Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
AN EVALUATION OF THE NUTRITIVE VALUE AND ENDOPHYTE STATUS OF A NEW PERENNIAL RYEGRASS (*Lolium perenne*) CULTIVAR (ARIES HD)

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.)

Institute of Natural Resources
College of Sciences
Massey University
Palmerston North, New Zealand

STEPHANIE JANE BLUETT

1999
ABSTRACT

Four grazing field experiments were carried out at Massey University, Palmerston North, New Zealand, to evaluate the nutritive value and endophyte status of a new perennial ryegrass (*Lolium perenne*) cultivar (Aries HD) selected for increased organic matter digestibility in summer and early autumn. It is claimed to be the first commercial perennial ryegrass selected specifically for improved digestibility. The nutritive value and organic matter digestibility of Aries HD, compared to a standard cultivar Yatsyn 1 perennial ryegrass were evaluated in terms of liveweight gain, carcass weight gain, wool production, grazing behaviour and herbage intake of sheep. The effects of endophyte (*Neotyphodium lolii*) were assessed with reference to the performance of sheep, incidence and severity of ryegrass staggers, serum prolactin concentration, respiration rate, rectal temperature, faecal moisture and scouring (dags).

A tiller demography experiment was carried out to compare the survival, reproductive development and density of tillers in pure swards of Aries HD and Yatsyn 1 pasture.

The first three grazing experiments (Experiments 1, 2 and 3) were conducted on clover-free swards of Aries HD and Yatsyn 1 established in the autumn of 1995, in a randomised complete block design with three blocks (0.33 ha/plot). The proportion of tillers infected with endophyte was over 90% in both cultivars. Plots were continuously grazed to a sward surface height of 6 cm. There were regular monthly applications of nitrogenous fertiliser and herbicide was applied to eliminate volunteer clover. *In vitro* organic matter digestibility, neutral detergent fibre and nitrogen content from herbage cut to ground level or plucked samples did not differ significantly overall, and showed no indications of seasonal differences between cultivars.

In the first weaned lamb experiment (Experiment 1: 11 December 1995 to 25 April 1996) lambs grazing Aries HD gained 20 g/day more than lambs grazing Yatsyn 1 pasture (104 vs 84 ± 4.6 g/day, *P* = 0.1028), with a particular advantage in relative terms...
over the dry summer period. This resulted in a 9% greater carcass weight at slaughter for Aries HD lambs over Yatsyn 1 lambs. Incidence of clinical ryegrass staggers among Yatsyn 1 lambs was double that of lambs grazing Aries HD (29 vs 15%) although lolitrem B concentrations did not differ between cultivars. Ergovaline concentrations in Aries HD herbage samples were consistently half those of Yatsyn 1 samples. The better animal performance in this experiment reflected the interrelated effects of alkaloid concentrations and ryegrass staggers.

Experiment 2 (3 September 1996 to 1 December 1996) measured the performance of ewes with their single lambs over spring, providing an evaluation of the relative nutritive value of pastures when the risk of endophyte alkaloids was minimal. Ewe liveweight gain was significantly higher on Aries HD than Yatsyn 1 over September (94 vs 56 ± 14.5 g/day) which coincided with a significantly higher bite rate and herbage intake. This enabled Aries HD ewes to gain an extra kilogram over the spring months. The liveweight gain of the suckling lambs did not differ between cultivars, presumably reflecting high and non-limiting milk yields on both cultivars. The percentage of leaf was consistently higher in Aries HD swards over this experiment, although this was not reflected in a higher organic matter digestibility.

In the second weaned lamb experiment (Experiment 3: 2 December 1996 to 12 March 1997) there was no significant difference in lamb liveweight gain (116 vs 111 ± 5.1 g/day) between cultivars. Incidence of ryegrass staggers was low with only 9% of Yatsyn 1 lambs being affected, which reflected low levels of lolitrem B and ergovaline. It was concluded that the lambs were faced with a lower alkaloid challenge than in the previous summer, reflected in the lack of difference in animal performance between cultivars.

