINARY INVESTIGATIONS: 1843 to 1972
 1.1 Introduction 1
 1.2 The pre-electron microscopy period 1
 1.3 Early investigations of ultrastructure 3
 1.4 Elucidation of the life cycle 4

2. CONTEMPORARY STUDIES; PRESENT KNOWLEDGE
 2.1 Introduction 6
 2.2 Nomenclature 6
 2.3 Host distribution and prevalence 8
 a. Host distribution 8
 b. Prevalence in intermediate hosts 9
 c. Prevalence in the definitive host 11
 2.4 Life cycle 13
 a. Introduction 13
 b. Infection of the intermediate host 13
 c. Schizogony 15
 d. Development in muscle 17
 e. Development in the definitive host 20
 2.5 Morphology 21
2.6 Sarcocystosis

2.1 Introduction
b. Pathogenesis and pathology
c. Symptoms and clinical pathology
d. Diagnosis
e. Treatment

2.2 Sarcocystosis in the definitive host

3. SEROLOGY

3.1 Introduction

3.2 Materials and methods
a. Haemaggutination test (HAT), macro system
 (i) Preparation of antigen
 (ii) Preparation of hyperimmune sheep and rabbits
 (iii) Preparation of sensitised erythrocytes
<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Preparation/Procedure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iv)</td>
<td>Preparation of sera</td>
<td>48</td>
</tr>
<tr>
<td>(v)</td>
<td>Test procedure</td>
<td>49</td>
</tr>
<tr>
<td>(vi)</td>
<td>Sera tested</td>
<td>49</td>
</tr>
<tr>
<td>b. HAT, micro system</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>(i)</td>
<td>Preparation of antigen</td>
<td>49</td>
</tr>
<tr>
<td>(ii)</td>
<td>Preparation of sensitised erythrocytes</td>
<td>49</td>
</tr>
<tr>
<td>(iii)</td>
<td>Preparation of sera</td>
<td>49</td>
</tr>
<tr>
<td>(iv)</td>
<td>Test procedure</td>
<td>49</td>
</tr>
<tr>
<td>(v)</td>
<td>Sera tested</td>
<td>50</td>
</tr>
<tr>
<td>c. Complement fixation test (CFT), standard tube test</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>(i)</td>
<td>Preparation of antigen</td>
<td>50</td>
</tr>
<tr>
<td>(ii)</td>
<td>Preparation of erythrocytes</td>
<td>50</td>
</tr>
<tr>
<td>(iii)</td>
<td>Complement</td>
<td>50</td>
</tr>
<tr>
<td>(iv)</td>
<td>Test procedure</td>
<td>50</td>
</tr>
<tr>
<td>(v)</td>
<td>Sera tested</td>
<td>51</td>
</tr>
<tr>
<td>d. CFT, microtitre system</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>(i)</td>
<td>Preparation of antigen</td>
<td>51</td>
</tr>
<tr>
<td>(ii)</td>
<td>Preparation of erythrocytes</td>
<td>51</td>
</tr>
<tr>
<td>(iii)</td>
<td>Complement</td>
<td>51</td>
</tr>
<tr>
<td>(iv)</td>
<td>Preparation of sera</td>
<td>52</td>
</tr>
<tr>
<td>(v)</td>
<td>Test procedure</td>
<td>52</td>
</tr>
<tr>
<td>(vi)</td>
<td>Sera tested</td>
<td>52</td>
</tr>
<tr>
<td>e. Indirect fluorescent antibody test (IFAT)</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>(i)</td>
<td>Preparation of IFAT slides</td>
<td>53</td>
</tr>
<tr>
<td>(ii)</td>
<td>Fluorescent conjugate</td>
<td>53</td>
</tr>
<tr>
<td>(iii)</td>
<td>Test procedure</td>
<td>53</td>
</tr>
<tr>
<td>(iv)</td>
<td>Determination of titre</td>
<td>54</td>
</tr>
<tr>
<td>(v)</td>
<td>Sera tested</td>
<td>54</td>
</tr>
<tr>
<td>(vi)</td>
<td>Repeatability test</td>
<td>55</td>
</tr>
</tbody>
</table>
3.3 Results
a. b, HAT, macro and micro systems
b. CFT, standard tube test
d. CFT, microtitre test
e. IFAT

