Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Designing Interactive Learning Environments

A dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University Palmerston North, New Zealand.

Raymond Henry Kemp

1995
Abstract

The trend towards teaching by facilitating learning rather than by direct instruction is an important one. As part of this movement, there is a growing interest in the concept of interactive learning environments (ILEs), where students learn by experimenting with a computer system that simulates some device, system or situation. Although ILEs can act as effective teaching aids they are time-consuming to create. In this thesis, principles that are useful for guiding the development of these systems are proposed, and design issues are explored.

In order to determine what the principles for development should be, the history of teaching by computer is reviewed, with an emphasis on interactive systems that have a learning rather than instructional bias. The important concepts of modelling, discovery learning and fidelity are examined in some detail.

One of the conclusions of the initial survey is that it is not feasible to think in terms of general design primitives that can be used for the development of all interactive learning environments. Since there is a diverse range of possible environments, two specific types are examined. In each case, a framework for design is proposed.

First, the teaching of procedural skills is considered. These skills include the ability to understand the operation of mechanical devices, to be able to carry out tasks with them, and to correctly assemble and dismantle pieces of equipment. Providing a realistic model which can include informative feedback is seen as important. It is demonstrated that a scheme adapted from AI planning can economically provide an appropriate level of fidelity for modelling device operation. A compatible notation for denoting tasks is also developed.

A methodology for the design of ILEs for teaching procedural skills is proposed, complete with graphical specification for both domains and tasks. It is envisaged that such a scheme would allow domain experts and teachers to take a full part in the design process, even if they are unable to write or understand computer programs.

The second kind of ILE considered involves the simulation of human behaviour. Two schemes for knowledge-based simulation are examined: one based on CYC and one on Schank and Abelson's behavioural model. The former is used to outline a system for simulating problem-oriented policing. The latter is extended to facilitate the
development of knowledge-based simulation teaching systems. This second scheme is then applied to the simulation of domestic disputes.

Since many of the problems of simulating real world events by computer software have yet to be solved, a full computer implementation is not yet a realistic proposition. Instead, the domestic disputes model is tested using a 'Wizard of Oz' approach. Results show that a scheme based on the model proposed is feasible, that subjects can successfully use such a system and that, as a result, they believe their understanding of the issues being presented is improved.
Acknowledgments

First and foremost, I would like to acknowledge the support of my main supervisor Mark Apperley, without whom this research would not have got off the ground. Besides steering me through the project he provided those two most invaluable commodities: time and space.

Next, I would like to express my gratitude to Ross St George, my second supervisor, who has always given me thoughtful feedback on my writing and proffered enthusiastic support throughout. Ross introduced me to the work of Pittsburgh's Learning Research and Development Center and helped me organise study leave in that city to talk to researchers at LRDC and Carnegie-Mellon. This has had a very great impact on my views and on the direction that the project has taken.

Thanks are also due to other people who have provided useful and often detailed comments on drafts of the thesis. These include Noel Craske, Geoff Cumming, Andre Everett, Gord McCalla, Jean McKendree and John Self. Without their input this document would have been completed several months earlier. Hopefully, however, the final product contains far fewer mistakes and is much more cohesive than would otherwise have been the case.

Lastly, I would like to thank various people who have contributed in other ways to the completion of this project and the content of the thesis: Shamus Smith, who has implemented some of the teaching system ideas, tested out the models and helped set up the Wizard of Oz experiment, as well as carrying out other smaller tasks too numerous to mention; John Andreae, who helped me get into shape material for the IJHCS paper, much of which has been used in Chapters 4 and 5; Dave Burns, who suggested and helped with the development of the POPIT police teaching system; Phil Carter, who conducted the domestic violence survey used as a basis for the model in Chapter 7; Stephen Cranefield, who validated the planning schema used in Chapter 4; the Computer Science secretarial staff, particularly Rosemary and Wendy, who were always very helpful; and most of all my family: Rebecca and Stephen for their support, and my wife Elizabeth who kept me focussed and sane.
Publications

The following publications are associated with the research presented in this thesis.