The tiller demography experiment spanned both Experiment 2 and Experiment 3 (September 1996 to March 1997). Each replicate plot had five randomly placed transects with 10 marked tillers, and tiller survival and reproductive development were recorded at weekly intervals. Tiller population density and mean tiller weight were
determined on three dates. There was no difference in the rate of tiller death between Aries HD and Yatsyn 1. Few tillers died until mid December, after which survival approximated an exponential decay curve (e^{bt}, $b=-0.0133$, $t_{1/2}=52$ days). Aries HD appeared to have a more rapid onset of initial flowering but then a lower proportion of secondary reproductive tillers. There was some evidence that the proportion of vegetative tillers was greater in Aries HD than in Yatsyn 1 swards. Aries HD swards had a higher density of finer tillers than Yatsyn 1.

The results from the first three experiments highlighted the need for more detailed evaluation of the cultivar/endophyte associations which influenced the production and balance of alkaloids. The final grazing experiment (Experiment 4: 2 December 1997 to 7 April 1998) was conducted with this in mind. Clover-free swards of Aries HD and Yatsyn 1 were established in the autumn of 1997 in six replicate plots (0.2 ha) of each cultivar arranged in a randomised block design. The proportion of tillers infected with endophyte was 96% in both cultivars. There were regular applications of nitrogenous fertiliser and herbicide was applied to eliminate volunteer clover and Poa annua. The experiment was designed as a 2 x 2 factorial, with two perennial ryegrass cultivars (Aries HD and Yatsyn 1) and two grazing sequences. Two groups of lambs were rotationally grazed on each cultivar in a leader/follower sequence. It was anticipated that the leader lambs would test the nutritional value of the pasture, while the follower lambs would be forced to graze into the base of the sward possessing the greatest potential for endophyte toxicity.

Lambs on all treatments were severely affected by ryegrass staggers from 3 February onwards. The leader-follower regime created contrasts in sward composition and nutritive value, resulting in significantly faster liveweight gains in leader lambs than in follower lambs (92 vs 53 ± 10.6 g/day). Aries HD and Yatsyn 1 pasture did not differ in in vitro organic matter digestibility, neutral detergent fibre, nitrogen content or in liveweight gain of lambs. Lambs grazing Aries HD pasture had higher herbage intakes in late January than those grazing Yatsyn 1 pastures. Ergovaline concentration of Aries HD pasture was consistently half that of Yatsyn 1 pasture. Respiration rate, which is an indicator of heat stress, was higher in Yatsyn 1 lambs. Staggers severity score was
Abstract

highest in the Yatsyn 1 pastures. The higher ergovaline concentration may have acted synergistically with lolitrem B concentration to increase the severity of staggers observed in Yatsyn 1 pastures. The follower lambs had significantly reduced serum prolactin levels and respiration rates, possibly reflecting greater ergovaline intoxication, and had greater faecal contamination scores (dags) and severity scores. The severe and debilitating symptoms of ryegrass staggers could have prevented any differences in animal performance during the period when severe staggers were observed.

From this series of experiments it was concluded that the differences in lamb performance over summer and autumn reflected contrasts in the production and balance of endophyte alkaloids from the respective cultivar/endophyte associations. Small apparent differences in the reproductive development of tillers were not translated into any significant difference in the digestibility or nutritive value of the two cultivars, under either continuous or rotational grazing regimes. Aries HD in association with endophyte consistently produced half the concentration of the alkaloid ergovaline as did Yatsyn 1 in association with endophyte. Ergovaline may have acted synergistically to increase the toxicity of lolitrem B and the severity of staggers of lambs grazing Yatsyn 1 swards. There is also some indication that heat stress symptoms are more severe in lambs forced to graze lower into the sward.

This work highlighted the importance of assessing not only the nutritive value, but the effects of the cultivar/endophyte association in animal evaluations of perennial ryegrass in New Zealand. The effect of management and alkaloid concentration is likely to have a larger impact on lamb performance than small differences in nutritive value between cultivars of high-endophyte perennial ryegrass.
This thesis is dedicated to my parents Sue and Paul Bluett
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my chief supervisor, Professor J. Hodgson for his inspiration, guidance, patience and encouragement throughout this project. I am also very grateful to my co-supervisor Dr Peter Kemp. I am indebted to the both of them for providing support, knowledge, feedback on manuscripts, and helping make this doctorate degree a fulfilling experience which I will always remember. I also give special thanks to my second co-supervisor, Dr Tom Barry for his encouragement, advice and supervision.