3.4 Discussion

4. SHEEP MACROCYST STUDIES 1: FAT AND THIN CYSTS

4.1 Introduction

4.2 Materials and methods
a. Measurement of carcase macrocyst dimensions
b. Prevalence of oesophageal and carcase macrocysts
c. Electron microscopy of cyst walls

4.3 Results
a. Carcase macrocyst dimensions
b. Macrocyst prevalence
c. Macrocyst wall ultrastructure

4.4 Discussion

5. SHEEP MACROCYST STUDIES 2: TRANSMISSION

5.1 Introduction

5.2 Materials and methods
a. Transmission studies in dogs and cats
 (i) Experimental animals
 (ii) Macrocysts
 (iii) Examination of faeces
 (iv) Experimental procedure
b. Transmission studies in sheep
 (i) Sporocysts
 (ii) Experimental animals
 (iii) Haematology
(iv) Serology
(v) Histopathology
(vi) Examination of tissues by an indirect fluorescent antibody technique
(vii) Experimental procedure; Experiments.

5.3 Results
a. Transmission in dogs and cats
b. Transmission in sheep

5.4 Discussion

6. THE EFFECT OF TEMPERATURE ON THE VIABILITY OF SARCOCYSTS

6.1 Introduction

6.2 Materials and methods
a. Oxygen electrode studies
 (i) The oxygen electrode - principle
 (ii) Method of use
 (iii) Preparation of sarcocysts
 (iv) Heating
 (v) Storage at ambient and below ambient temperatures
 (vi) Freezing
 (vii) Control samples
b. Cat feeding studies
 (i) Experimental animals
 (ii) Experimental procedure

6.3 Results
a. Oxygen electrode studies
b. Cat feeding studies

6.4 Discussion
7. THE PREVALENCE AND TRANSMISSION OF SARCOCYSTIS SPECIES IN WILD AND FERAL ANIMALS

7.1 Introduction

7.2 Materials and methods
 a. Examination of muscle
 (i) Collection of samples
 (ii) Digestion procedure
 (iii) Histology
 b. Transmission studies: intermediate to definitive host
 (i) Experimental animals
 (ii) Experimental procedure
 c. Transmission to intermediate hosts
 (i) Experimental animals
 (ii) Sporocysts
 (iii) Experimental procedure

7.3 Results
 a. Examination of muscle
 b. Transmission to definitive hosts
 c. Transmission to intermediate hosts

7.4 Discussion

8. THE FERAL CAT AND SARCOCYSTIS

8.1 Introduction

8.2 Materials and methods

8.3 Results
 a. General observations
 b. Specific sightings
 c. Replies from Agricultural Pest Destruction Boards

8.4 Discussion
9. EXPERIMENTAL INFECTION OF GOATS WITH A DOG: GOAT SPECIES

9.1 Introduction
9.2 Materials and methods
 a. Experimental animals
 b. Sporocysts
 c. Experimental procedure
 d. Haematology
 e. Serology
 f. Pathology
 g. Life cycle stages
 h. Muscle digest
 i. Dog feeding

9.3 Results
 a. Clinical observations
 b. Haematology
 c. Serology
 d. Gross pathology
 e. Histopathology
 f. Life cycle studies

9.4 Discussion

10. CONCLUSIONS

REFERENCES

APPENDICES

App. 1 table 1 Species of Sarcocystis in which transmission between hosts has been reported.