Journal Articles

Conference Proceedings

Internal Reports
Table of Contents

Chapter 1 Introduction

1.1 Background ... 1
1.2 Learning environments .. 3
1.3 The problem .. 5
1.4 Scope, goals and limitations 5
1.5 Related research ... 7
1.6 Outline of content .. 8

Chapter 2 Learning by Computer .. 10

2.1 Introduction ... 10
2.2 Programmed learning ... 11
2.3 Early large-scale projects 13
2.4 Intelligent Computer Aided Instruction 15
2.5 Intelligent Tutoring Systems 21
2.5.1 Structure of ITSs ... 21
2.5.2 Domain module ... 22
2.5.3 Student module ... 24
2.5.4 Tutorial module ... 25
2.5.5 Interface module ... 25
2.5.6 ITS appraisal ... 28
2.6 Research at LRDC .. 29
2.6.1 Knowledge structures 29
2.6.2 Problem solving methods 31
2.6.3 The acquisition of expertise 33
2.6.4 Facilitating learning 35
2.6.5 LRDC software ... 38
2.7 CMU research .. 40
2.7.1 The ACT models .. 40
2.7.2 CMU software .. 42
2.7.3 A comparison of LRDC and CMU research 45
2.8 Summary .. 46

Chapter 3 Key Concepts .. 48

3.1 Introduction ... 48
3.2 Knowledge issues .. 48
3.2.1 Expert systems ... 49
3.2.2 Situated cognition .. 56
3.3 Modelling and fidelity ... 62
3.3.1 Process models ... 63
3.3.2 Fidelity of models .. 71
3.3.3 Classifying fidelity .. 77
3.4 Discovery learning .. 82
3.5 Summary .. 87

Chapter 4 Domain and Task Representation for Tutorial Process Models 89

4.1 Introduction ... 89
4.2 Domain description .. 90
4.2.1 Transition nets ... 91
4.2.2 Strips ... 94
4.2.3 An alternative Strips formulation 96
4.3 Task specification .. 98
4.3.1 Domains and tasks .. 99
4.3.2 Domain and task separation 100
4.4 Summary .. 104
Chapter 5 Interactive Learning Environments for Procedural Tutors 106
5.1 Introduction .. 106
5.2 Implementing domain models ... 106
 5.2.1 The gear assembly domain 106
 5.2.2 The VCR domain .. 108
5.3 Implementing a task model .. 110
5.4 Graphical representation for a procedural task tutor 116
 5.4.1 Procedural nets ... 116
 5.4.2 Plan nets .. 122
5.5 Teaching knowledge ... 125
5.6 Summary .. 128

Chapter 6 Knowledge-based Simulation for Teaching 130
6.1 Introduction ... 130
6.2 Simulation ... 132
 6.2.1 Classifying simulation .. 132
 6.2.2 Knowledge-based simulation 134
 6.2.3 Knowledge-based simulation in ill-structured domains .. 135
6.3 Scenarios .. 141
6.4 Modelling behaviour ... 143
 6.4.1 Schank and Abelson’s behaviour model 143
 6.4.2 A behaviour model for teaching 148
6.5 Summary .. 154

Chapter 7 Towards a Knowledge-based Simulation Tutor 155
7.1 Introduction ... 155
7.2 PO PIT: applying knowledge-based simulation 155
 7.2.1 The domain ... 156
 7.2.2 Outline of system .. 158
 7.2.3 The adviser .. 160
 7.2.4 The student model ... 161
 7.2.5 The interface ... 162
7.3 Domestic disputes ... 163
7.4 Wizard of Oz simulation .. 171
7.5 Summary .. 174

Chapter 8 Conclusions and Further Work 177
8.1 Introduction ... 177
8.2 Summary of research .. 177
 8.2.1 Procedural tutors .. 178
 8.2.2 Knowledge-based simulation in ill-structured domains .. 180
8.3 Contributions of research .. 181
8.4 Future work .. 183