I sincerely acknowledge Wrightson Seeds Ltd. who funded the research and gave me the opportunity to participate in an exciting area of research and to learn new methodologies and skills. Special thanks are extended to Charlotte Westwood, Mike Norriss, Warwick Green and Bruce Garrett for their personal involvement in the project.

I would like to acknowledge the people who gave me technical assistance during the field studies. Special thanks are extended to Jef Purchas and Dean Burnham (Institute of Veterinary, Animal and Biomedical Sciences), Maurice van Erp, Fulton Hughes, Andrew Manderson, Mark Osborne and Roger Levy (Institute of Natural Resources), Lynley Watt and Richard Scholefield (Haurongo Sheep and Cattle Research Unit), and Graham McCool (Dairy Cattle Research Unit). Greg Arnold (Institute of Information Sciences and Technology) is also acknowledged for his advice on statistical methods. I also want to thank all my friends who have given assistance but I have not named individually here.

The nutrition and physiology laboratories are acknowledged for providing nutritive value and prolactin analyses (Institute of Food Nutrition and Human Health). Brian Tapper (AgResearch, Palmerston North) is also thanked for providing alkaloid analyses.
The Massey Doctoral Scholarship and The C. Alma Baker Trust are gratefully acknowledged for providing stipend support.

My heartfelt thanks are expressed to Greg Bishop-Hurley for his friendship, support and technical assistance. His dependable friendship and generous help were much appreciated.

Thanks to the support and friendship provided by the staff of the Pastoral Science Group, Massey University, especially to the lecturers, Kathy Hamilton, Hera Kenedy, Matt Alexander and Ruwan Dissanayake. I am also grateful to all the post-graduate students of the pastoral science group, particularly Rachael Bryant, Phillipa Nicholas, Mark Hyslop, Wendy Griffiths, Andrew Wall, Ignacio Lopez, Cesar Poli, Carolina Realini, Naba Devkota, Aurelio Guevara, Walter Ayala.

I am indebted to my parents Paul and Sue for their endless love, encouragement and devoted support. They have always encouraged me to do my best.

I also wish to thank my dearest sister Philippa for her love and friendship.

Finally I wish to thank my partner Shaun Crofskey for his love, patience and support, especially during writing up. Thanks also to the Crofskey family for their help.
Table of Contents

ABSTRACT ... ii
ACKNOWLEDGEMENTS .. vii
CONTENTS .. ix
LIST OF TABLES ... xvii
LIST OF FIGURES ... xxii
LIST OF PLATES ... xxv

CHAPTER 1: GENERAL INTRODUCTION, OBJECTIVES AND FORMAT OF THESIS .. 1
 1.1 GENERAL INTRODUCTION .. 1
 1.2 OBJECTIVES .. 3
 1.3 FORMAT OF THE THESIS .. 4

CHAPTER 2: LITERATURE REVIEW .. 5
 2.1 GENERAL INTRODUCTION .. 5
 2.2 BREEDING PERENNIAL RYEGRASS FOR IMPROVED NUTRITIVE VALUE AND DIGESTIBILITY ... 6
 2.2.1 Perennial Ryegrass .. 6
 2.2.2 Ryegrass tiller demography and reproductive behaviour 6
 2.2.3 Definition of digestibility .. 9
 2.2.4 Maturation of perennial ryegrass .. 10
 2.2.5 Definition of nutritive value ... 11
 2.2.6 Definition of feeding value ... 12
 2.2.7 Breeding for improved nutritive value ... 13
 2.2.8 Selecting specifically for improved digestibility .. 16
 2.2.9 Perennial ryegrass cultivars selected for improved nutritive value 23
 2.2.10 Perennial ryegrass cultivar comparisons ... 25
 2.2.11 Adoption of new cultivars by farmers ... 27
CHAPTER 2.4