App. 2 table 1 Sporocyst sizes - species that develop in domesticated intermediate hosts.

 table 2 Sporocyst sizes - species that develop in non-domesticated intermediate hosts.
App.3 Reagents used in serology

a. Phosphate buffered saline (PBS)
b. Alsever's solution
c. Calcium magnesium saline (CMS)

App.4 Methods used in the recovery, cleaning, counting and measurement of sporocysts.

a. Extraction of sporocysts from faeces
 (i) Sieving and washing
 (ii) Floatation
 (iii) Cleaning
 (iv) Cleaning with carbon tetrachloride

b. Counting sporocysts in faecal preparations
c. Measurement of sporocysts
d. Examination of the small intestine for sporocysts

App.5 figure: Feral cat survey questionnaire, page 1
figure 2 Feral cat survey questionnaire, page 2

table 1 Feral cat survey

New Zealand Government organisations that distributed questionnaire to their staff.
<table>
<thead>
<tr>
<th>INDEX OF FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The life cycle of Sarcocystis</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Dog:ox sp.; chronology of early development</td>
<td>12</td>
</tr>
<tr>
<td>in the intermediate host</td>
<td></td>
</tr>
<tr>
<td>2.3 Dog:sheep sp.; chronology of early development</td>
<td>14</td>
</tr>
<tr>
<td>in the intermediate host</td>
<td></td>
</tr>
<tr>
<td>2.4 Various Sarcocystis species; chronology of</td>
<td>16</td>
</tr>
<tr>
<td>early development in the intermediate host</td>
<td></td>
</tr>
<tr>
<td>2.5 The morphology of Sarcocystis; the sporocyst</td>
<td>24</td>
</tr>
<tr>
<td>2.6 Asexual reproduction in Sarcocystis</td>
<td>27</td>
</tr>
<tr>
<td>2.7 The morphology of Sarcocystis; the sarcocyst</td>
<td>30</td>
</tr>
<tr>
<td>wall</td>
<td></td>
</tr>
<tr>
<td>2.8 The morphology of Sarcocystis; the metacyte</td>
<td>32</td>
</tr>
<tr>
<td>and bradyzoite</td>
<td></td>
</tr>
<tr>
<td>2.9 Sarcocystosis, dog:ox sp.; chronology of</td>
<td>35</td>
</tr>
<tr>
<td>symptoms compiled from several sources</td>
<td></td>
</tr>
<tr>
<td>2.10 Sarcocystosis, dog:sheep sp.; chronology of</td>
<td>37</td>
</tr>
<tr>
<td>symptoms compiled from several sources</td>
<td></td>
</tr>
<tr>
<td>3.1 The indirect fluorescent antibody test</td>
<td>56</td>
</tr>
<tr>
<td>a. Positive well</td>
<td></td>
</tr>
<tr>
<td>b. Negative well</td>
<td></td>
</tr>
<tr>
<td>4.1 Oesophageal macrocysts</td>
<td>70</td>
</tr>
<tr>
<td>4.2 Carcase macrocysts</td>
<td>71</td>
</tr>
<tr>
<td>a. Thin cysts b. Fat cysts</td>
<td></td>
</tr>
<tr>
<td>4.3 The frequency distribution of the ratio between</td>
<td>73</td>
</tr>
<tr>
<td>cyst axes (R = \frac{W}{L}) of 503</td>
<td></td>
</tr>
<tr>
<td>carcase macrocysts</td>
<td></td>
</tr>
<tr>
<td>4.4 The frequency distribution of macrocysts in the</td>
<td>74</td>
</tr>
<tr>
<td>oesophagus and carcase of 1215 adult sheep</td>
<td></td>
</tr>
<tr>
<td>4.5 Ultrastructure of sheep macrocyst walls</td>
<td>76 &</td>
</tr>
<tr>
<td>O. Oesophageal macrocyst F. Fat macrocyst</td>
<td></td>
</tr>
<tr>
<td>T. Thin macrocyst</td>
<td>77</td>
</tr>
<tr>
<td>6.1 The Rank Oxygen Electrode A. Apparatus</td>
<td>92</td>
</tr>
<tr>
<td>B. Electrode reactions</td>
<td></td>
</tr>
<tr>
<td>6.2 Calculation of the oxygen uptake rate</td>
<td>93</td>
</tr>
</tbody>
</table>
6.3 Oxygen uptake rates; heated cysts
8.1 Sightings of feral cats; North Island
8.2 Sightings of feral cats; South Island
9.1 Rectal temperatures of goats given dog:goat sp. sporocysts
9.2 Mean rectal temperatures of goats given 5×10^6
dog:goat sp. sporocysts
9.3 Rectal temperatures of goats given dog:goat sp. sporocysts
9.4 Haemoglobin levels in goats given dog:goat sp. sporocysts
9.5 Packed cell volumes in goats given dog:goat sp. sporocysts
9.6 Total serum protein levels in goats given dog:goat sp. sporocysts
9.7 Serum glutamic oxaloacetic transaminase levels in goats given dog:goat sp. sporocysts
9.8 Indirect fluorescent antibody titres in goats 6, 7, 8, 9 and 11 given dog:goat sp. sporocysts
9.9 Infection of goats with dog:goat sp. sporocysts
 A. Necropsy of goat 3 on day 19
 B. Goat 3, the heart
9.10 Development of the dog:goat species in goats
 a. Schizonts in renal glomerulus
 b. Immature schizont
 c. Immature and mature schizonts
9.11 Young sarcocysts; parasitophorous vacuole enclosing four metacytes (an adjacent vacuole contains two
 metacytes in t.s.)
9.12 The morphology of the sarcocyst wall of the dog:
 goat species L. villi in longitudinal section
 T. villi in transverse section
9.13 Sarcocystosis, dog:goat species; chronology of
 symptoms and developmental phases
INDEX OF TABLES