References 185
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Development of ideas in thesis</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>SCHOLAR semantic network</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Extract from Scholar dialogue</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Extract from WHY dialogue</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>SOPHIE dialogue</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Organisation of typical ITS</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Section of WUSOR's Genetic Graph</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Screen from RBT</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Screen from ANGLE 3.0</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Weak problem solving methods</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The Alcohol Rule from MYCIN</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>A tutorial rule</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Knowledge types used in MYCIN, NEOMYCIN and GUIDON</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Purposes of CO₂ removal system model</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Qualitative models of processes</td>
<td>64</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Concept map of baroreceptor reflex</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Qualitative description of buzzer</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>A linear depiction of fidelity types</td>
<td>78</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Conceptual simulation</td>
<td>79</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Qualitative reasoning model</td>
<td>80</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Components of idealized expert system</td>
<td>81</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Idealized teaching system model</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Gearing mechanism in Bluebird starter motor</td>
<td>91</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Schematic diagram of starter motor gearing</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Part of gearing assembly transition net</td>
<td>93</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Transition in gearing assembly problem</td>
<td>93</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Action table for gearing assembly problem</td>
<td>94</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Analysis of possible feedback from Strips system</td>
<td>95</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Overlapping subdomains</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Three VCR operations</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Specification for VCR task</td>
<td>100</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Task overlay in the gearing assembly problem</td>
<td>101</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Projection graph for gearing problem</td>
<td>102</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Highlighted task routes in gearing problem projection graph</td>
<td>102</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Crucial situated control rules for gear assembly task</td>
<td>103</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Part of gear assembly tutorial session</td>
<td>107</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Analysis of gear assembly dialogue</td>
<td>108</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Essential predicates and parameters for VCR simulation</td>
<td>109</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Action table for VCR and television operation</td>
<td>111</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Dialogue from VCR simulation program</td>
<td>112</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Part of projection graph for VCR simulation</td>
<td>112</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Permissible operation sequences for playing a video tape</td>
<td>113</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Situated control rules for playing a video tape</td>
<td>114</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Part of dialogue for video tape playing task</td>
<td>115</td>
</tr>
</tbody>
</table>
Figure 5.10 Procedural net for setting up camera ...116
Figure 5.11 Procedural net for taking photograph ...117
Figure 5.12 Action table for high level description of photography task117
Figure 5.13 Procedural nets for parts of the photography task118
Figure 5.14 Extract of dialogue for program derived from procedural nets119
Figure 5.15 Procedural net for gear assembly problem120
Figure 5.16 Set of procedural nets for representing gear assembly problem121
Figure 5.17 Plan net enablement and causal configurations122
Figure 5.18 Plan net for hammering ..123
Figure 5.19 Plan net for cleaning plugs ..123
Figure 5.20 Action table for cleaning plugs ...124
Figure 5.21 Plan net for cleaning plugs with radiator check added124
Figure 5.22 Automated scheme for developing a procedural task tutor129
Figure 6.1 Classification of simulation methods ..132
Figure 6.2 Behaviour networks ..139
Figure 6.3 Analysis of knowledge-based simulation packages140
Figure 6.4 Hierarchy of events for knowledge based simulation142
Figure 6.5 Expectancy Rules ..144
Figure 6.6 Life themes ...145
Figure 6.7 Interaction of situations, mental states and actions149
Figure 6.8 Possible low-level feedback based on causal semantics149
Figure 6.9 Profiles, goals, plans and actions ..152
Figure 7.1 Incident-driven policing ..157
Figure 7.2 Problem-oriented policing ..157
Figure 7.3 Passage of information through POPIT ..160
Figure 7.4 Information used by adviser ...161
Figure 7.5 Life themes of actors ..165
Figure 7.6 Actors' themes, goals, plans and actions ..165
Figure 7.7 Beliefs, goals and actions for actors ...166
Figure 7.8 Wife battering event: wife asked out ...168
Figure 7.9 Wife battering event: asks husband if she can go169
Figure 7.10 Wife battering event: evening of social event169
Figure 7.11 Wife battering event: return from evening out170
Figure 7.12 Wife battering event: the evening after ..170
Figure 7.13 Wizard of Oz scheme ..172
Figure 7.14 Screen from Wizard of Oz session ...173
Figure 7.15 Sample dialogue from a role playing session175
Figure 7.16 Questionnaire results summary ..176
Figure A.1 Gear mechanism ..210
Figure A.2 Gear mechanism structure ..211
Figure A.3 Essential predicates for gear mechanism description211
Figure A.4 Inessential predicates for gear mechanism description211
Figure A.5 Actions for gear mechanism description211

xv