2.3 THE ANIMAL EVALUATION PROCEDURE FOR NEW PERENNIAL RYEGRASS CULTIVARS

2.3.1 Importance

2.3.2 Cutting Trials and Indoor Feeding Trials

2.3.3 Precision of Animal Evaluations

2.3.4 Resources

2.3.5 Design

2.3.6 Measuring animal performance and herbage intake

2.3.7 Sources of error

2.3.8 Monocultures verses mixed swards

2.3.9 Grazing management

2.4 THE PERENNIAL RYEGRASS/ENDOPHYTE ASSOCIATION AND ITS EFFECT ON ANIMAL PERFORMANCE

2.4.1 Evaluation of ryegrass cultivars with endophyte

2.4.2 *Neotyphodium lolii*

2.4.3 Stem weevil resistance and peramine

2.4.4 Ryegrass staggers and lolitrem B

2.4.5 Heat stress and ergovaline

2.4.6 Faecal contamination

2.4.7 Liveweight gain

2.4.8 Milk production and reproduction

2.4.9 Novel endophyte associations

2.4.10 Effect of host cultivar on alkaloid production

2.4.11 Future developments

2.5 CONCLUSIONS

2.6 REFERENCES

CHAPTER 3: EXPERIMENT 1: ANIMAL EVALUATION OF ARIES HD PERENNIAL RYEGRASS SELECTED FOR HIGH DIGESTIBILITY

3.1 ABSTRACT

3.2 INTRODUCTION
Table of Contents

3.3 MATERIALS AND METHODS ... 91
3.4 RESULTS ... 95
3.5 DISCUSSION ... 101
3.6 CONCLUSIONS .. 102
3.7 REFERENCES .. 103

CHAPTER 4: EXPERIMENT 2: EVALUATION OF THE FEEDING
VALUE OF ARIES HD PERENNIAL RYEGRASS (Lolium
perenne). 1. PERFORMANCE OF LACTATING EWES IN
SPRING ... 107
4.1 ABSTRACT ... 107
4.2 INTRODUCTION ... 108
4.3 MATERIALS AND METHODS .. 109
 4.3.1 Site ... 109
 4.3.2 Animals .. 109
 4.3.3 Pastures .. 110
 4.3.4 Pasture Measurements ... 110
 4.3.5 Animal Measurements ... 112
 4.3.6 Statistical analysis ... 113
4.4 RESULTS ... 113
4.5 DISCUSSION ... 118
4.6 CONCLUSIONS ... 119
4.7 REFERENCES .. 120

CHAPTER 5: EXPERIMENT 3: EVALUATION OF THE FEEDING
VALUE OF ARIES HD PERENNIAL RYEGRASS (Lolium
perenne). 2. PERFORMANCE OF WEANED LAMBS IN
SUMMER AND AUTUMN ... 124
5.1 ABSTRACT ... 124
5.2 INTRODUCTION ... 125
5.3 MATERIALS AND METHODS .. 126
 5.3.1 Site .. 126
CHAPTER 6: SURVIVAL, REPRODUCTIVE DEVELOPMENT AND DENSITY OF TILLERS IN PURE SWARDS OF ARIES HD AND YATSYN 1 PERENNIAL RYEGRASS (*Lolium perenne*)

6.1 ABSTRACT .. 145
6.2 INTRODUCTION ... 146
6.3 MATERIALS AND METHODS 147
 6.3.1 Experimental site and duration 147
 6.3.2 Tiller demography 147
 6.3.3 Tiller population density and tiller weight ... 148
 6.3.4 Statistical analysis 148
6.4 RESULTS .. 150
 6.4.1 Tiller survival 150
 6.4.2 Reproductive development 152
 6.4.3 Tiller population density and tiller weight ... 155
6.5 DISCUSSION ... 156
6.6 CONCLUSIONS ... 158
6.7 REFERENCES ... 159
CHAPTER 7: EXPERIMENT 4: PERFORMANCE OF LAMBS AND THE
INCIDENCE OF STAGGERS AND HEAT STRESS ON
TWO PERENNIAL RYEGRASS (Lolium perenne)
CULTIVARS USING A LEADER-FOLLOWER
ROTATIONAL GRAZING MANAGEMENT SYSTEM........... 161

7.1 ABSTRACT .. 161
7.2 INTRODUCTION .. 163
7.3 MATERIALS AND METHODS .. 164
 7.3.1 Experimental design .. 164
 7.3.2 Pastures ... 165
 7.3.3 Animals ... 165
 7.3.4 Grazing Management .. 165
 7.3.5 Pasture Measurements .. 166
 7.3.6 Animal measurements .. 167
 7.3.7 Laboratory analysis ... 169
 7.3.8 Statistical analysis ... 169
7.4 RESULTS .. 170
 7.4.1 Sward characteristics .. 171
 7.4.2 Nutritive value ... 177
 7.4.3 Alkaloid concentration .. 177
 7.4.4 Herbage intake and liveweight gain 181
 7.4.5 Incidence and severity of staggers and heat stress 184
7.5 DISCUSSION .. 188
7.6 CONCLUSIONS .. 194
7.7 REFERENCES ... 195