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Development of the sarcocyst; maturation time</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Development in the definitive host; chronology</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Sarcocystosis; symptoms in acute disease</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>Sarcocystosis; haematological observations</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Sporocyst storage; media and time</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Serological tests used in studies on Sarcocystis</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Haemagglutination test titres</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>Complement fixation, standard tube test titres</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Complement fixation, microtitre test titres</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Indirect fluorescent antibody test titres</td>
<td>61</td>
</tr>
<tr>
<td>3.6</td>
<td>Indirect fluorescent antibody test; test of repeatability with two operators</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Prevalence of Sarcocystis in sheep, detected at meat works in New Zealand (from figures supplied by M.A.F. Meat Division)</td>
<td>69</td>
</tr>
<tr>
<td>5.1</td>
<td>Transmission experiments, fat and thin cysts</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Transmission of fat and thin cysts; sporocyst dimensions</td>
<td>86</td>
</tr>
<tr>
<td>6.1</td>
<td>Oxygen uptake rates; heated cysts, five replicates</td>
<td>96</td>
</tr>
<tr>
<td>6.2</td>
<td>Oxygen uptake of cysts stored at ambient and below ambient temperatures a. Cysts in saline b. Cysts in oesophagi</td>
<td>98</td>
</tr>
<tr>
<td>6.3</td>
<td>Oxygen uptake rates of cysts stored at -14°C</td>
<td>100</td>
</tr>
<tr>
<td>6.4</td>
<td>Infectivity of treated cysts for cats a. Heat-treated cysts b. Frozen cysts</td>
<td>103</td>
</tr>
<tr>
<td>7.1</td>
<td>Sarcocystis spp. in wild and feral animals; prevalence</td>
<td>109</td>
</tr>
<tr>
<td>7.2</td>
<td>Sarcocystis spp. in wild and feral animals; transmission</td>
<td>110</td>
</tr>
<tr>
<td>7.3</td>
<td>Sarcocystis spp. in wild and feral animals; sporocyst dimensions.</td>
<td>111</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7.4</td>
<td>Transmission studies in rats and rabbits</td>
<td>113</td>
</tr>
<tr>
<td>8.1</td>
<td>Feral Cat Survey; observers, occupation/interest</td>
<td>121</td>
</tr>
<tr>
<td>8.2</td>
<td>Types of food seen eaten by feral cats</td>
<td>122</td>
</tr>
<tr>
<td>8.3</td>
<td>Sightings of feral cats according to types of terrain</td>
<td>123</td>
</tr>
<tr>
<td>8.4</td>
<td>Sightings of feral cats; breeding versus terrain</td>
<td>124</td>
</tr>
<tr>
<td>8.5</td>
<td>Sightings of feral cats according to distance from human habitation</td>
<td>126</td>
</tr>
<tr>
<td>8.6</td>
<td>Agricultural Pest Destruction Board Areas with extensive permanent cat populations</td>
<td>128</td>
</tr>
<tr>
<td>9.1</td>
<td>Experimental infection of goats and sheep with dog: goat sp. sporocysts</td>
<td>132</td>
</tr>
<tr>
<td>9.2</td>
<td>Schizonts in equatorial sections of glomeruli</td>
<td>147</td>
</tr>
</tbody>
</table>
TERMINEOLOGY