CHAPTER 8: GENERAL DISCUSSION AND CONCLUSIONS 202

8.1 INTRODUCTION .. 202
8.2 EVALUATION OF THE EXPERIMENTAL PROCEDURES USED
 IN THE CURRENT RESEARCH PROGRAMME 203
 8.2.1 Measurement of animal performance and herbage intake . 203
 8.2.2 Measurement of staggers and heat stress symptoms 204
Table of Contents

8.2.3 The use of pure swards... 205
8.2.4 Replication .. 206
8.3 COMPARATIVE FEEDING VALUE OF ARIES HD AND YATSYN
 1 PERENNIAL RYEGRASS .. 207
8.4 EFFECTS DUE TO NUTRITIVE VALUE AND DIGESTIBILITY 212
8.5 EFFECTS DUE TO RYEGRASS/ENDOPHYTE ASSOCIATION 218
 8.5.1 Digestibility ... 218
 8.5.2 Ryegrass staggers ... 218
 8.5.3 Heat stress ... 221
8.6 IMPLICATIONS .. 223
 8.6.1 Potential in breeding for improved nutritive value and
 digestibility .. 223
 8.6.2 Potential value of Aries HD perennial ryegrass 226
 8.6.3 Potential value of novel endophytes 227
 8.6.4 Importance of cultivar evaluations 228
8.7 CONCLUSIONS .. 229
8.8 REFERENCES ... 232

LIST OF APPENDICES

Appendix 1.1 Information on Aries HD, including results from Chapter 3
 (Wrightson Seeds, 1995)... 242

Appendix 2.1 The system of scoring used to assess severity of ryegrass staggers
 symptoms (Keogh 1973)... 243

Appendix 3.1 Preliminary report of Experiment 1 (Chapter 3) published in the
 245-249 .. 244
Appendix 3.2 Trial design of Experiment 1, 2 and 3 (Chapter 3, 4 and 5) at Haurongo Sheep and Beef Research Unit, Massey University, Palmerston North .. 249

Appendix 3.3 Monthly rainfall, soil temperature (10 cm), air temperature and maximum air temperature during Experiment 1 (Chapter 3) from 11/12/95 to 25/4/96 at AgResearch Palmerston North .. 250

Appendix 3.4 Liveweight (kg) over time of lambs grazing Aries HD (♦) and Yatsyn 1 (♣) pasture in Experiment 1 (Chapter 3) .. 251

Appendix 3.5 Nutritive value of Aries HD and Yatsyn 1 pastures in Experiment 1 (Chapter 3) from herbage cut samples to ground level and bulked pluck samples (fortnightly) corresponding to the same period 252

Appendix 4.1 Monthly rainfall, soil temperature (10 cm), air temperature and maximum air temperature during Experiment 2 (Chapter 4) from 3/9/96 to 1/12/96 at AgResearch Palmerston North .. 253

Appendix 4.2 Nutritive value of Aries HD and Yatsyn 1 pastures in experiment 2 (Chapter 4) from herbage cut samples to ground level and bulked pluck samples (fortnightly) corresponding to the same period 254

Appendix 4.3 Liveweight (kg) over time of ewes grazing Aries HD (♦) and Yatsyn 1 (♣) pasture in Experiment 2 (Chapter 4) .. 255

Appendix 4.4 Liveweight (kg) over time of lambs grazing Aries HD (♦) and Yatsyn 1 (♣) pasture in Experiment 2 (Chapter 4) .. 256

Appendix 5.1 Monthly rainfall, soil temperature (10 cm), air temperature and maximum air temperature during Experiment 3 from 2/12/96 to 12/3/97 at AgResearch Palmerston North .. 257
Appendix 5.2 Nutritive value of Aries HD and Yatsyn 1 pastures in Experiment 3 (Chapter 5) from herbage cut samples to ground level and bulked pluck samples (fortnightly) corresponding to the same period........... 258

Appendix 5.3 Nutritive value of Aries HD and Yatsyn 1 pasture in Experiment 3 (Chapter 5) under cages cut to grazing height (4 cm) and allowed to regrow for 4 weeks ... 259

Appendix 5.4 Liveweight (kg) over time of lambs grazing Aries HD (+) and Yatsyn 1 (●) pasture in Experiment 3 (Chapter 5)............................... 260

Appendix 7.1 Wrightson Seeds promotional information for Aries HD (1995)........ 261

Appendix 7.2 Trial design of Experiment 4 at Meginie Pasture and Crop Research Unit, Massey University, Palmerston North 263

Appendix 7.3 Monthly rainfall, soil temperature (10 cm), air temperature and maximum air temperature during Experiment 4 (Chapter 7) from 2/12/97 to 7/4/98 at AgResearch Palmerston North................. 264

Appendix 7.4 Nutritive value of Aries HD and Yatsyn 1 pastures in Experiment 4 (Chapter 7) from herbage cut samples to ground level before grazing ... 265

Appendix 7.5 In vitro organic matter digestibility (%) of Aries HD and Yatsyn 1 pastures in Experiment 4 (Chapter 7) from herbage cut samples to grazing height after grazing.. 267

Appendix 8.1 Mean (20-year) monthly rainfall, soil temperature (10 cm), air temperature and maximum air temperature at AgResearch Palmerston North .. 268
List of Tables

Table 2.1 The chemical composition (% DM) and apparent digestibility by sheep of S23 Perennial ryegrass at various stages of maturity (Waite et al., 1964; Armstrong, 1964) .. 11

Table 2.2 The effect of hay digestibility on estimated liveweight gain of sheep fed ad lib. Adapted from Blaxter (1960) 19

Table 2.3 Concentrations (ppm) of alkaloids produced by Nui perennial ryegrass with different endophyte genotypes. Mean of March and April harvests to ground level. Adapted from Davies et al. (1993b).... 55

Table 2.4 Concentrations (ppm) of alkaloids produced by 187BB endophyte with different ryegrass cultivars. Mean of March and April harvests. Adapted from Davies et al. (1993b) 55

Table 3.1 Cultivar effects on mean herbage mass, sward height, botanical composition and the proportion of tillers infected with endophyte.... 95

Table 3.2 Cultivar effects on liveweight gain, stocking rate, carcass weight gain and composition, and wool production of lambs...................... 97

Table 3.3 Cultivar effects on herbage intake (19/4/96 to 25/4/96), chromium release rate, organic matter digestibility from oesophageal fistulates, grazing behaviour and the percentage of lambs with ryegrass staggers (24/1/96 to 4/3/96).. 98

Table 3.4 Cultivar effects on herbage *in vitro* organic matter digestibility, nitrogen and neutral detergent fibre content.............................. 99
Table 3.5 Herbage endophyte alkaloid estimates (ppm) .. 99

Table 4.1 Herbage mass, sward height, botanical composition (mean from entire experiment), tiller density (17/10/96), for two cultivars of perennial ryegrass grazed by ewes in spring ... 114

Table 4.2 Organic matter digestibility, neutral detergent fibre and nitrogen content in herbage samples over the entire experiment 115

Table 4.3 Cultivar effects on alkaloid concentrations (ppm) in October 1996 115

Table 4.4 Cultivar effects on in vitro organic matter digestibility measured using oesophageal fistulates, herbage intake and grazing behaviour of ewes from 23 September to 4 October 1996 ... 116

Table 4.5 Perennial ryegrass cultivar effects on ewe liveweight gain and wool production over spring .. 117

Table 4.6 Perennial ryegrass cultivar effects on lamb liveweight gain and wool production over spring .. 117

Table 5.1 Weather conditions at the experimental site during summer 1996/97 .. 131

Table 5.2 Herbage mass, sward height, botanical composition (mean from entire experiment), pasture accumulation rate (PGR) under cages (December to March), tiller density (15 January and 21 March) and the proportion of tillers infected with endophyte 132

Table 5.3 Organic matter digestibility, neutral detergent fibre and nitrogen content in herbage samples over the entire experiment 134
Table 5.4 Herbage endophyte alkaloid estimates (ppm), mean from four sample dates (December to March) ... 134