The following terms are used in the text:

cyst, n. Abbr. sarcocyst (macro-, micro).

definitive host, (with respect to Sarcocystis spp.) The host in which gamogony occurs, a carnivorous mammal, bird or reptile.

endodyogeny, n. The formation of two daughter cells within a mother cell. See Figure 2.6

endopolygeny, n. The synchronous formation of many daughter cells within a mother cell. See Figure 2.6.

gamogony, n. Development of gamonts to macro- and microgametes and fusion to form a zygote. (syn: gametogony, sexual reproduction).

gamont, n. Transient stage found in intestinal cells of definitive host, gives rise to macro- or microgametes.

intermediate host, (with respect to Sarcocystis spp.) The host in which schizogony occurs and sarcocysts develop.

macrocyst, n. (hence macrocystic, a.) Mature sarcocyst with a diameter greater than that of a muscle fibre; may be visible without magnification.

macrogamete, n. 'Female' gamete, non-motile, intracellular. Found only in definitive host.

metrocyte, n. Proliferative cell found in mature and immature sarcocysts, gives rise to bradyzoites, not resistant to pepsin:HCl.

microcyst, n. (hence microcystic, a.) Mature sarcocyst with diameter less than or equal to that of a muscle fibre.

microgamete, n. 'Male' gamete, motile, flagellate, briefly extracellular (?), fuses with macrogamete to form zygote. Only in definitive host.
oocyst, n. Resistant infective stage in life cycle of classical coccidia, but only a transient stage in *Sarcocystis* life cycle: breaks down *in situ* to release two sporocysts.

sarcocyst, n. Long-lived, resistant cyst stage in *Sarcocystis* life cycle, intracellular in muscle. Comprises bradyzoites and metrocyes surrounded by a distinctive wall.

sarcocystosis, n. Infection of an intermediate or definitive host, with a species of *Sarcocystis*.

sarcosporidia, n. An old term for *Sarcocystis* species, still useful for referring collectively to sarcocysts in muscle.

schizogony, n. Division of a schizont to form schizozoites, occurs only in intermediate host. See endopolygeny.

schizont, n. Transient dividing stage in intermediate host, gives rise to schizozoites by endopolygeny.

schizozoite, n. Product of schizogony, extra-cellular briefly, invasive, gives rise to schizont or metrocyte depending on stage of life cycle. (syn: merozoite).

spore, n. An outdated term, replaced by bradyzoite.

sporocyst, n. Resistant infective stage produced by definitive host, passed in faeces. Contains four sporozoites and a residuum.

sporogony, n. Development of the cytoplasmic mass (sporont) in the oocyst to sporocysts and sporozoites. (syn: sporulation).

(The) **Sporozoa, n.** All the protozoa in the Class Sporozoasida (Sub-phyllum Apicomplexa).

sporozoal, a. Referring to a member of the Class Sporozoasida, or features of such protozoa.

sporozoan, n. A member of the Class Sporozoasida.

sporozoite, n. Invasive cell, enclosed in sporocyst, released in excystment.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>trophozoite, n.</td>
<td>Invasive, multiplicative stage (cf. Toxoplasma).</td>
</tr>
<tr>
<td>ultimate schizogony</td>
<td>The phase of schizogony immediately preceding the invasion of muscle.</td>
</tr>
<tr>
<td>zoite, n.</td>
<td>Shortened form of bradyzoite, trophozoite, sporozoite, etc.</td>
</tr>
<tr>
<td>zygote, n.</td>
<td>Product of fusion between macro- and microgametes, intracellular, gives rise to oocyst.</td>
</tr>
</tbody>
</table>