Table 5.5 Cultivar effects on herbage intake and grazing behaviour of lambs from 20 to 31 January and 11 to 21 March 1997 ... 136

Table 5.6 Cultivar effects on lamb liveweight gain, carcass weight gain and composition, and wool production over summer ... 137

Table 5.7 Cultivar effects on staggers incidence (19 February to 12 March), rectal temperature (19 February to 12 March), and serum prolactin concentration (3 March and 7 March) .. 138

Table 6.1 Rate of tiller death (regression coefficient, b), coefficients of determination (R^2), and half-life ($T_{1/2}$) of tillers for Aries HD and Yatsyn 1 cultivars ... 151

Table 6.2 Summary of flowering behaviour in populations of tillers of Aries HD and Yatsyn 1 ... 154

Table 7.1 Weather conditions at the experiment site during summer 1997/1998 .. 171

Table 7.2 Pre- and post-grazing sward height (cm) and herbage mass (kg DM/ha) under rotational grazing management from 2/12/97 to 10 March 1998 (n=13/trt) .. 173

Table 7.3 Relative contribution (% DM) of the components of perennial ryegrass pasture under rotational grazing management from 2/12/97 to 3/3/98 (n=13/trt) ... 174
Table 7.4 Proportion of leaf in ryegrass (%), proportion of vegetative tillers (%), tiller density (tillers/m²) and the proportion of tillers infected with endophyte (%) in pure swards of Aries HD and Yatsyn 1 perennial ryegrass ... 175

Table 7.5 Effect of cultivar and grazing management on in vitro organic matter digestibility (OMD%), nitrogen and neutral detergent fibre (DM%) from herbage cut to ground level from 9/12/97 to 31/3/98 (n=5/trt) and OMD from herbage cut to grazing height from 16/12/97 to 7/4/98 (n=5/trt) .. 178

Table 7.6 Effect of cultivar and grazing management on endophyte alkaloid estimates (ppm) from herbage cut to ground level from 9/12/97 to 31/3/98 (n=5/trt) .. 179

Table 7.7 Effect of cultivar and grazing management on herbage intake and organic matter digestibility from oesophageal fistulate samples (n=5/trt) from 20/1/1998 to 29/1/1998 ... 182

Table 7.8 Effect of cultivar and grazing management on initial and final lamb liveweight (kg). Liveweight gain (g/day) before severe ryegrass staggers was observed, during severe staggers and over the entire experiment .. 183

Table 7.9 Effect of cultivar and grazing management on several indicators of animal health for rotationally grazed lambs ... 186

Table 8.1 Summary of liveweight gain from four grazing experiments on Aries HD and Yatsyn 1 pastures .. 210

Table 8.2 Summary of herbage intake from four grazing experiments on Aries HD and Yatsyn 1 pastures .. 211
Table 8.3 Mean *in vitro* organic matter digestibility (%) over four grazing experiments 1995 to 1998. 216
LIST OF FIGURES

Figure 2.1 Factors contributing to feeding value. Adapted from Black (1990)....... 12

Figure 2.2 Alternative programmes for improving the nutritive value of herbage. Adapted from Hutchinson and Clements (1987) 15

Figure 2.3 A practical four-stage model for the animal evaluation of a new cultivar. Adapted from Mochrie et al. (1980).. 29

Figure 2.4 Effects of the grazing animal on pasture plants. Adapted from Casler et al. (1998).. 30

Figure 3.1 Mean sward height for Aries HD (●) and Yatsyn 1 (▲) pasture and 6-cm target line .. 96

Figure 3.2 Alkaloid concentrations in herbage cut to ground level in Aries HD (●) and Yatsyn 1 (▲) pasture over the experiment: A, Lolitrem B; B, Ergovaline; C, Peramine ... 100

Figure 4.1 Mean sward height for Aries HD (●) and Yatsyn 1 (▲) pasture and 6-cm target line .. 114

Figure 5.1 Mean sward height for Aries HD (●) and Yatsyn 1 (▲) pasture and 6-cm target line .. 133

Figure 5.2 Alkaloid concentrations in herbage cut to ground level in Aries HD (●) and Yatsyn 1 (▲) pasture over the experiment: A, Lolitrem B; B, Ergovaline; C, Peramine ... 135
Figure 6.1 Survival of tillers from September to March 1997. The surviving number of tillers is expresses as the proportion N_i/N_{0-m} (Equation 1) for Aries HD (●) and Yatsyn 1 (■) .. 150

Figure 6.2 Survival of tillers from December to March 1997. The surviving number of tillers is expressed as the proportion N_i/N_{0-m}. The fitted line (e^{b_i}) has $b=-0.0133$, the mean of Aries HD (●) and Yatsyn 1 (■) .. 151

Figure 6.3 Proportion of tillers with a seedhead, expressed as the proportion N_i/N_{0-m} (Equation 1) for Aries HD (●) and Yatsyn 1 (■) .. 153

Figure 6.4 Seedhead development, expressed as the proportion of newly flowering tillers to the number of live tillers from the previous measurement date (Equation 2) for Aries HD (●) and Yatsyn 1 (■) 153

Figure 6.5 Stem elongation, expressed as the proportion of newly elongating tillers to the number of live tillers from the previous measurement date (Equation 2), for Aries HD (●) and Yatsyn 1 (■) .. 154

Figure 6.6 Tiller population density of Aries HD (●) and Yatsyn 1 (■) 155

Figure 6.7 Ryegrass tiller weight for in Aries HD (●) and Yatsyn 1 (■) swards. Bars indicate SED 5% .. 156

Figure 7.1 Proportion of vegetative and reproductive tillers (having a visible seedhead or exhibiting stem elongation) over November to December 1997 in pure swards of Aries HD and Yatsyn 1 perennial ryegrass .. 176

Figure 7.2 Tiller density of ryegrass and other species in pure swards of Aries HD and Yatsyn 1 perennial ryegrass .. 176
Figure 7.3 Alkaloid concentrations in herbage cut to ground level in Aries HD leader (●), Yatsyn 1 leader (■), Aries HD follower (▲) and Yatsyn 1 follower (○) pastures over the experiment: A, Lolitrem B; B, Ergovaline; C, Peramine ... 180

Figure 7.4 Effect of cultivar and grazing management on liveweight over time. Aries HD leaders (●); Yatsyn 1 leaders (■); Aries HD followers (▲); Yatsyn 1 followers (○). Bars indicate SED 5% ... 184

Figure 7.5 Effect of cultivar and management on severity of ryegrass staggers. Bars indicate SED 5% .. 185

Figure 7.6 Effect of increasing ambient temperature on: A, Rectal temperature and B, Respiration rate of lambs. Aries HD leaders (●); Yatsyn 1 leaders (■); Aries HD followers (▲); Yatsyn 1 followers (○); Mean of 4 treatments (—) ... 187

Figure 8.1 Aries HD perennial ryegrass promotional characteristics (Wrightson Seeds 1995: Appendix 8.2) .. 227
LIST OF PLATES

Plate 3.1 General view of experimental swards in Experiment 1 .. 93
Plate 3.2 Lambs after shearing at the end of Experiment 1 .. 93
Plate 4.1 General view of swards in Experiment 4 ... 111
Plate 4.2 Oesophageal fistulated sheep with bag fitted ready for sampling 111
Plate 5.1 General view of swards in Experiment 3 with sprinkler irrigation in the background .. 129
Plate 5.2 A lamb in Experiment 3 ... 129
Plate 6.1 Transect with 10 cm intervals marked along a ruler ... 149
Plate 6.2 Tiller corer for taking soil core samples for the measurement of tiller population density .. 149
Plate 7.1 Recording liveweight of lambs in Experiment 4 ... 168
Plate 7.2 Drawing blood sample using jugular venipuncture for analysis of serum prolactin concentration. Bails used for restraining lambs for measurement of rectal temperature and respiration rate are in the background .. 168
Plate 7.3 Contrasts in sward conditions between leader pre-grazing pasture on the left and follower pre-grazing pasture on the right in Experiment 4 .. 189
Plate 7.4 Lamb with ryegrass staggers during Experiment 4 191
Plate 7.5 Lambs showing signs of heat stress in Experiment 4 191
Plate 8.1 Herbage cut sample to ground level .. 214
Plate 8.2 Herbage regrowth under cages before cutting to grazing height 214